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1 Numbers, arithmetic and basic algebra

1.1 Natural Numbers

The positive integers are called natural numbers.

These numbers can be added, multiplied together and so forth
Notation:N = {1,2,3,4,....}

Subtraction and division are not defined on these numbers.

An arbitrary element oN is most commonly denoted by j, n,or m, but any symbol
can be used.

1.1.1 Details

Definition 1.1. The set of positive integers is usually denoted Ny i.e. N =
{1,2,3,4,....} and is called the set afatural numbers. In some cases the numller
zero is included as a natural number, but here we will useyth@sl Ng to denote th

integers 0, 1, 2 and up.

Within this set of numbers it is possible to add and multiplynibers together. Arithmetic
operations are denoted byfor addition and (or x) for multiplication. A natural number
can also be raised to the power of a natural number, €.g- 3 3-3-3-3 or in general
mM"=m-m-...-m(ntimes).

When stating general properties of the natural numbers eedsto use symbols to indica-
te that the property holds for an arbitrary number. It is maiiggh to just write the property
for a few numbers. For example, to declare that one can me@ge numbers in a sum, it
is not enough to say 4 3 = 3+ 4 but one must explicitly state "the addition operator has
the property that any two natural numbearsm € N satisfyn+m= m+n".

An arbitrary element olN is most commonly denoted By j, n,or m, but any symbol,
a, b, c ..., can be used.

Several rules of arithmetic apply (some by definition, attean be derived) such as

ab = ba
a+b = b+a
a+bc = a+(bc)
a(b+c) = ab+ac
(a+b)+c = a+(b+c)
(abjc = a(bc)

Subtraction and division are not generally defined. In aolditve define one integan, to
the power of anothem, to meam multiplied by itselfmtimes:n™=n-n-....nm.



Definition 1.2. The power is aroperator just like addition and multiplication, and |Is
defined to have higher priority than the other two.

1.1.2 Examples

Example 1.1. If we havex = 4 andy = 2 and want to evaluate
X +y*

then we replace the values of x and y in the expression, ardateat, taking care t
observe the correct order of operations:

421 2* —16+16=32

1.2 Starting with R

Download R from the R website: http://www.r-project.org/

Look at on-line information on R, and take the tutor-web Rotia: http://tutor-
web.net/stats/stats240.1

Simple R commands:
e Assignmentx < —2

e Arithmetic:2x54+4

1.2.1 Details

To assign values to a variable in R one can uggr «": however, these aldOT equivalent.
Using the equals sign is confusing and therefore not recamdetk

1.2.2 Examples

Example 1.2. Assigning values to a variable:

x<-2
y<-3
Z<—X+y

Example 1.3. Viewing assigned values:
Type the name,i.e. "z", to view the assigned value.




[1]1 5

1.3 The Integers

The set of positive and negative integers:
Z=A.,.,-2,-1,012 ... }

1.3.1 Details

Definition 1.3. The set of all integers is denoted Byi.e.

Z={..,-2-1012,....)}.

Note 1.1.Note that within this set it is possible to subtract as welbdd and multiply.
Within this set we cannot, however, in general, performsion.

When preforming multiple mathematical operations witlia same equation, i.e. 798-
3, there is a conventional order for which the operationstiheperformed.

Definition 1.4. The conventional order of operations for equations withtipld mat-
hematical operations is referred to asogerator precedence

1.3.2 Examples

Example 1.4. To compute 79- 8- 3 start by multiplying and then subtracting:
79—-8.3=79-24=55

Example 1.5. To compute 15- (244 36) we first note that the parentheses (brackLts)
imply a precedence; anything inside brackets should beiated first.
Thus, we first add 36 to 24 and then we subtract that from 15.

15 - (24+36) = 15- 60 = - 45

Note that the answer is a negative number.




Example 1.6. Simple arithmetic in R is easily done at the command prompt.

79-8%3
[1] 55
15-(24+36)
[1] -45

1.4 Rational numbers

Rational numbers are fractions denoted p/q, where p and g are integers. We

simplify fractions if the numerator and denominator com@@mmon terms.

1.4.1 Details

Definition 1.5. Rational numbersare fractions denotegl/q, wherep andq are integers
The set of all rational numbers is usually denagd

Note 1.2.Note that every integer is a rational number (obtained bintalf = 1).

We can simplify fractions if the numerator and denominatortain common terms.

can

When the rationals are ordered on to a line there are poirgsing, i.e. there are "gaps”,

for example there is no rational numifq such that p/q)? = 2.

1.4.2 Examples

Example 1.7. §=55=3

The rational numbers can be put in order along a line as in gluedi



Example 1.8. As an elaborate example of a fraction, consider the evalnatithe quanl
tity

wIN
+
(6211 )8}
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+
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Example 1.9. Evaluate
+

+
Solution: We can either start by calculating the numerator

wIN
(62118

Wi
NI

2 2
3 5

or the denominator

_|_

Wl
NI =

in the numerator have a common denominator. We can eitheittimdeast commo
denominator or multiply the fractions with each others demmator. Here they are t
same number, 15. So the first step is:

Here we choose to start with the numerator. The first step msake the two fractior:F
e

g 5_|_g 3—2;54_5—1_0_'_2
3 5 3.5 5.3 15 15

Now it is possible to add the two fractions which is the secstieg:

10+6 16
15 15
Now the same process has to be done on the denominator.
With the same method (LCM - least common multiple) we get:
1.2 1.3 2 3 5
32723 66 6
Then the total answer is:

116 6_96_96/3 32

g 155 75 75/3 25
We can see that in the last step of the equation, the factobéais simplified. To dI
this we use factoring. We break down the numbers into smialé®ors or multiple prim

numbers. Therefore we have:

96

75

3-32
3-25




We can now remove "3", or the multiplier, as it is on both sidéthe fraction. So wé
have:

3_2

25
i 25 7 47
25 25 25

In step 1 above we used Cross-Multiplication.

Definition 1.6. Cross-Multiplication is when we multiple the numerator by t
reciprocal of the denominator.

e

So in this case we rewrite

16
15
5
6
or
16 5
15° 6
as
16 6
15 5
As you can see all we are doing is turning
5
6
upside down: and multiplying it with
16
15
This gives:
96
75

In some cases it is possible to dravg@uare root of a fractions = g, i.e. find a number
r € Q such thar? = s. The square root is denoted .

Example 1.10. Consider the expression

x24)+(%x¢75)

Ol R

(

To evaluate this expression, first consider separatelytb@arts on each side of the plus
symbol.
The first part is




and the second part is

1
<§ X V/25)
In addition, by definition of root, B
1.1
9 3

First part:

Second part:
(é X \/25) = % x5=1
Finally, add the first part and the second part:

1_6_|_1_1_9
3 3

Example 1.11. Consider the following fraction example, to be solved stegtep:

4 15
21 (a3)
2.

1
6 5
First we need to be aware of operator presedence, meanirigghae solve the bracket
then multiplication/division, then addition/subtractiand finally the main fraction.

