Ranks and determinants

math612.0 A1: From numbers through algebra to calculus and linear algebra

Gunnar Stefansson (editor) with contributions from very many students

March 7, 2022

The rank of a matrix

The rank of an $n x p$ matrix, A, is the largest number of columns of A, which are not linearly dependent (i.e. the number of linearly independent columns).

The determinant

Recall that for a 2×2 matrix,
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
the inverse of A is
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right]$

Ranks, inverses and determinants

The following statements are true for an $n \times n$ matrix A :

- $\operatorname{rank}(A)=n$
- $\operatorname{det}(A) \neq 0$
- A has an inverse

Copyright 2021, Gunnar Stefansson (editor) with contributions from very many students
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

