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1 Numbers, arithmetic and basic algebra

1.1 Natural Numbers

The positive integers are called natural numbers.

These numbers can be added, multiplied together and so forth.

Notation:N= {1,2,3,4, ....}

Subtraction and division are not defined on these numbers.

An arbitrary element ofN is most commonly denoted byi, j, n,or m, but any symbol
can be used.

1.1.1 Details

Definition 1.1. The set of positive integers is usually denoted byN, i.e. N =
{1,2,3,4, ....} and is called the set ofnatural numbers. In some cases the number
zero is included as a natural number, but here we will use the symbolN0 to denote the
integers 0, 1, 2 and up.

Within this set of numbers it is possible to add and multiply numbers together. Arithmetic
operations are denoted by+ for addition and· (or×) for multiplication. A natural number
can also be raised to the power of a natural number, e.g. 35 = 3 ·3 ·3 ·3 ·3 or in general
mn = m·m· . . . ·m (n times).

When stating general properties of the natural numbers one needs to use symbols to indica-
te that the property holds for an arbitrary number. It is not enough to just write the property
for a few numbers. For example, to declare that one can interchange numbers in a sum, it
is not enough to say 4+3= 3+4 but one must explicitly state "the addition operator has
the property that any two natural numbers,n, m∈ N satisfyn+m= m+n".

An arbitrary element ofN is most commonly denoted byi, j, n,or m, but any symbol,
a, b, c, . . ., can be used.

Several rules of arithmetic apply (some by definition, others can be derived) such as

ab = ba

a+b = b+a

a+bc = a+(bc)

a(b+c) = ab+ac

(a+b)+c = a+(b+c)

(ab)c = a(bc)

Subtraction and division are not generally defined. In addition, we define one integer,n, to
the power of another,m, to meann multiplied by itselfm times:nm = n ·n · . . . ·n

︸ ︷︷ ︸
m.
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Definition 1.2. The power is anoperator just like addition and multiplication, and is
defined to have higher priority than the other two.

1.1.2 Examples

Example 1.1. If we havex= 4 andy= 2 and want to evaluate

xy+yx

then we replace the values of x and y in the expression, and evaluate it, taking care to
observe the correct order of operations:

42+24 = 16+16= 32.

1.2 Starting with R

Download R from the R website: http://www.r-project.org/

Look at on-line information on R, and take the tutor-web R tutorial: http://tutor-
web.net/stats/stats240.1

Simple R commands:

• Assignment:x<−2

• Arithmetic: 2∗5+4

1.2.1 Details

To assign values to a variable in R one can use « -ǫr -"; however, these areNOT equivalent.
Using the equals sign is confusing and therefore not recommended.

1.2.2 Examples

Example 1.2. Assigning values to a variable:

x<-2

y<-3

z<-x+y

Example 1.3. Viewing assigned values:
Type the name,i.e. "z", to view the assigned value.
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z

[1℄ 5

1.3 The Integers

The set of positive and negative integers:
Z= {.., ..,−2,−1,0,1,2, ......}

1.3.1 Details

Definition 1.3. The set of all integers is denoted byZ, i.e.

Z= {.., ..,−2,−1,0,1,2, ......}.

Note 1.1.Note that within this set it is possible to subtract as well asadd and multiply.
Within this set we cannot, however, in general, perform division.

When preforming multiple mathematical operations within the same equation, i.e. 79−8 ·
3, there is a conventional order for which the operations must be performed.

Definition 1.4. The conventional order of operations for equations with multiple mat-
hematical operations is referred to as anoperator precedence.

1.3.2 Examples

Example 1.4. To compute 79−8 ·3 start by multiplying and then subtracting:
79−8 ·3= 79−24= 55

Example 1.5. To compute 15− (24+ 36) we first note that the parentheses (brackets)
imply a precedence; anything inside brackets should be evaluated first.
Thus, we first add 36 to 24 and then we subtract that from 15.
15 - (24+36) = 15 - 60 = - 45

Note that the answer is a negative number.
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Example 1.6. Simple arithmetic in R is easily done at the command prompt.

79-8*3

[1℄ 55

15-(24+36)

[1℄ -45

1.4 Rational numbers

Rational numbers are fractions denoted p/q, where p and q are integers. We can
simplify fractions if the numerator and denominator contain common terms.

1.4.1 Details

0 1/6 1/2 3/4 1 2

Definition 1.5. Rational numbersare fractions denotedp/q, wherepandqare integers.
The set of all rational numbers is usually denotedQ.

Note 1.2.Note that every integer is a rational number (obtained by taking q= 1).

We can simplify fractions if the numerator and denominator contain common terms.

When the rationals are ordered on to a line there are points missing, i.e. there are "gaps",
for example there is no rational numberp/q such that(p/q)2 = 2.