U7

15 5
@31
After solving the bracket we can proceed with adding

4

2

to
5

12
as there is no other action left for the nominator of the maantfon. So:
4 n 5
2 12
When adding fractions together we first have to find a commaowinator, in this cas
12 would work as

D

2-6=12

So we multiply both the numerator and the denominator of fitzattion by 6 and thef
add the two numerators of the fractions together, keepiagéme denominator.

4,5 _46 5 24 5 29
212726 12" 1212 12

11



Now we have the top half of the fraction solved. We then prdoeéh dividing the
two fractions of the bottom half. When dividing fractions wee the so called crogs
multiplication technique. This arithmetic trick is derdv&om the fact that if you divid]e
a fraction by its duplicate you get 1. If you multiple a fractiby its reciprocal (it
reverse) you also get 1. Like so:

1 1

-+=-=1

2 2
and 1 >

i —

21

These functions always provide the same result and therefercan turn the fractio
we are dividing by upside down and multiply it to the othercfran as that is usually
much easier.

-

We can therefore rewrite

2 1
675
as
25 10
61 6

We've now solved both halves of the original fraction and tteerefore proceed to solye
it, again with the cross multiplication technique as frawt are after all just divisions:

20 10_29 6 174
12° 6 12 10 120

Now
174

120
is a pretty bad looking fraction and we’d preferably like tmplify it.

To do this we use factoring.

Definition 1.7. Factoring essentially means to break a number done into it's smallest
factors or multipliable prime numbers.

In this case we get

2-3-29

2-3-20
These are the smallest prime numbers that can multiply hegehto 174 and 12
respectively.

=4

A way of doing this in your head is by first dividing both numb€i74,120) by two}
Which gives us:




and then dividing those numbers (87,60) by 3, since theyt tendivided by 2. Dividing
by 3 gives you
3-29 29
3.20 20
which is a lot nicer than
174
120
The reasoning behind this factoring simplification is tha& ean remove multipliers |f
they are on both sides of a fraction. This is because thetrekal fraction where thg
numerator and the denominator are the same is always 1. dike s
1
=1
1
or )
Z =1
2
or 3
|
3
The final answer therefore is
2+(3:3) _ 29
2.1
65 20
1.5 Therealline
Some obvious numbers are not fractions. . -
The set of numbers making up the real line is denoted
by the symbolR.
The
diagonal of a rectangle with unit side lengths\&,
Note thaty/2 ia not a fraction.
1.5.1 Details

Some obvious numbers, which commonly occur, are not frastidhese are in between
the rational numbers (fractions). Filling in the missingrs to obtain a continuum results
in the set of "real numbers".

Denoted byR the entire set of "real numbers"which corresponds to "glim'the "missing
piecesf the line.

13



1.5.2 Examples

Example 1.12.1f Cis the circumference of a circle amis the diameter and we defilue
n= & thenttis not a fraction.

Example 1.13. One example of a non fraction is the number e (Euler's numbhbigh
can be defined by

Example 1.14.1f you have a right triangle with unit side length, what is teegth of its
hypotenuse and what class of numbers does it belong to?

An isosceles triangle is defined as having adjacent and dppsides of same lengt
connected by a 90angle. Unit side length of these, refers to a side length of

=)

1

As we have a 90angle, we can use Pythagoras’ theorem:

a4+ b%=c?

With
a= ad jacent

b = opposite
c = hypotenuse

So with
ab=1

> =12412
c=1+1
2=2

We take the square root to get

c=v2

Now that we answered the first part of the question, it neetis tdefined, which class @f

number
V2

14



belongs to.

V2

is an irrational number, and belongs thereby to the set bhwaabers

R

=

Real numbers can be imagined as points on an infinitely loregg livhich is also calle
the real line.

2 Data vectors

2.1 The plane

Pairs of numbers can be depicted as points on a plane.
The plane is normally denoted IR?.

2.1.1 Details

Pairs of numbers can be depicted as points on a plane.

Definition 2.1. A plane s a perfectly flat surface with no thickness and no end, it
extend forever in all directions. It has two-dimensionaglin and width. We need two

values to find a point on the plane.

Normally we talk about "the plane"as the collection of alirpaf numbers and denoted it

by
R? = {(x,y) :x,y € R}

, giving coordinates to each point.

2.1.2 Examples

Example 2.1. Plotting the point (2,4) in the x-y plane using R.

plot(2,4,x1lim=c(0,6) ,ylim=c(0,6) ,xlab="x",ylab="y", cex=2)
text(2,4,"(2,4)",pos=4,cex=2)

Additional points can be added using gh@ntsfunction:

points (3,5, cex = 0.5) ## a point at (3,5)

If you have 2 sets of coordinates on a plane you can calcuiatdistance between the 2

points and graph the line connecting the points

15



Example 2.2. What is the distance between the 2 points (3,9) and (5,1)?
We will use the Pythagorean theorem:

d=/(x2—X1)2+ (y2—y1)2
We insert our values into the formula:

d=/(5—3)2+(1-9)2

When we combine inside the parenthesis we get:
d=/(22+(-8)2

Squaring both terms:

d=v4+64
Then we take the square root:
d= 68
The result:
d =8.2462

2.2 Simple plotsinR

Graphing functions in R

plot - plots a scatter plot (as a line plot)

points - adds points to a plot . w2

text - adds text to a plot - e

lines - adds lines to a plot

on a plane, drawn with R.

Points

2.2.1 Examples

Example 2.3. plot (2,3)
gives a single plot and
plot (2,3, x1lim=c(0,5), ylim=c(0,5))

gives a single plot but forces both axes to range from 0 to 5.

16




Example 2.4. The following R commands can be used to generate a plot walptints:

plot(1,2,x1lim=c(0,5) ,ylim=c(0,5) ,xlab="x",ylab="y")
points(3,1)

text(1,2,"(1,2)",pos=4, cex=2)
text(3,1,"(3,1)",pos=4, cex=2)

Example 2.5. In this example, we plot 3 points. The first two points are bsiuding
vectors with a length of 2 as the x and y arguments of the plottfan. The third plo
was added with the points function. The second and thirdtpewere labeled using thle
text function and a line was drawn between them using the fmection.

Note 2.1.Note that if you are unsure of what format the arguments of dariRtion
needs to be, you can call a help file by typing "?"before thetion name (e.g. "?lines))

plot(c(2,3),c(3,4),xlim=c(2,6) ,ylim=c(1,5) ,xlab="x",ylab="y")
points(4,2)

text (3,4,"(3,4)",pos=4, cex=2)

text (4,2,"(4,2)",pos=4, cex=2)

lines(c(3,4), c(4,2))

2.3 Data

‘ Data are usually a sequence of numbers, typically callec¢re

2.3.1 Details

When we collect data these are one or more sequences of myntbdected into data
vectors. We commonly think of these data vectors as columagable.

2.3.2 Examples

Example 2.6. In R, if the command
x <- c(4,5,3,7)

is given, therx contains a vector of numbers.

