Test of hypothesis, P values and related concepts math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The principle of the hypothesis test

The principle is to formulate a hypothesis and an alternative hypothesis, H_0 and H_a respectively, and then select a statistic with a given distribution when H_0 is true and select a rejection region which has a specified probability (α) when H_0 is true.

The rejection region is chosen to reflect H_a , i.e to ensure a high probability of rejection when H_a is true.

The one sided z test for normal mean

Consider testing

$$H_0: \mu = \mu_0$$

٧s

$$H_{a}: \mu > \mu_{0}$$

Where data $x_1 \dots x_n$ are collected as independent observations of $X_1 \dots X_n \sim n(\mu, \sigma^2)$ and σ^2 is known. If H_0 is true, then

$$\bar{x} \sim n(\mu_0, \frac{\sigma^2}{n})$$

So,

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim n(0, 1)$$

The two-sided z test for a normal mean

$$z:=rac{\overline{x}-\mu_0}{s\sqrt{n}}\sim \mathit{n}(0,1)$$

The one-sided t-test for a single normal mean

Recall that if $X_1,...,X_n \sim N(\mu,\sigma^2)$ i.i.d. then

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

Comparing means from normal populations

Suppose data are gathered independently from two normal populations resulting in

 $x_1,, x_n$ and $y_1, ...y_m$

Comparing means from large samples <Ól.B.M.>

If $X_1,...,X_n$ and $Y_1,....,Y_m$, are all independent (with finite variance) with expected values of μ_1 and μ_2 respectively, and variances of σ_1^2 , and σ_2^2 respectively, then

$$\frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}}}\dot{\sim}n(0,1)$$

if the sample sizes are large enough.

This is the central limit theorem.

The P-value

The p-value of a test is an evaluation of the probability of obtaining results which are as extreme as those observed in the context of the hypothesis.

The concept of significance

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.