1.4.2 Examples

Example 1.7. 2
6= 2

2·3=1
3

The rational numbers can be put in order along a line as in the figure.
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Example 1.8. As an elaborate example of a fraction, consider the evaluation of the quan-
tity

2
3 +

2
5

1
3 +

1
2

Example 1.9. Evaluate
2
3 +

2
5

1
3 +

1
2

Solution: We can either start by calculating the numerator

2
3
+

2
5

or the denominator

1
3
+

1
2

.
Here we choose to start with the numerator. The first step is tomake the two fractions
in the numerator have a common denominator. We can either findthe least common
denominator or multiply the fractions with each others denominator. Here they are the
same number, 15. So the first step is:

2
3
·5+ 2

5
·3=

2 ·5
3 ·5+

2 ·3
5 ·3 =

10
15

+
6
15

.
Now it is possible to add the two fractions which is the secondstep:

10+6
15

=
16
15

Now the same process has to be done on the denominator.
With the same method (LCM - least common multiple) we get:

1 ·2
3 ·2+

1 ·3
2 ·3 =

2
6
+

3
6
=

5
6

Then the total answer is:

16
15
5
6

=
16
15

· 6
5
=

96
75

=
96/3
75/3

=
32
25

We can see that in the last step of the equation, the factor hasbeen simplified. To do
this we use factoring. We break down the numbers into smallerfactors or multiple prime
numbers. Therefore we have:

96
75

=
3 ·32
3 ·25
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We can now remove "3", or the multiplier, as it is on both sidesof the fraction. So we
have:

32
25

=
25
25

+
7
25

= 1
7
25

In step 1 above we used Cross-Multiplication.

Definition 1.6. Cross-Multiplication is when we multiple the numerator by the
reciprocal of the denominator.

So in this case we rewrite
16
15
5
6

or
16
15

÷ 5
6

as
16
15

· 6
5

As you can see all we are doing is turning

5
6

upside down: and multiplying it with
16
15

This gives:

96
75

In some cases it is possible to draw asquare root of a fractions= p
q , i.e. find a number

r ∈Q such thatr2 = s. The square root is denoted
√

r.

Example 1.10. Consider the expression

(

 

1
9
×24)+(

1
5
×
√

25)

.
To evaluate this expression, first consider separately the two parts on each side of the plus
symbol.
The first part is

(

 

1
9
×24)
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and the second part is

(
1
5
×
√

25)

.
In addition, by definition of root,

 

1
9
=

1
3

.
First part:

(

 

1
9
×24) =

1
3
×16=

16
3

Second part:

(
1
5
×
√

25) =
1
5
×5= 1

Finally, add the first part and the second part:

16
3
+1=

19
3

Example 1.11. Consider the following fraction example, to be solved step by step:

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

First we need to be aware of operator presedence, meaning that first we solve the brackets,
then multiplication/division, then addition/subtraction and finally the main fraction.

(
1
4
· 5
3
) =

5
12

After solving the bracket we can proceed with adding

4
2

to
5
12

as there is no other action left for the nominator of the main fraction. So:

4
2
+

5
12

When adding fractions together we first have to find a common denominator, in this case
12 would work as

2 ·6= 12

So we multiply both the numerator and the denominator of thatfraction by 6 and then
add the two numerators of the fractions together, keeping the same denominator.

4
2
+

5
12

=
4 ·6
2 ·6+

5
12

=
24
12

+
5
12

=
29
12

11



Now we have the top half of the fraction solved. We then proceed with dividing the
two fractions of the bottom half. When dividing fractions weuse the so called cross
multiplication technique. This arithmetic trick is derived from the fact that if you divide
a fraction by its duplicate you get 1. If you multiple a fraction by its reciprocal (it’s
reverse) you also get 1. Like so:

1
2
÷ 1

2
= 1

and
1
2
· 2
1
= 1

These functions always provide the same result and therefore we can turn the fraction
we are dividing by upside down and multiply it to the other fraction as that is usually
much easier.

We can therefore rewrite
2
6
÷ 1

5
as

2
6
· 5
1
=

10
6

We’ve now solved both halves of the original fraction and cantherefore proceed to solve
it, again with the cross multiplication technique as fractions are after all just divisions:

29
12

÷ 10
6

=
29
12

· 6
10

=
174
120

Now
174
120

is a pretty bad looking fraction and we’d preferably like to simplify it.

To do this we use factoring.

Definition 1.7. Factoring essentially means to break a number done into it’s smallest
factors or multipliable prime numbers.

In this case we get
2 ·3 ·29
2 ·3 ·20

These are the smallest prime numbers that can multiply together into 174 and 120
respectively.

A way of doing this in your head is by first dividing both numbers (174,120) by two.
Which gives us:

2 ·87
2 ·60

12



and then dividing those numbers (87,60) by 3, since they can’t be divided by 2. Dividing
by 3 gives you

3 ·29
3 ·20

=
29
20

which is a lot nicer than
174
120

The reasoning behind this factoring simplification is that we can remove multipliers if
they are on both sides of a fraction. This is because the result of a fraction where the
numerator and the denominator are the same is always 1. Like so:

1
1
= 1

or
2
2
= 1

or
3
3
= 1

The final answer therefore is

4
2 +(1

4 · 5
3)

2
6 ÷ 1

5

=
29
20

1.5 The real line

Some obvious numbers are not fractions.
The set of numbers making up the real line is denoted
by the symbolR.

21

1

The
diagonal of a rectangle with unit side lengths of

√
2,

Note that
√

2 ia not a fraction.

1.5.1 Details

Some obvious numbers, which commonly occur, are not fractions. These are in between
the rational numbers (fractions). Filling in the missing points to obtain a continuum results
in the set of "real numbers".

Denoted byR the entire set of "real numbers"which corresponds to "filling in"the "missing
pieces̨of the line.