Example 2.7. Create a function in R, give it a name "Myfunction"which takbe sun
of x,y.

17



Myfunction<- function(x,y) {
sum(x,y)

}

If you input the vectors 1:3 and 4:7 into the function it wildlculate the sum df
x<-(1+2+3) andy<-(4+5+6+7) as follows

> Myfunction(1:3,4:7)
28

2.4 Indices for a data vector

‘ If data are in a vectax, then we use indice® refer to individual elements.

2.4.1 Details

If i is an integer thew; denotes th&th element ofx.
Note that although we do not distinguish (much) between swd-column vectors, usually
a vector is thought of as a column. If we need to specify the tfpvector, row or column,

then for vecto, the column vector would be referred toxasind the row vector as' (the
transposeof the original).

2.4.2 Examples

Example 2.8.If x= (4,5,3,7) thenx; =4 andxq = 7

Example 2.9. How to remove all indices below a certain value in R

x <- ¢(1,5,8,9,4,16,12,7,11)
X
[1] 15689 4 16 12 7 11

y <- x[x>10]
y
[1] 16 12 11

Example 2.10. Consider a function that takes to vectors
acR"beN"

as arguments with

18



and
1 S b]_,...,bm S n

. The function returns the sum "
Zabi
i=1

Long version:
fN <- function(a,b)
result <- sum(a[b])
return(result)

Short version:
IfN <- function(a,b) sum(a[b])|

1)

2.5 Summation

We use the symbd to denote sums.
In R, the sum function adds numbers.

2.5.1 Examples

Example 2.11.If x= (4,5,3,7)
then

4
S Xi=X1+Xo+X3+Xs=4+5+3+7=19
i—1

and

4
> X =Xo+Xg+x4=5+3+7=15
i—2

Within R one can give the corresponding commands:

x<-c(4,5,3,7)
X

[1] 4 537
sum(x)

[1] 19
sum(x[2:4])
[1] 15

3 More on algebra

3.1 Some Squares

If a and b are real numbers, then

(a+b)? = a®+ 2ab+b?

19




3.1.1 Details

If &, b are real numbers, then:
(a+b)?2 =a?+2ab+b?
This can be proven formally with the following argument:

(a+b)? = (a+b)(a+b)

(a+b)a+(a+b)b

= a’+ba+ba+b?
a2+ 2ab-+ b?

3.2 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binlarogfficients in a triangle

1
1 1
1 2 2
3.2.1 Details
n=0: 1
n=1: 1 1
n=2: 1 2 1

n=3: 1 3 3 1

To build Pascal’s triangle, start with "1"at the top, andtkentinue placing numbers below
it in a triangular pattern. Each number is just the two numsladyove it added together
(except for the edges, which are all "1").

3.2.2 Examples

Example 3.1. The following function in R gives you the Pascal’s triangbe i = 0 to
n=10.

fN <- function(n) formatC(n, width=2)

for (n in 0:10) {
cat (fN(n),":", fN(choose(n, k = -2:max(3, n+2))))
cat ("\n")

g W NN - O
SO O O O O O
SO O O O O O
i e e e e
AP W N = O
g = O O

= O O

oS O
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6 0 0 1 6152015 6 1 O O

7 0 0 1 7213321 7 1 0 O

8 0 0 1 82856705628 8 1 0 O

9: 0 0 1 93684 126 126 84 36 9 1 0 O

10 : 0 O 1 10 45 120 210 252 210 120 45 10 1 O O

Changing the numbers in the lifer(n in 0:10) will give different portions of thg
triangle.

3.3 Factorials

We define the factorial of an integer n as
nNn=n-(n-1)-(n-2)-...-3-2-1

3.3.1 Detalils

Definition 3.1. We define the factorial of an integer n as

n=n-(n-1)-(n—2)---...-3-2-1.

3.3.2 Examples

Example 3.2. Suppose you have 6 applds, b,c,d, e f} and you want to put each olwe
into a different apple baskefl,2,3,4,5,6}.

For the first basket you can choose from 6 apgdled,c,d,e f}, and for the secor£
basket you have then 5 apples to choose from and so it godsefoest of the baskets,
so for the last one you only have 1 apple to choose from.

The end result would then be: 66-5-4-3-2-1= 720 possible allocations.

This could also be calculated in R with the factorial funatio

factorial (6)
[1]1 720

3.4 Combinations

The number of different ways one can choose a subset ok$ipen a set oh elements
is determined using the following calculation:

)~
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3.4.1 Detalils

Definition 3.2. A combination is an un-ordered collection of distinct elements

Suppose we want to toss a coitimes. In each toss we obtain head (H) or tail (T) resulting
in a sequence of H,T,TH, ... T.

How many of these possible sequences contain exadtyls? There ar@ positions in
the sequence, we can choosef these in(?() ways and put our "Ts"in those positions. If
the probability of landing tails then each one of these sege® with exactly tails has
probability p*(1 — p)"* so the total probability of landing exactitails in n independent
tosses is

For convenience we define 0! to be 1.

3.4.2 Examples

Example 3.3. Consider tossing a coin four times.
(a) How many times will this experiment result in exactly ttags?

There are a total of 16 possible sequences of heads and-teriddur tosses. These cgn
simply all be written down to answer a question like this.

We get two tails in 6 of these tosses. We can explicitly witite ¢orresponding comp-
inations of two tails as follows

HHTT
HTHT
HTTH
THTH
TTHH
THHT

(b) How many times you will end up with 1 tail? The answer ismds and the outp@t
can be written as;

HHHT
HTHH
THHH
HHTH

The case of a single tail is easy: The single tail can come apyrone of four positiong.

22



3.5 The binomial theorem

(a+b)"= zn: (2) Q">

x=0

3.5.1 Detalils

If a and b are real numbers and n is an integer then the expngssi-b)" can be expanded
as:

(a+b)"=a"+(})a b+ ()a 2" ...+ (", )ab T+ b"

(a+b)" =30 (Pab"

This can be seen by looking @+ b)" as a product of n parentheses and multiply these by
picking one item (a or b) from each. If we pickadrom x parentheses arxfrom (n—x),
then the product ig*b"*. We can choose theas in a total of(?() ways so the coefficient

of a*b" s (}).

3.5.2 Examples

Example 3.4. Since

it follows that

4 Discrete random variables and the binomial distributi-
on

4.1 Simple probabilities

4.1.1 Details

Of all the possible 3-digit stringii) of them havex heads. So the probability of landing
heads if3) p*(1— p)3*.

4.1.2 Examples

Example 4.1. Consider a biased coin which has probabiptgf landing heads up. If
toss this coin 3 independent times the possible outcomes are

23



sequence probability Numberofheads
HHH p-p-p=p° 3
HHT PP(1-p)
HTH PP(1—p)
HTT p(1—p)?
THH P?(1-p)
THT p(1—p)?
TTH p(1—p)?
TTT (1-p)?

