The normal and sums of normals

The sum of independent normally distributed random variables is also normally distributed.
Details
The sum of independent normally distributed random variables is also normally distributed. More specifically, if $X_1 \sim n(\mu_1, \sigma_{1}^2)$ and $X_2 \sim n(\mu_2, \sigma_{2}^2)$ are independent then $X_1 + X_2 \sim n(\mu, \sigma^2)$ since $\mu = E \left[ X_1 + X_2 \right] = \mu_1 + \mu_2$ and \\
$\sigma^2 = V \left[ X_1 + X_2 \right]$ with $\sigma^2 = \sigma_{1}^2 + \sigma_{2}^2 $ \\
if $X_1$ and $X_2$ are independent. \\

Similarly $$\sum_{i=1}^{n} X_i $$ is normal if $X_1 , \ldots , X_n$ are normal and independent.
Examples
\begin{xmpl}
Simulating and plotting a single normal distribution.
$Y \sim n(0,1)$

\begin{lstlisting}

library(MASS) # for truehist
par(mfcol=c(2,2))
y<-rnorm(1000) # generating 1000 n(0,1)
mn<-mean(y)
vr<-var(y)
truehist(y,ymax=0.5) # plot the histogram
xvec<-seq(-4,4,0.01) # generate the x-axis
yvec<-dnorm(xvec) # theoretical n(0,1) density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("Simulation and theory n(0,1)\n",
           "mean=",round(mn,2),
           "and variance=",round(vr,2))
title(ttl)
\end{lstlisting}
\end{xmpl}
\begin{xmpl}

Sum of two normal distributions.

$$Y_1 \sim n(2, 2^2)$$ and $$Y_2 \sim n(3, 3^2)$$

\begin{lstlisting}
y1<-rnorm(10000,2,2) # n(2,2^2)
y2<-rnorm(10000,3,3) # n(3, 3^2)
y<-y1+y2
truehist(y)
xvec<-seq(-10,20,0.01)
# check
mn<-mean(y)
vr<-var(y)
cat("The mean is",mn,"\n")
cat("The variance is ",vr,"\n")
cat("The standard deviation is",sd(y),"\n")
yvec<-dnorm(xvec,mean=5,sd=sqrt(13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The sum of n(2,2^2) and n(3,3^2)\n",
           "mean=",round(mn,2),
           "and variance=",round(vr,2))
title(ttl)
\end{lstlisting}
\end{xmpl}
\begin{xmpl}
Sum of nine normal distributions, all with $\mu = 42$ and $\sigma^2=2^2$


\begin{lstlisting}
ymat<-matrix(rnorm(10000*9,42,2),ncol=9)
y<-apply(ymat,1,mean)
truehist(y)
# check
mn<-mean(y)
vr<-var(y)
cat("The mean is",mn,"\n")
cat("The variance is ",vr,"\n")
cat("The standard deviation is",sd(y),"\n")
# plot the theoretical curve
xvec<-seq(39,45,0.01)
yvec<-dnorm(xvec,mean=5,sd=sqrt(13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The sum of nine n(42^2) \n",
           "mean=",round(mn,2),
           "and variance=",round(vr,2))
title(ttl)
\end{lstlisting}
\end{xmpl}