13



1.5.2 Examples

Example 1.12. If C is the circumference of a circle andD is the diameter and we define
π = C

D thenπ is not a fraction.

Example 1.13. One example of a non fraction is the number e (Euler’s number)which
can be defined by

e=
∞∑

n=0

1
n!

Example 1.14. If you have a right triangle with unit side length, what is thelength of its
hypotenuse and what class of numbers does it belong to?
An isosceles triangle is defined as having adjacent and opposite sides of same length,
connected by a 90◦ angle. Unit side length of these, refers to a side length of

1

.
As we have a 90◦ angle, we can use Pythagoras’ theorem:

a2+b2 = c2

With
a= ad jacent

b= opposite

c= hypotenuse

So with
a,b= 1

:

c2 = 12+12

c2 = 1+1

c2 = 2

We take the square root to get
c

c=
√

2

Now that we answered the first part of the question, it needs tobe defined, which class of
number √

2

14



belongs to. √
2

is an irrational number, and belongs thereby to the set of real numbers

R

Real numbers can be imagined as points on an infinitely long line, which is also called
the real line.

2 Data vectors

2.1 The plane

Pairs of numbers can be depicted as points on a plane.
The plane is normally denoted byR2.

2.1.1 Details

Pairs of numbers can be depicted as points on a plane.

Definition 2.1. A plane is a perfectly flat surface with no thickness and no end, it can
extend forever in all directions. It has two-dimensions, length and width. We need two
values to find a point on the plane.

Normally we talk about "the plane"as the collection of all pairs of numbers and denoted it
by

R2 = {(x,y) : x,y∈ R}
, giving coordinates to each point.

2.1.2 Examples

Example 2.1. Plotting the point (2,4) in the x-y plane using R.

plot(2,4,xlim=(0,6),ylim=(0,6),xlab="x",ylab="y",ex=2)

text(2,4,"(2,4)",pos=4,ex=2)

Additional points can be added using thepointsfunction:

points(3,5, ex = 0.5) ## a point at (3,5)

If you have 2 sets of coordinates on a plane you can calculate the distance between the 2
points and graph the line connecting the points

15



Example 2.2. What is the distance between the 2 points (3,9) and (5,1)?
We will use the Pythagorean theorem:

d =
»

(x2−x1)2+(y2−y1)2

We insert our values into the formula:

d =
»

(5−3)2+(1−9)2

When we combine inside the parenthesis we get:

d =
»

(2)2+(−8)2

Squaring both terms:
d =

√
4+64

Then we take the square root:
d =

√
68

The result:
d = 8.2462

2.2 Simple plots in R

Graphing functions in R

• plot - plots a scatter plot (as a line plot)

• points - adds points to a plot

• text - adds text to a plot

• lines - adds lines to a plot
0 1 2 3 4 5

0
1

2
3

4
5

x

y

(1,2)

(3,1)

Points
on a plane, drawn with R.

2.2.1 Examples

Example 2.3. plot(2,3)

gives a single plot and

plot(2,3, xlim=(0,5), ylim=(0,5))

gives a single plot but forces both axes to range from 0 to 5.
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Example 2.4. The following R commands can be used to generate a plot with two points:

plot(1,2,xlim=(0,5),ylim=(0,5),xlab="x",ylab="y")

points(3,1)

text(1,2,"(1,2)",pos=4, ex=2)

text(3,1,"(3,1)",pos=4, ex=2)

Example 2.5. In this example, we plot 3 points. The first two points are by including
vectors with a length of 2 as the x and y arguments of the plot function. The third plot
was added with the points function. The second and third points were labeled using the
text function and a line was drawn between them using the lines function.

Note 2.1.Note that if you are unsure of what format the arguments of an Rfunction
needs to be, you can call a help file by typing "?"before the function name (e.g. "?lines")

plot((2,3),(3,4),xlim=(2,6),ylim=(1,5),xlab="x",ylab="y")

points(4,2)

text(3,4,"(3,4)",pos=4, ex=2)

text(4,2,"(4,2)",pos=4, ex=2)

lines((3,4), (4,2))

2.3 Data

Data are usually a sequence of numbers, typically called a vector.

2.3.1 Details

When we collect data these are one or more sequences of numbers, collected into data
vectors. We commonly think of these data vectors as columns in a table.

2.3.2 Examples

Example 2.6. In R, if the command

x <- (4,5,3,7)

is given, thenx contains a vector of numbers.

Example 2.7. Create a function in R, give it a name "Myfunction"which takes the sum
of x,y.

17



Myfuntion<- funtion(x,y) {

sum(x,y)

}

If you input the vectors 1:3 and 4:7 into the function it will calculate the sum of
x<-(1+2+3) andy<-(4+5+6+7) as follows

> Myfuntion(1:3,4:7)

28

2.4 Indices for a data vector

If data are in a vectorx, then we use indicesto refer to individual elements.

2.4.1 Details

If i is an integer thenxi denotes thei’th element ofx.

Note that although we do not distinguish (much) between row-and column vectors, usually
a vector is thought of as a column. If we need to specify the type of vector, row or column,
then for vectorx, the column vector would be referred to asx′ and the row vector asxT (the
transposeof the original).