OFRPFPDNEFEDNDN

Example 4.2. It is also possible to aggregate these values into a table@sctibe onI)I
the number of heads obtained:

heads probability(x)

0 (1-p)?°
1 3p(1—p)?
2 3p?(1—-p)
3 p3

If we are only interested in the number of heads, then thie tdéscribes grobability
mass functionp, namely the probability(x) of every possible outcomeof the experi-
ment.

Example 4.3. Given that a year is 365 days and each day has the same pi‘t)beéll
being someone’s birthday. What's the probability of ati€ageople sharing a birthday
in a group of 25 people?

Now, calculating each of the possible outcomes could beceoeng tedious. That i$
calculating the odds that 2 people share a birthday, 3 pedpteople, etc. So instead
we try to find out the odds that no one in the group shares adaiytand subtract thoge
odds from 1 (100%).

First, let's look at the odds of only two people having distihirthdays.

365 364

365 365" 0.9973
Person one can be born on any day and the odds of having actibtithday are
therefore 1. The next person can be born on everyday but the fther person wds

born on, so 364 days.

Now let’'s say we add the 3rd person and calculate his/her ofddaving a distinct birt
hday.

365 364 363
365 365 365
This can also be rewritten as

=0.9918

24



365-364- 363
365

And we can do this on and on for all the 25 people we are intedeist But that may
also become a bit tedious. So we use factorials instead.sBaith of doing

365-364-363..-341

365°
we do
=% — (0.4313
365

338...1
this from 1 we get

1-0.4313=0.5687
or roughly 57% odds of at least 2 people in a group of 25 shahagame birthday.

Essentially the division of factorials here removes allthkies < 341, leaving 340, 33,

Now remember this is the probability that no one shares hdagt. So when we subtract

4.2 Random variables

conducted.

A random variable is a concept used to denote the outcome@f@ariment before it is

D

4.2.1 Examples

then talk about the probabilities of certain events suchbéaining two heads, i.eX = 2.
We write this as

In general:

wherex=0,1,.....,n

Example 4.4. Let X denote the number of heads in a coin tossing experiment. WL ca

4.2.2 Handout

Definition 4.1. A random variable, X, is a function defined on a sample space,
outcomes in the set of real numbers.

ith

It is simpler to think of a random variable as a symbol usedaoate the outcome of an

experiment before it is conducted.

25



Note 4.1.Note that it isessentialto distinguish between upper case and lower case letters
when writing these probabilities - it makes no sense to viRjie= x|.

Note 4.2.Random variables are generally denoted by upper caseslstieh as<, Y and
So on.

Note 4.3.To see how a random variable is a function, it is useful to wrsthe actual
outcomes of two coin tosses. These outcomes can be defidtédHT, TH, TT}. Now
consider a random variab¥which describes the number of heads obtained. This random
variable attributed 2 to the outcorittH and 0 toT T, i.e. X is a function withX(HH) = 2,
X(HT)=X(TH)=1andX(TT)=0.

4.3 Simple surveys with replacement

137

If we randomly draw individuals (with replacement) and askiastion with two possibl¢
answers (positive or negative), then the number of posén@vers will come from a
binomial distribution.

4.3.1 Examples

Example 4.5. Suppose we are participating in a lottery. We pick a numlmenfa Iotteryl
bowl (a simple random sample). We can put the number asideg @an put it back int

the bowl. If we put the number back in the bowl, it may be sedchore than once; |f
we put it aside, it can be selected only one time.

Definition 4.2. When an element can be selected more than one time, we arérsafijp
with replacement

Definition 4.3. When an element can be selected only one time, we are sam\dtirl].
hout replacement

4.4 The binomial distribution

If we toss a biased coin independent times, each with probabilpyof landing heads
up, then the probability of obtainingheads is

(n> P (1-p)"

X

4.4.1 Examples
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Example 4.6. Suppose we toss a coin, with probabilpyof landing on heads times
obtaining a sequence of Hs (when it lands heads) and Ts (whands tails). Any
sequence,

HTH..HTHHH

which hasx heads ) andn— x tails (T), has the probability*(1— p)"*. There arg
exactly(?() such sequences, so the total probability of landihgads im tosses is

(n> PA-p"

X

Example 4.7. Let the probability that a certain football club wins a matEhequal tc
0.4.If the total number of matches played in the season i&/B@f is the probability that
the football club wins the match 10% of the time?

We first calculate the number of times a match was played amdbyanultiplying the
percentage of wins by the number of matches played.

10% of 30 times = 3 times

We can now proceed to calculate the probability that they wih the match giverl
that their probability of a winning is 0.4 if they play 3 timesa season. This can e
computed as follows:

(‘?) x (0.4)3 x (1—0.4)30-3

= 0.000265

This can be calculated in R using the code below:
dbinom(3,30,0.4)

[1] 0.0002659437

This is equal to the manual calculation using the binomiebtem.

Example 4.8. Suppose a youngster puts his shirt on by himself every daivedays
The probability that he puts it on the right way each timeis- 0.2. We letX be 1
random variable that describes the number of times the ygianguts his shirt on t

right way. The youngster can either put the shirt on the wronghe right way sc
X follows the binomial distribution with the parametgps= 0.2 (the probability of
successful trial) andh = 5 (number of trials). We can now calculate for example|the
probability that the youngster will put it on the right way fat least 4 days.
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Putting the shirt on the right way for at least 4 days meanisthigayoungster will eith

put it on the right way for either four or five days (at leastrfoumore days of five da
total). We thus have to calculate the probability that thangster will put his shirt o
the right way for 4 and 5 days separately and then we add itllegeWe can write thi
process as follows:

P(X > 4) = P(X = 4) +P(X = 5)

- (i) x0.2%x (1-0.2)> %+ <2> x0.2°x (1-0.2)°>°
=5x0.2"%x08'+1x0.2°x0.8°
=5x0.2*%x08+0.2°x1
=5x0.8x0.2*+0.2°
=4%x0.2°4+02°
— 4 x 0.0016+0.00032

= 0.00672
The probability that the youngster will put his shirt on tight way for at least four out
of five is thus 0,7%.

This is possible to calculate in R in a several ways, eitherguite command dbinom @r
pbinom. The command dbinom calculates

P(X =K)
and the command pbinom calculates
P(X <Kk)

wherek is the number of successful trials. fis the number of trials ang is the
probability of a successful trials then the commands ard bgenriting: dbinonk,n,p)
and pbinomk,n,p).

To calculate the probability that the youngster will put &irt on the right way for &
least four days of five we thus write the command:
dbinom(4,5,0.2) + dbinom(5,5,0.2)

which gives 0.00672.

This is the same as writing:
dbinom(c(4,5),5,0.2)

or
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dbinom(4:5,5,0.2)

which give two separate numbers: 0.00640 and 0.00032 wiaictbe added together
get 0.00672.

There is also a command to add them together for us:
sum(dbinom(c(4,5),5,0.2))

or

sum(dbinom(4:5,5,0.2))

They give the answer 0.00672.

