Some notes on matrices and linear operators

 math612.0 A1: From numbers through algebra to calculus and linear algebraGunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The matrix as a linear operator

Let A be an $m \times n$ matrix, the function

$$
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T_{A}(\underline{x})=A \underline{x},
$$

is linear, that is

$$
T_{A}(a \underline{x}+b \underline{y})=a T_{A}(\underline{x})+b T_{A}(\underline{y})
$$

if $\underline{x}, \underline{y} \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$.

Inner products and norms

Assuming x and y are vectors, then we define their inner product by

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

where $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ and $y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$

Orthogonal vectors

Two vectors x and y are said to be orthogonal if $x \cdot y=0$ denoted $x \perp y$

Linear combinations of i.i.d. random variables

Suppose $X_{1}, \ldots ., X_{n}$ are i.i.d. random variables and have mean $\mu_{1}, \ldots ., \mu_{n}$ and variance σ^{2} then the expected value of Y of the linear combination is

$$
Y=\sum a_{i} X_{i}
$$

and if a_{1}, \ldots, a_{n} are real constants then the mean is:

$$
\mu_{Y}=\sum a_{i} \mu_{i}
$$

and the variance is:

$$
\sigma^{2}=\sum a_{i}^{2} \sigma_{i}^{2}
$$

Covariance between linear combinations of i.i.d random variables

Suppose Y_{1}, \ldots, Y_{n} are i.i.d., each with mean μ and variance σ^{2} and
$a, b \in \mathbb{R}^{n}$. Writing $Y=\left(\begin{array}{c}Y_{1} \\ \vdots \\ Y_{n}\end{array}\right)$, consider the linear combination $a^{\prime} Y$ and $b^{\prime} Y$.

Random vectors

$$
Y=\left(Y_{1}, \ldots, Y_{n}\right) \text { is a random vector if } Y_{1}, \ldots, Y_{n} \text { are random variables. }
$$

Transforming random vectors

Suppose

$$
Y=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)
$$

is a random vector with $E Y=\mu$ and $V Y=\Sigma$ where the variancecovariance matrix

$$
\Sigma=\sigma^{2}
$$

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