2.4.2 Examples

Example 2.8. If x= (4,5,3,7) thenx1 = 4 andx4 = 7

Example 2.9. How to remove all indices below a certain value in R

x <- (1,5,8,9,4,16,12,7,11)

x

[1℄ 1 5 8 9 4 16 12 7 11

y <- x[x>10℄

y

[1℄ 16 12 11

Example 2.10. Consider a function that takes to vectors

a∈ Rn,b∈ Nm

as arguments with
n≥ m

18



and
1≤ b1, ...,bm≤ n

. The function returns the sum
m∑

i=1

abi (1)

Long version:
fN <- function(a,b)
result <- sum(a[b])
return(result)

Short version:
|fN <- function(a,b) sum(a[b])|

2.5 Summation

We use the symbolΣ to denote sums.
In R, the sum function adds numbers.

2.5.1 Examples

Example 2.11. If x= (4,5,3,7)
then

4∑

i=1

xi = x1+x2+x3+x4 = 4+5+3+7= 19

and

4∑

i=2

xi = x2+x3+x4 = 5+3+7= 15.

Within R one can give the corresponding commands:

x<-(4,5,3,7)

x

[1℄ 4 5 3 7

sum(x)

[1℄ 19

sum(x[2:4℄)

[1℄ 15

3 More on algebra

3.1 Some Squares

If a and b are real numbers, then

(a+b)2 = a2+2ab+b2
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3.1.1 Details

If a, b are real numbers, then:
(a+b)2 = a2+2ab+b2

This can be proven formally with the following argument:

(a+b)2 = (a+b)(a+b)

= (a+b)a+(a+b)b

= a2+ba+ba+b2

= a2+2ab+b2

3.2 Pascal’s Triangle

Pascal’s triangle is a geometric arrangement of the binomial coefficients in a triangle

1
1 1

1 2 2

3.2.1 Details

n= 0: 1

n= 1: 1 1

n= 2: 1 2 1

n= 3: 1 3 3 1

To build Pascal’s triangle, start with "1"at the top, and then continue placing numbers below
it in a triangular pattern. Each number is just the two numbers above it added together
(except for the edges, which are all "1").

3.2.2 Examples

Example 3.1. The following function in R gives you the Pascal’s triangle for n = 0 to
n= 10.

fN <- funtion(n) formatC(n, width=2)

for (n in 0:10) {

at(fN(n),":", fN(hoose(n, k = -2:max(3, n+2))))

at("\n")

}

0 : 0 0 1 0 0 0

1 : 0 0 1 1 0 0

2 : 0 0 1 2 1 0 0

3 : 0 0 1 3 3 1 0 0

4 : 0 0 1 4 6 4 1 0 0

5 : 0 0 1 5 10 10 5 1 0 0
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6 : 0 0 1 6 15 20 15 6 1 0 0

7 : 0 0 1 7 21 35 35 21 7 1 0 0

8 : 0 0 1 8 28 56 70 56 28 8 1 0 0

9 : 0 0 1 9 36 84 126 126 84 36 9 1 0 0

10 : 0 0 1 10 45 120 210 252 210 120 45 10 1 0 0

Changing the numbers in the linefor(n in 0:10) will give different portions of the
triangle.

3.3 Factorials

We define the factorial of an integer n as
n! = n · (n−1) · (n−2) · . . . ·3 ·2 ·1

3.3.1 Details

Definition 3.1. We define the factorial of an integer n as

n! = n · (n−1) · (n−2) · · ·. . . ·3 ·2 ·1.

3.3.2 Examples

Example 3.2. Suppose you have 6 apples,{a,b,c,d,e, f} and you want to put each one
into a different apple basket,{1,2,3,4,5,6}.

For the first basket you can choose from 6 apples{a,b,c,d,e, f}, and for the second
basket you have then 5 apples to choose from and so it goes for the rest of the baskets,
so for the last one you only have 1 apple to choose from.

The end result would then be: 6!= 6 ·5 ·4 ·3 ·2 ·1= 720 possible allocations.

This could also be calculated in R with the factorial function:

fatorial(6)

[1℄ 720

3.4 Combinations

The number of different ways one can choose a subset of sizex from a set ofn elements
is determined using the following calculation:

(

n
x

)

=
n!

x! (n−x)!
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3.4.1 Details

Definition 3.2. A combination is an un-ordered collection of distinct elements

Suppose we want to toss a coinn times. In each toss we obtain head (H) or tail (T) resulting
in a sequence of H,T,T,H, ... T.

How many of these possible sequences contain exactlyx tails? There aren positions in
the sequence, we can choosex of these in

Än
x

ä

ways and put our "Ts"in those positions. If
the probability of landing tails then each one of these sequences with exactlyx tails has
probabilitypx(1− p)n−x so the total probability of landing exactlyx tails in n independent
tosses is

(

n
x

)

=
n!

x! (n−x)!
.

For convenience we define 0! to be 1.

3.4.2 Examples

Example 3.3. Consider tossing a coin four times.

(a) How many times will this experiment result in exactly twotails?

There are a total of 16 possible sequences of heads and tails from four tosses. These can
simply all be written down to answer a question like this.