The fourth way of calculating this in R is to use pbinom. Asidaefore pbinom calculaté
P(X <Kk)

wherek is the number of successful trials. Here we want to calculagrobability tha

the youngster will put his shirt on the right way in 4 or 5 tinfes5 total) so the numbdr

of successful trials is 4 or greater. That means we want tutake
P(X > 4)
which equals
1-P(X<3)
. We thus puk as 3 and the R command will be:
1 - pbinom(3,5,0.2)
which also gives 0.00672.

o

S

Example 4.9. In a certain degree program, the chance of passing an ex@omns
20%. What is the chance of passing at most 2 exams if the dttaless five exams?

Solution:

In this problem, we compute the chance of a student passibgr@ exams.This is given

by,
5) 50085 [2\aolnad . ()92 a3
p(X=0orlor2= 0 0.2°0.8° + 1 0.2'0.8" + 5 0.2°0.8

—1x0.2°0.8° 4+ 5x 0.210.8* + 10 x 0.2%0.8°
— 0.32768+ 0.4096-+ 0.2048
— 0.94208

In the R console, we can use the commansh(dbinom(c(0:2),5,0.2)), which also
gives
0.94208

The same answer is obtained with
dbinom(0,5,0.2)+dbinorm(1,5,0.2)+dbinom(2,5,0.2)
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and with
pbinom(2,5,0.2)

Example 4.10. Consider the probability of someone jumping off a cliff i8B5. Suppos
is the chance that exactly one of them will jump off the cliff?

Consider a scenario where one person jumps:

P (A =jump, B =refuse, C =refuse, D = refuse)

=P (A =jump) P (B =refuse) P (C =refuse) P (D = refuse)
— (0.35)(0.65)(0.65)(0.65) = (0.35)%(0.65)3 = 0.096

But there are three other scenarios( B, C, or D) in which omgmerson decides to jum
In each of these cases, the probability is again 0.096. Tibesscenarios exhaust all t
possible ways that exactly one of the four people jumps:

4-(0.35)1(0.65)% = 0.38.

as 0.384475.

we randomly selected four individuals to participate in ¢hi#f jumping activity. What

In the R console we can use the commadigiinom(1,4,0.35) which gives the answdr

\1-4

(-

4.5 General discrete probability distributions

A general discrete probability distribution can be deslitby a list of all possibl
outcomes and associated probabilities.

€

45.1 Details

A general discrete probability distribution is describgdive possible outcomes
X1,X2, . ..
and associated probabilities, denoteddypo, . .. or p(X1), p(X2), . .-
If a random variablé& has this distribution, then we can write
PIX'=x]=p(x) = pi
or in general
PIX =X = p(x)

where it is understood thgi(x) = 0 if X is not one of thesg.

4.5.2 Examples

30



Example 4.11.1f X is the number of head$1( before obtaining the first taill{) when
tossing an unbiased coin 4 independent times, then thelp@$sisic outcomes are:
Toss
Inbinary 1234 # beforeT

0000 HHHH 4
0001 HHHT 3
0010 HHTH 2
0011 HHTT 2
0100 HTHH 1
0101 HTHT 1
0110 HTTH 1
0111 HTTT 1
1000 THHH 0
1001 THHT 0
1010 THTH 0
1100 THTT 0
1101 TTHH 0
1110 TTTH 0
1111 TTTT 0

Since the coin is unbiased, each of these has the same ditybatboccurring. We car
now count sequences to find the number of possibilities oftacpéar number of head
H, before a tail in 4 coin tosses and thus obtain the correspgmuobabilities as:

Number of tosses before a heads Probability

: e
1 =7
) L

16— 8
3 15
4 1

=
o]

4.6 The expected value or population mean

The expected value is the sum of the possible outcomes, teeigtith the respective
probabilities (discrete variable). Think of this in termfsam urn full of marbles, each
labelled with number.

1%

4.6.1 Details

If the possible outcomes arg, xo... with probabilitiesps, po... then the expected value is

H=X1-P1+X2-P2+....

The fact that this is the only sensible definition of an exeéatalue follows from consi-
dering random draws from a finite population where therengpossibilities of obtaining
the valuex;. If we setn = 3" X andp; = n;/n then the expected value above is the simple
average of all the numbers in the original population.

In the case of theinomial distribution with n trials and success probabilipyit turns out
that
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H=n-p
If X is the corresponding random variable, we denote this qyantiE [X].

4.6.2 Examples

Example 4.12. If we toss a fair coin 10 independent times, we expect on gearp=
10-1 =5 heads.

Example 4.13. Toss a fair die and pay $60 if a six comes up and nothing otlseniihe
expected outcome is

5 1
—-$0+ - - $60= $10
6$+6$ $

Example 4.14.In Las Vegas, a particular sports bet has about a 30% changemhg.
If the bet wins, the bettor will win 15 dollars. If the bet I@gsahe bettor will lose 10
dollars. The expected return of placing one of these be&s¥-dollars.
Detailed calculation:

$15.0.3—-$10-0.7= —-$25

Example 4.15. Class starts at 8:00 and the last bus that will get you to cdassme
leaves at 7:30. The teacher has a policy that if you are latéats 6 of the 30 classds,
then she drops your final grade by 1/10 points. You know thybif set your alarm fo
7:15, you miss the 7:30 bus approximately every fourth tibug,if you set it for 7:10
you'll only miss the bus approximately every eighth timeydiu set it for 7:00, you'l
only miss the bus every one hundredth time.

=3

Part A: Assuming you try to go to class every time, can you ekfehave your gradg
dropped in the following scenarios?

1 - You set your alarm for 7:15 throughout the duration of tless.

2 - You set your alarm for 7:15 until you reach 5 missed clagbes switch to 7:10.
3 - You set your alarm for 7:15 until you reach 5 missed clagbes switch to 7:00.

Part B: What is your expected grade in the course, assumingvpold have had a 7/10
without the late penalty, and:

1 - You would never choose the first alarm-clock strategy amal would most Iikelyl‘
choose scenario 2 (let’s say 9/10 times), but there’s a sthatice you might choose the
3rd strategy (let's say 1/10 times).

2 - You would never choose the first alarm-clock strategy amal would most likel
choose scenario 3 (let’s say 9/10 times), but there’s a sthatice you might choose :I\e
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2nd strategy (let’s say 1/10 times).

Answers:
Al - Let’s call X our random variable, which we want to be thenber of times we mak
it to class on-time. With the alarm set to 7:15 we expect toeriato class on-time:

1 1
EX]=30x(1--)=22-
X] =30 (1-3) =22

You're grade would most likely be dropped.

A2 - First we need to see how many classes we go to before wk teadb-late-classe
threshhold:

E[X] :nx(l—%):n—S
E[X] = n((l—%) —-1)=-5
E[X] :n:_—?

1
E[X] = n= %):20

So, the night before our 21st class, you get worried and ahaltagm-clock strategies.
you set it at 7:15 for the rest of the course (10 classes), yibbevon time:

1
EX] =15+10x (1- 5) = 2:-;;3’1

You're grade would most likely be dropped.

A3: If you instead start setting the alarm clock for 7:00 foe trest of the course, y@u

will be on time; 1 1

You're grade would most likely NOT be dropped.

1%

S

If

Part B: This seems to contain errordn Part A, we calculated the mean of several
omial distributions that described the expected humberagtdhat you will arrive on

in-

time to class. Each distribution corresponded to a diffestarm-setting scenario. In this

part, we are describing a different binomial distributidindescribes your expected g

de. Therefore, the grade is the outcome n, weighted by theapility of you choosin

the particular alarm-clock setting procedure:
1-E[X]=0x6+09x6+0.1x7=6.1
1-E[X]=0x6+0.1x6+0.9x7=6.9

Note that the probabilities of these three choices (0 + 0.9 }rust equal 1, since the

are the only three choices defined.

"2
(9]

33



4.7 The population variance

The (population) variance, for a discrete distribution, is

0? =E[(X —W?| = (x1 — W2p1+ (2 — )22+ ...
where it is understood that the random varialflehas this distribution angl is the
expected value.

In the case of the binomial distribution, it turns out that:
0% =np(1-p)

4.7.1 Details

Definition 4.4. If pis the expected value, then thiariance of a discrete distribution
is defined as

0% = (X1 — W?p1+ (X2 — W)?p2+ ...

If a random variableX has associated probabilitieg, = P[X = x|, then one can equi-
valently write

0> =V[X]=E |(X—p?].

4.7.2 Examples

Example 4.16. In the case of the binomial distribution, it turns out that:

o’ =np(l1—p).

5 Functions

5.1 Functions of a single variable

A function describes the relationship between varia
bles.

Examples:
f(x) =
y=2+3-x*
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5.1.1 Details

Functions are commonly used in statistical applicatiomslgscribe relationships.

Definition 5.1. A function describes the relationship between variables. A varigis
described as a function of a variabléy completely specifying how can be comput
for any given value ok.

An example could be the relationship between a dose levethaniesponse to the dose.
The relationship is commonly expressed by writing eithed) = x? ory = x2.
Usually names are given to functions, i.e. to the relatignghelf. For examplef might

be the function and (x) could be its value for a given numberTypically f (X) is a number
but f is the function, but the sloppy phrase "the functidm) = 2x+ 4"is also common.

5.1.2 Examples

Example 5.1. f(x) = x% or y = x? specifies that the computed valueysghould always
bex?, for any given value of.

5.2 FunctionsinR

A function can be defined in R using the "functi-
on"command

5.3 Ranges and plotsin R

Functions in R can commonly accept a range of values andetilkm a corresponding
vector with the outcome.

5.3.1 Examples

Example 5.2. f <- function(x) {return(x*12)}
x <- seq (-5,5,0,1)

y <- £f(x)

plot {(x,y) type= ’1°}
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5.4 Plotting functions

on horizontal axis. This plots Y against x.

In statistics, the function of interest is commonly cal-
led the response function. If we write Y=f(x), the
outcome Y is usually called the response variablg
and x is the explanatory variable. Function values
are plotted on vertical axis while x values are plotted

5.4.1 Examples

Y=2+3x

x<- seq(0:10)

g <- function(x){
+ yhat <- 2+3%x

+ return(yhat)

+ }

x<-seq(0,10,0.1)
y<- g(x)
plot (x,y,type="1", xlab="x",ylab="y")

Example 5.3. The following R commands can be used to generate a plot fatitum

5.5 Functions of several variables
5.5.1 Examples

Example 5.4.
z=2X+3y+4
V= t2+3x
W= t2+3b>|<x

(2)
3)
(4)

6 Polynomials

6.1 The general polynomial

The general polynomial:
P(X) = ag+ ayX+ apx? 4 ... + apx"
The simplestp(x) = a
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6.1.1 Details

Definition 6.1. A polynomial describes a specific function consisting of linear colnb-
inations of positive integer powers of the explanatory alale.

The general form of a polynomial is:
P(X) = @9+ agX+ apx? 4 ... + anx"
The simplest of these is the constant polynomia) = a.

6.2 The quadratic

The general form of the quadratic (parabola) is
p(x) = ax® + bx+c. o
The simplest quadratic is(x) = x°

Para-

bolas: Quadratic functions.

6.2.1 Details

The quadratic polynomial of the form(x) = ax? + bx+ ¢ describes a parabola when points
(x,y) with y = p(x) are plotted.

The simplest parabola ig(x) = x* (Fig. a) which is always non-negatiy#x) > 0 and
p(x) = 0 only whenx = 0.

Note 6.1.Note thatp(—x) = p(x) since(—x)? = x°.

If the coefficient at the highest power is negative, then tr@lpola is "upside down"(Fig.
b).

This is sometimes used to describe a response function.

6.3 The cubic

The general form of a cubic polynomial is:
p(x) = ax® +bx% +cx+d

X3 —20x2 — 30x— 4
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6.4 The Quartic

The general form of the quartic polynomialpéx) =
ax* + b3+ o 4 dx+e

The
general shape. Here we used the following equation
y=xX-x -7 +x+6

6.5 Solving the linear equation

If the value ofy is given and we know thatandy are on a specific line so that= a-+ bx,
then we can find the value af

6.5.1 Details

If a value ofy is given and we know that andy lie on a specific straight line so that
y = a+ bx, then we can find the value afby consideringy = a-+ bxas an equation to be
solved forx, sincey, a andb are all known.

The general solution is found through the following steps:
e Equation:y = a+ bx
e Subtracta from both sides

—y—a=bx
— bx=y—a

¢ Divide by b on both sides ib is not equal to 0.

- x=(y—a).

6.6 Roots of the quadratic equation

The general solution @@+ bx+c = 0 is given byx = ~2Evb—dac,

6.6.1 Details

Suppose we want to sohge? + bx+ ¢ = 0, wherea # 0.
The general solution is given by the formula

_ —b++vb?—4ac

N 2a ’
if b>—4ac> 0. On the other hand, 1 — 4ac < 0, the quadratic equation has no real
solution.
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6.6.2 Examples

Example 6.1. Solvex? —3x+2=0

a=1b=-3c=2
Inserting this into the formula for the roots gives:

Putting this into the context of the formulatian® + bx+c = 0, the constants are;

~(=3)+(-3?2-41)(2)

= 2(1)
. 3+.,9-8
- 2
. 3+v1
N 2
. — +1 3-1
22
. 4 2
2’2
x = 21

Example 6.2. Find the roots of the following polynomial

3+ 14x2 + 15

a variable for

X2

Let's use the letter
a

3a%+14a+15

We can use the quadratic equation to solve for the roots®pthliynomial if we substitut

We then plug the constants in to the quadratic equation.