We get two tails in 6 of these tosses. We can explicitly write the corresponding comb-
inations of two tails as follows

HHTT

HTHT

HTTH

THTH

TTHH

THHT

(b) How many times you will end up with 1 tail? The answer is 4 times and the output
can be written as;

HHHT

HTHH

THHH

HHTH

The case of a single tail is easy: The single tail can come up inany one of four positions.
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3.5 The binomial theorem

(a+b)n =
n∑

x=0

(

n
x

)

axbn−x

3.5.1 Details

If a and b are real numbers and n is an integer then the expression(a+b)n can be expanded
as:
(a+b)n = an+

Än
1

ä

an−1b+
Än

2

ä

an−2b+ . . .+
Ä n

n−1

ä

abn−1+bn

(a+b)n =
∑n

i=1

Än
x

ä

axbn−x

This can be seen by looking at(a+b)n as a product of n parentheses and multiply these by
picking one item (a or b) from each. If we pickeda from x parentheses andb from (n−x),
then the product isaxbn−x. We can choose thex a’s in a total of

Än
x

ä

ways so the coefficient
of axbn−x is

Än
x

ä

.

3.5.2 Examples

Example 3.4. Since

(a+b)n =
n∑

x=0

(

n
x

)

axbn−x,

it follows that

2n = (1+1)n =
n∑

x=0

(

n
x

)

i.e.

2n =

(

n
0

)

+

(

n
1

)

+

(

n
2

)

. . .+

(

n
n

)

4 Discrete random variables and the binomial distributi-
on

4.1 Simple probabilities

4.1.1 Details

Of all the possible 3-digit strings,
Ä3

x

ä

of them havex heads. So the probability of landingx

heads is
Ä3

x

ä

px(1− p)3−x.

4.1.2 Examples

Example 4.1. Consider a biased coin which has probabilityp of landing heads up. If we
toss this coin 3 independent times the possible outcomes are:
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sequence probability Numbero f heads
HHH p · p · p= p3 3
HHT p2(1− p) 2
HTH p2(1− p) 2
HTT p(1− p)2 1
THH p2(1− p) 2
THT p(1− p)2 1
TTH p(1− p)2 1
TTT (1− p)3 0

Example 4.2. It is also possible to aggregate these values into a table anddescribe only
the number of heads obtained:

heads probabilityp(x)
0 (1− p)3

1 3p(1− p)2

2 3p2(1− p)
3 p3

If we are only interested in the number of heads, then this table describes aprobability
mass functionp, namely the probabilityp(x) of every possible outcomex of the experi-
ment.

Example 4.3. Given that a year is 365 days and each day has the same probability of
being someone’s birthday. What’s the probability of at least 2 people sharing a birthday
in a group of 25 people?

Now, calculating each of the possible outcomes could becomevery tedious. That is
calculating the odds that 2 people share a birthday, 3 people, 4 people, etc. So instead
we try to find out the odds that no one in the group shares a birthday and subtract those
odds from 1 (100%).

First, let’s look at the odds of only two people having distinct birthdays.

365
365

· 364
365

= 0.9973

Person one can be born on any day and the odds of having a distinct birthday are
therefore 1. The next person can be born on everyday but the 1 the other person was
born on, so 364 days.

Now let’s say we add the 3rd person and calculate his/her oddsof having a distinct birt-
hday.

365
365

· 364
365

· 363
365

= 0.9918

This can also be rewritten as
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365·364·363
3653

And we can do this on and on for all the 25 people we are interested in. But that may
also become a bit tedious. So we use factorials instead. So instead of doing

365·364·363... ·341
36525

we do

365!
340!

36525 = 0.4313

Essentially the division of factorials here removes all thevalues < 341, leaving 340, 339,
338 ... 1
Now remember this is the probability that no one shares a birthday. So when we subtract
this from 1 we get

1−0.4313= 0.5687

or roughly 57% odds of at least 2 people in a group of 25 sharingthe same birthday.

4.2 Random variables

A random variable is a concept used to denote the outcome of anexperiment before it is
conducted.

4.2.1 Examples

Example 4.4. Let X denote the number of heads in a coin tossing experiment. We can
then talk about the probabilities of certain events such as obtaining two heads, i.e.X = 2.
We write this as

P[X = 2] =

(

n
2

)

p2(1− p)n−2

In general:

P[X = x] =

(

n
x

)

px(1− p)n−x

wherex= 0,1, .....,n

4.2.2 Handout

Definition 4.1. A random variable, X, is a function defined on a sample space, with
outcomes in the set of real numbers.

It is simpler to think of a random variable as a symbol used to denote the outcome of an
experiment before it is conducted.

25



Note 4.1.Note that it isessentialto distinguish between upper case and lower case letters
when writing these probabilities - it makes no sense to writeP[x= x].

Note 4.2.Random variables are generally denoted by upper case letters such asX, Y and
so on.

Note 4.3.To see how a random variable is a function, it is useful to consider the actual
outcomes of two coin tosses. These outcomes can be denoted{HH,HT,TH,TT}. Now
consider a random variableX which describes the number of heads obtained. This random
variable attributed 2 to the outcomeHH and 0 toTT, i.e. X is a function withX(HH) = 2,
X(HT) = X(TH) = 1 andX(TT) = 0.

4.3 Simple surveys with replacement

If we randomly draw individuals (with replacement) and ask aquestion with two possible
answers (positive or negative), then the number of positiveanswers will come from a
binomial distribution.