_ —(19 £ 14 - (4)(3)(19

X =
(2)(3)
which simplifies to

—(14)4++/196— 180
6
which equals
42
3
and
-3

v
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Then, since we substituted a for

X2

we need to take the square root of these values to get theabibts polynomial.
So,

2
X172 =+ _1§

and
X34 = +V/3

7 Simple data analysis in R

7.1 Entering data; dataframes

Several methods exist to enter data into R:

1. Enter directly: x<-c(4,3,6,7,8)

2. Read in a single vector: x<-scan("flename")

3. Use: x<-read.table("file address")

7.1.1 Details

The most direct method will not work if there are a lot numb#énsrefore, the second met-
hod is to read in a single vector by x<-scan("filename"), Hlme- text string, either a full
path name or refers to a file in the working directory.

The scan() command returns a vector, but the read.table{inemd returns a dataframe,
which is a rectangular table of data whose columns have nafvedumn can be extracted
from a data frame, e.g., with x<- dat$a where"dat"is the nafrthke data frame and "a"is
the name of a column.

Note 7.1.Note that for read.table("file address"), "file addres&reto the location of the
file. Thus, it can be the URL or the complete file directory depeg on where the table is
stored.

7.1.2 Examples

Example 7.1. Below are three examples using R code to enter data
1. x<-c(4,3,6,7,8)
2. x<-scan("lecture 70.txt")

3. x<-read.table("http://notendur.hi.is/ gunnar/kdafedsm/data/set115.dat", hda-
der=T)
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7.2 Histograms

A histogram is a graphical display of tabulated frequ
encies, shown as bars. P
In R use the command: hist()

7.2.1 Examples

A histogram is a graphical display of tabulated frequenahswn as bars.

be simulated using

x <- rbinom(1000,100,1/6)

We would typically plot these using a histogram, e.g.
hist(x)

or

hist(x,nclass=50);l

Example 7.2. If we toss a fair die 100 times and record the number of sites) tve
can view that as the outcome of a random variablevhich is binomial withn = 100

Now this can be done e.g. 1000 times to obtain numbers,, x1000 Within R this car

7.3 Bar Charts

The bars in a bar chart usually correspond to frequ
encies in categories and are therefore kept apart.” .

.............

7.3.1 Details

A bar chart is similar to the histogram but is used for categbdata.
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7.4 Mean, standard error, standard deviations
7.4.1 Details

The most familiar measure of central tendency is the aritioneean.

Definition 7.1. An arithmetic mean is the sum of the values divided by the numl)er
values, typically expressed as:

Sl Yi

y= n

Definition 7.2. The sample varianceis a measure of the spread of a set of values lom
the mean value:

(% —X)

1

1
-~
n—1:

n
1=

The sample standard deviation is more commonly used as aumeafsthe spread of a set
of values from the mean value.

Definition 7.3. The standard deviation is the square root of the variance and may be
expressed as:

Definition 7.4. The standard error is a method used to indicate the reliability of Le
sample mean:

|2

SE=4/—

5 n

If a vector x in R contains an array of numbers then:
mean (x) returns the averagg,

sd (x) returns the standard deviatisn,

var (x) returns the variance?

We may also want to use several other related operations in R:

median(x), the median value in vector x

range (x), which list the rangemax (x) -\verbmin(x);

If the variablex contains discrete categorieable (x) returns counts of the frequency in
each category.
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7.5 Scatter plots and correlations

If we have paired explanatory and response datag\ie
are often interested in seeing if a relationship exists
between them. To do this, we first plot the data in‘a
scatter plot.

xxxxxxxxxx

=3

Figure: Scatter plot showing the length-weigh
relationship of fish species "X". Data source| :
Marine Resource Institution - Iceland.

7.5.1 Details

A first step in analyzing data is to prepare different plotse Type of variable will determ-
ine the type of plot. For example, when using a scatter ploh bloe explanatory and
response data should be continuous variables.

The equation for the Pearson correlation coefficient is:

ey = YL (X = X)(Yi —Y)
Y (=X (v — V)P
wherex andy are the sample means of the x- and y-values.
The correlation is always between -1 and 1.

7.5.2 Examples

The following R commands can be used to generate a scattdophectors x and y

Example 7.3. plot (x,y)

8 Indices and the apply commands in R

8.1 Giving names to elements

‘ We can name elements of vectors and data frames in R usingdhge’s"command.

8.1.1 Examples

Example 8.1. X<-c (41, 3, 73)
names (X)<-c("One", "Two", "Three")

View the results by simply typing "X"and the output of "X"is/gn as follows:
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X
One Two Three
41 3 73

With this we can refer to the elements by name as well as latatising...
X[1]

One

X["Three']
Three
73

8.2 Regular matrix indices and naming

A matrix is a table of numbers. Typical matrix indexing: mgt[mat[1:2,] etc

A matrix can have row and column names Indexing with row andimma names;

mat["a","B"]

8.2.1 Detalils

Definition 8.1. A matrix is a (two-dimensional) table of numbers, indexed by row
column numbers.

-

Note 8.1.Note that a matrix can also have row and column names so thah#trix can

be indexed by its names rather than numbers.

8.2.2 Examples

Example 8.2. Consider a matrix with 2 rows and 3 columns. Consider extrgdirst
element (1,2), then all of line 2 and then columns 2-3 in andRisa:

mat<-matrix(1:6,ncol=3)
mat

[,11 [,21 [,3]

[1,] 135
[2,] 246
mat[1,2]
[1] 3

mat[2,]
[1] 2 4 6

mat[,2:3]
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[,11 [,2]
[1,]1 35
[2,]1 46

Next, consider the same matrix, but give names to the rowsaludnns. The rows will
get the names "a"and "b"and the columns will be named "A"atl"'C".
The entire R session could look like this:

mat<-matrix(1:6,ncol=3)
dimnames (mat)<-1list(c("a","b"),c("A","B","C"))
mat

N = >
Do W
o o Q

a
b
mat ["b" s C("B" s "C")]

B C
4 6

8.3 The apply command

The apply command...
apply(mat,2,sum) — applies the sum function within eachircol
apply(mat,1,mean) — computes the mean within each row

8.4 The tapply command

Commonly one has a data vector and another vector of the sargthlgiving categorie
for the measurements. In this case one often wants to cortipgiteean or variance (@

=

median etc) within each category. To do this we use the tagptymand in R.

8.4.1 Examples

Example 8.3. z<-c(5,7,2,9,3,4,8)
i<_C(llmll s Ilfll s llmll s Ilmll s llfll s Ilmll s llfll)

A. Find the sum within each group

tapply(z,i,sum)
fm
18 20

B.Find the sample sizes

tapply(z,i,length)
fm
3 4

C.Store outputs and use names
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n<-tapply(z,i,length)
n

fm

3 4

n[nmu]

m

4

8.5 Logical indexing

A logical vector consists of RUE (1) or FALSE(0) values. These can be used to ing
vectors or matrices.

lex

8.5.1 Examples

Example 84 i<_c(llmll llfll Ilmll llmll Ilfll llmll Ilfll)
z<-¢(5,7,2,9,3,4,8)

i=="p"
[1] TRUE FALSE TRUE TRUE FALSE TRUE FALSE

z[i=="m"]
[1] 529 4

z[c(T,F,T,T,F,T,F)]
[11 529 4

8.6 Lists, indexing lists

‘ A list is a collection of objects. Thus, data frames are lists

8.6.1 Examples

Example 8.5. x<-1ist (y=2,z=c(2,3) ,w=c("a","b","c"))

X[["Z"]]

[11 2 3

names (x)

[1] uyu ot A
X["W"]

$w

[1] uau "b" "C"
x$w

[1] Ilall llbll IICII
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9 Functions of functions and the exponential function

9.1 Exponential growth and decline

Exponential growth is typically expressed as:

y(t) = At

Exponential growth curve

9.1.1 Details

Definition 9.1. Exponential growthis the rate of population increase across time when
a population is devoid of limiting factors (i.e. competitjoresources, etc.) ard
experiences a constant growth rate.