4.3.1 Examples

Example 4.5. Suppose we are participating in a lottery. We pick a number from a lottery
bowl (a simple random sample). We can put the number aside, orwe can put it back into
the bowl. If we put the number back in the bowl, it may be selected more than once; if
we put it aside, it can be selected only one time.

Definition 4.2. When an element can be selected more than one time, we are sampling
with replacement.

Definition 4.3. When an element can be selected only one time, we are samplingwit-
hout replacement.

4.4 The binomial distribution
If we toss a biased coinn independent times, each with probabilityp of landing heads
up, then the probability of obtainingx heads is

(

n
x

)

px(1− p)n−x

4.4.1 Examples
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Example 4.6. Suppose we toss a coin, with probabilityp of landing on headsn times
obtaining a sequence of Hs (when it lands heads) and Ts (when it lands tails). Any
sequence,

HTH...HTHHH

which hasx heads (H) andn− x tails (T), has the probabilitypx(1− p)n−x. There are
exactly

Än
x

ä

such sequences, so the total probability of landingx heads inn tosses is

(

n
x

)

px(1− p)n−x.

Example 4.7. Let the probability that a certain football club wins a matchbe equal to
0.4.If the total number of matches played in the season is 30,what is the probability that
the football club wins the match 10% of the time?

We first calculate the number of times a match was played and won by multiplying the
percentage of wins by the number of matches played.

10% of 30 times = 3 times

We can now proceed to calculate the probability that they will win the match given
that their probability of a winning is 0.4 if they play 3 timesin a season. This can be
computed as follows:

(

30
3

)

× (0.4)3× (1−0.4)30−3

= 0.000265

This can be calculated in R using the code below:

dbinom(3,30,0.4)

[1℄ 0.0002659437

This is equal to the manual calculation using the binomial theorem.

Example 4.8. Suppose a youngster puts his shirt on by himself every day forfive days.
The probability that he puts it on the right way each time isp = 0.2. We letX be a
random variable that describes the number of times the youngster puts his shirt on the
right way. The youngster can either put the shirt on the wrongor the right way so
X follows the binomial distribution with the parametersp = 0.2 (the probability of a
successful trial) andn = 5 (number of trials). We can now calculate for example the
probability that the youngster will put it on the right way for at least 4 days.
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Putting the shirt on the right way for at least 4 days means that the youngster will either
put it on the right way for either four or five days (at least four or more days of five days
total). We thus have to calculate the probability that the youngster will put his shirt on
the right way for 4 and 5 days separately and then we add it together. We can write this
process as follows:

P(X ≥ 4) = P(X = 4)+P(X = 5)

=

(

5
4

)

×0.24× (1−0.2)5−4+

(

5
5

)

×0.25× (1−0.2)5−5

= 5×0.24×0.81+1×0.25×0.80

= 5×0.24×0.8+0.25×1

= 5×0.8×0.24+0.25

= 4×0.24+0.25

= 4×0.0016+0.00032

= 0.00672

The probability that the youngster will put his shirt on the right way for at least four out
of five is thus 0,7%.

This is possible to calculate in R in a several ways, either using the command dbinom or
pbinom. The command dbinom calculates

P(X = k)

and the command pbinom calculates

P(X ≤ k)

wherek is the number of successful trials. Ifn is the number of trials andp is the
probability of a successful trials then the commands are used by writing: dbinom(k,n,p)
and pbinom(k,n,p).

To calculate the probability that the youngster will put hisshirt on the right way for at
least four days of five we thus write the command:

dbinom(4,5,0.2) + dbinom(5,5,0.2)

which gives 0.00672.

This is the same as writing:

dbinom((4,5),5,0.2)

or
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dbinom(4:5,5,0.2)

which give two separate numbers: 0.00640 and 0.00032 which can be added together to
get 0.00672.

There is also a command to add them together for us:

sum(dbinom((4,5),5,0.2))

or

sum(dbinom(4:5,5,0.2))

They give the answer 0.00672.

The fourth way of calculating this in R is to use pbinom. As said before pbinom calculates

P(X ≤ k)

wherek is the number of successful trials. Here we want to calculatethe probability that
the youngster will put his shirt on the right way in 4 or 5 times(of 5 total) so the number
of successful trials is 4 or greater. That means we want to calculate

P(X ≥ 4)

which equals
1−P(X ≤ 3)

. We thus putk as 3 and the R command will be:

1 - pbinom(3,5,0.2)

which also gives 0.00672.

Example 4.9. In a certain degree program, the chance of passing an examination is
20%. What is the chance of passing at most 2 exams if the student takes five exams?

Solution:
In this problem, we compute the chance of a student passing, 0.1 or 2 exams.This is given
by,

p(X = 0 or 1 or 2) =

(

5
0

)

0.200.85+

(

5
1

)

0.210.84+

(

5
2

)

0.220.83

= 1×0.200.85+5×0.210.84+10×0.220.83

= 0.32768+0.4096+0.2048

= 0.94208

In the R console, we can use the command,sum(dbinom((0:2),5,0.2)), which also
gives

0.94208.

The same answer is obtained with

dbinom(0,5,0.2)+dbinorm(1,5,0.2)+dbinom(2,5,0.2)
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and with

pbinom(2,5,0.2)

Example 4.10. Consider the probability of someone jumping off a cliff is 0.35. Suppose
we randomly selected four individuals to participate in thecliff jumping activity. What
is the chance that exactly one of them will jump off the cliff?