Exponential growth is typically expressed as:
y(t) = A

where

A (sometimes denotd@)=initial population size
k= growth rate

t =number of time intervals

Note 9.1.Note that exponential growth occurs whiep- 0 and exponential decline occurs
whenk < 0.

9.2 The exponential function

An exponential function is a function with the forni(x) = b*

9.2.1 Detalils

For the exponential functiof(x) = b*, x is a positive integer and is a fixed positive real
number. The equation can be rewritten as:

f(x) =b*=b-b-b...b

When the exponential function is written &&x) = €* then, it has a growth rate at tinxe
equivalent to the value @ for the function ai.
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9.3 Properties of the exponential function

Recall that the methods of the basic arithmetic implies that

b — P

for any real numbera andb.

9.4 Functions of functions
9.4.1 Details

Consider two functionsf, andg, each defined for some set of real numbers. Wkesn be
solved in functionf usingY = f(x) wheng(Y) exists for all such resulting. If Y = f(x)
andg(Y) exist then we can computg f (x)) for anyx.

If
f(x) =x% and
g(y) = € then

2

(f(x) = €/t = &

If we call the resulting functiotn;

h(x) = g(f(x))
Thenh is commonly written as
h=gof

9.4.2 Examples

Example 9.1. If
g(x) = 3+ 2x and
f(x) = 5%

Then

o(f(x) =3+2f(x)
g(f(x)) =3+ 10x

f(9(x)) = 5(g(x))?
f(g(x)) = 5(3+ 2x)?
f(g(x)) = 45+ 60x+ 20x2

9.5 Storing and using R code

As R code gets more complex (more lines) it is usually storefiles. Functions are
typically stored in separate files.

9.5.1 Examples

48



Example 9.2. Save the following file (test.r):

x=4

y=8

cat("x+y._|is", X+y, "\Il")$
To read the file use:

source("test.r")

\end{1lstllisting}

and the outcome of the equation is displayed in R
\end{xmpl}

%% Slide http://tutor-web.net/math/math612.1/lecturel90/slide60

\subsection{Storing and calling functions in R}

\fbox{

\begin{minipage}{0.97\textwidth}

To save a function in a separate file use a command of the form "
function.r".

\end{minipage}

}

\subsubsection{Examples}

\begin{xmpl}

\begin{lstlisting}
f<-function(x) {
return (exp(sum(x)))

}
can be stored in a file function.r and subsequently read wsagource command.

10 Inverse functions and the logarithm

10.1 Inverse Function

If fis a function, then the functiogis the inverse function of if

g9(f(x)) =x

for all x in which f(x) can be calculated

10.1.1 Details

The inverse of a functioff is denoted byf 1, i.e.

f1(f(x)) =x

10.1.2 Examples
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Example 10.1.If f(x) = x? for x < 0 then the functiom, defined ag)(y) = Vyfory>0,
is not the inverse of sinceg(f(x)) = vx2 = |x| = —xfor x < 0.

10.2 When the inverse exists: The domain question

1(x) =x2

Inverses do not always exist. For an inversef @b .
exist, f must be one-to-one, i.e. for eaxhf (x) must
be unique.

’ The
function f(x) = x*> does not have an inverse sing
f(x)=1 has two possible solutions -1 and 1.

(]

10.2.1 Examples

Example 10.2. f (x) = x? does not have an inverse sinife) = 1 has two possible solul-
ons -1 and 1.

Note 10.1.Note that iff f is a function, then the functiogis the inverse function of, if
g(f(x)) = xfor all calculated values ofin f(x).

The inverse function of is denoted byf 2, i.e. f~1(f(x)) = x.

Example 10.3. What is the inverse functiorf,, of f if f(x) = 5+ 4x.

The simplest approach is to wrige= f(x) and solve foix:

With
f(X) =5+4x
we write
y=5+4x
which we can now rewrite as
y—5=4x
and this implies
y-5__
=
And there we have it, very simple:
-5
f,]_ f _ y
(f00) ==
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10.3 The base 10 logarithm

Whenx is a positive real number in= 10", y is referred to as the base 10 logarithm
x and is written as:

y = 10g;(X)
or
y = log(X)

10.3.1 Details
If log(x) = aand lody) = b, thenx = 107 andy = 1P, and

x-y=10-10° = 1¢*+P

so that
log(xy) =a+Db
10.3.2 Examples
Example 10.4.
log(100) = 2
log(1000 = 3
Example 10.5. If
log(2) ~ 0.3
then
100 =2

Note 10.2.Note that
210 — 1024~ 1000= 103

therefore
2~ 103/10

Sso
log(2) ~ 0.3
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10.4 The natural logarithm

A logarithm with e as a base is referred to as the
natural logarithm and is denotedlas:

y=In(x)
if
x=¢& =expy)
Note thatin is the inverse oéxp The

curve depicts the fuctiog = In(x) and shows that]
In is the inverse oexp Note that If1) = 0 and
wheny = 0 thene® = 1.

10.5 Properties of logarithm(s)

Logarithms transform multiplicative models into additivedels, i.e.

In(a-b) =Ina+Inb

10.5.1 Details

This implies that any statistical model, which is multiplitve becomes additive on a log
scale, e.qg.

y=a-wP.x°
Iny = (Ina) 4 In(W°) + In(x°)
Next, note that

In%) = In(x-x)
= Inx+Inx
2-Inx

and similarly I(x") = n-Inx for any integer n.
In general Ifx®) = c- Inx for any real number c (for x>0).
Thus the multiplicative model (from above)

y=a-w.-x°
becomes
y=(Ina)+b-Inw+c-Inx

which is a linear model with parameteilsaa), b andc.
In addition, the log-transform is often variance-stalmigz

10.6 The exponential function and the logarithm

The exponential function and the logarithms are inversesoh other

x=¢& & y=Inx
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10.6.1 Details
Note 10.3.Note the properties:

In(x-y) = In(x) +In(y)
and

. = P

10.6.2 Examples

Example 10.6. Solve the equation
10e¥/* 3= 24

for x.
First, get the 3 out of the way.

10eV/¥* =21
Then the 10.

el/X =21

Next, we can take the natural log of 2.1. Sirinas an inverse function oé this wouldj
resultin

%x: In(2.1)
This yields

x=1In(21)-3
which is

~ 2.23
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