Consider a scenario where one person jumps:
P (A =jump , B = refuse, C = refuse, D = refuse)
= P (A =jump) P (B = refuse) P (C = refuse) P (D = refuse)
= (0.35)(0.65)(0.65)(0.65)= (0.35)1(0.65)3 = 0.096

But there are three other scenarios( B, C, or D) in which one only person decides to jump.
In each of these cases, the probability is again 0.096. Thesefour scenarios exhaust all the
possible ways that exactly one of the four people jumps:
4 · (0.35)1(0.65)3 = 0.38.

In the R console we can use the command:dbinom(1,4,0.35) which gives the answer
as 0.384475.

4.5 General discrete probability distributions

A general discrete probability distribution can be described by a list of all possible
outcomes and associated probabilities.

4.5.1 Details

A general discrete probability distribution is described by the possible outcomes

x1,x2, . . .

and associated probabilities, denoted byp1, p2, . . . or p(x1), p(x2), . . .

If a random variableX has this distribution, then we can write

P[X = xi ] = p(xi) = pi

or in general

P[X = x] = p(x)

where it is understood thatp(x) = 0 if x is not one of thesexi .

4.5.2 Examples
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Example 4.11. If X is the number of heads (H) before obtaining the first tail (T) when
tossing an unbiased coin 4 independent times, then the possible basic outcomes are:

Toss
In binary 1 2 3 4 #H beforeT

0000 H H H H 4
0001 H H H T 3
0010 H H T H 2
0011 H H T T 2
0100 H T H H 1
0101 H T H T 1
0110 H T T H 1
0111 H T T T 1
1000 T H H H 0
1001 T H H T 0
1010 T H T H 0
1100 T H T T 0
1101 T T H H 0
1110 T T T H 0
1111 T T T T 0

Since the coin is unbiased, each of these has the same probability of occurring. We can
now count sequences to find the number of possibilities of a particular number of heads,
H, before a tail in 4 coin tosses and thus obtain the corresponding probabilities as:

Number of tosses before a heads Probability
x p(x)
0 8

16 =
1
2

1 4
16 =

1
4

2 2
16 =

1
8

3 1
16

4 1
16

4.6 The expected value or population mean

The expected value is the sum of the possible outcomes, weighted with the respective
probabilities (discrete variable). Think of this in terms of an urn full of marbles, each
labelled with number.

4.6.1 Details

If the possible outcomes arex1,x2... with probabilitiesp1, p2... then the expected value is

µ= x1 · p1+x2 · p2+ . . . .

The fact that this is the only sensible definition of an expected value follows from consi-
dering random draws from a finite population where there areni possibilities of obtaining
the valuexi . If we setn=

∑
xi andpi = ni/n then the expected value above is the simple

average of all the numbers in the original population.
In the case of thebinomial distribution with n trials and success probabilityp it turns out
that
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µ= n · p

If X is the corresponding random variable, we denote this quantity by E[X].

4.6.2 Examples

Example 4.12. If we toss a fair coin 10 independent times, we expect on averagenp=
10· 1

2 = 5 heads.

Example 4.13. Toss a fair die and pay $60 if a six comes up and nothing otherwise. The
expected outcome is

5
6
·$0+

1
6
·$60= $10.

Example 4.14. In Las Vegas, a particular sports bet has about a 30% chance ofwinning.
If the bet wins, the bettor will win 15 dollars. If the bet loses, the bettor will lose 10
dollars. The expected return of placing one of these bets is -2.50 dollars.
Detailed calculation:

$15·0.3−$10·0.7=−$2.5

Example 4.15. Class starts at 8:00 and the last bus that will get you to classon time
leaves at 7:30. The teacher has a policy that if you are late toclass 6 of the 30 classes,
then she drops your final grade by 1/10 points. You know that ifyou set your alarm for
7:15, you miss the 7:30 bus approximately every fourth time,but if you set it for 7:10,
you’ll only miss the bus approximately every eighth time. Ifyou set it for 7:00, you’ll
only miss the bus every one hundredth time.

Part A: Assuming you try to go to class every time, can you expect to have your grade
dropped in the following scenarios?
1 - You set your alarm for 7:15 throughout the duration of the class.
2 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:10.
3 - You set your alarm for 7:15 until you reach 5 missed classes, then switch to 7:00.

Part B: What is your expected grade in the course, assuming you would have had a 7/10
without the late penalty, and:
1 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 2 (let’s say 9/10 times), but there’s a smallchance you might choose the
3rd strategy (let’s say 1/10 times).
2 - You would never choose the first alarm-clock strategy and you would most likely
choose scenario 3 (let’s say 9/10 times), but there’s a smallchance you might choose the
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2nd strategy (let’s say 1/10 times).

Answers:
A1 - Let’s call X our random variable, which we want to be the number of times we make
it to class on-time. With the alarm set to 7:15 we expect to make it to class on-time:

E[X] = 30× (1− 1
4
) = 22

1
2

You’re grade would most likely be dropped.

A2 - First we need to see how many classes we go to before we reach the 5-late-classes
threshhold:

E[X] = n× (1− 1
4
) = n−5

E[X] = n((1− 1
4
)−1) =−5

E[X] = n=
−5

−1
4

E[X] = n=
20
1

= 20

So, the night before our 21st class, you get worried and change alarm-clock strategies. If
you set it at 7:15 for the rest of the course (10 classes), you will be on time:

E[X] = 15+10× (1− 1
8
) = 23

3
4

You’re grade would most likely be dropped.

A3: If you instead start setting the alarm clock for 7:00 for the rest of the course, you
will be on time:

E[X] = 15+10× (1− 1
100

) = 24
1
9

You’re grade would most likely NOT be dropped.

Part B:This seems to contain errorsIn Part A, we calculated the mean of several bin-
omial distributions that described the expected number of days that you will arrive on-
time to class. Each distribution corresponded to a different alarm-setting scenario. In this
part, we are describing a different binomial distribution.It describes your expected gra-
de. Therefore, the grade is the outcome n, weighted by the probability of you choosing
the particular alarm-clock setting procedure:

1−E[X] = 0×6+0.9×6+0.1×7= 6.1

1−E[X] = 0×6+0.1×6+0.9×7= 6.9

Note that the probabilities of these three choices (0 + 0.9 + 0.1) must equal 1, since these
are the only three choices defined.
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4.7 The population variance

The (population) variance, for a discrete distribution, is

σ2 = E
[

(X−µ)2
]

= (x1−µ)2p1+(x2−µ)2p2+ ...

where it is understood that the random variableX has this distribution andµ is the
expected value.

In the case of the binomial distribution, it turns out that:
σ2 = np(1− p)

4.7.1 Details

Definition 4.4. If µ is the expected value, then thevariance of a discrete distribution
is defined as

σ2 = (x1−µ)2p1+(x2−µ)2p2+ . . . .

If a random variableX has associated probabilities,pi = P[X = xi ], then one can equi-
valently write

σ2 =V[X] = E
[

(X−µ)2
]

.

4.7.2 Examples

Example 4.16. In the case of the binomial distribution, it turns out that:

σ2 = np(1− p).

5 Functions

5.1 Functions of a single variable

A function describes the relationship between varia-
bles.
Examples:
f (x) = x2

y= 2+3 ·x4

−2 −1 0 1 2

0
1

2
3

4

x

x^
2
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5.1.1 Details

Functions are commonly used in statistical applications, to describe relationships.

Definition 5.1. A function describes the relationship between variables. A variabley is
described as a function of a variablex by completely specifying howy can be computed
for any given value ofx.

An example could be the relationship between a dose level andthe response to the dose.

The relationship is commonly expressed by writing eitherf (x) = x2 or y= x2.

Usually names are given to functions, i.e. to the relationship itself. For example,f might
be the function andf (x) could be its value for a given numberx. Typically f (x) is a number
but f is the function, but the sloppy phrase "the functionf (x) = 2x+4"is also common.

5.1.2 Examples

Example 5.1. f (x) = x2 or y= x2 specifies that the computed value ofy should always
bex2, for any given value ofx.

5.2 Functions in R

A function can be defined in R using the "functi-
on"command
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30
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5.3 Ranges and plots in R

Functions in R can commonly accept a range of values and will return a corresponding
vector with the outcome.

5.3.1 Examples

Example 5.2. f <- funtion(x) {return(x*12)}

x <- seq (-5,5,0,1)

y <- f(x)

plot {(x,y) type= 'l'}
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5.4 Plotting functions

In statistics, the function of interest is commonly cal-
led the response function. If we write Y=f(x), the
outcome Y is usually called the response variable
and x is the explanatory variable. Function values
are plotted on vertical axis while x values are plotted
on horizontal axis. This plots Y against x.
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5.4.1 Examples

Example 5.3. The following R commands can be used to generate a plot for function;
Y= 2+3x

x<- seq(0:10)

g <- funtion(x){

+ yhat <- 2+3*x

+ return(yhat)

+ }

x<-seq(0,10,0.1)

y<- g(x)

plot(x,y,type="l", xlab="x",ylab="y")

5.5 Functions of several variables

5.5.1 Examples

Example 5.4.

z= 2x+3y+4 (2)

v= t2+3x (3)

w= t2+3b∗x (4)

6 Polynomials

6.1 The general polynomial

The general polynomial:
p(x) = a0+a1x+a2x2+ ...+anxn

The simplest:p(x) = a
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6.1.1 Details

Definition 6.1. A polynomial describes a specific function consisting of linear comb-
inations of positive integer powers of the explanatory variable.

The general form of a polynomial is:
p(x) = a0+a1x+a2x2+ ...+anxn

The simplest of these is the constant polynomialp(x) = a.

6.2 The quadratic

The general form of the quadratic (parabola) is
p(x) = ax2+bx+c.
The simplest quadratic isp(x) = x2
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b) Negative:  f(x)=−(x−2)^2
=−x^2+4x−4

x

−
(x

 −
 2

)^
2

Para-
bolas: Quadratic functions.

6.2.1 Details

The quadratic polynomial of the formp(x) = ax2+bx+c describes a parabola when points
(x,y) with y= p(x) are plotted.

The simplest parabola isp(x) = x2 (Fig. a) which is always non-negativep(x) ≥ 0 and
p(x) = 0 only whenx= 0.

Note 6.1.Note thatp(−x) = p(x) since(−x)2 = x2.

If the coefficient at the highest power is negative, then the parabola is "upside down"(Fig.
b).

This is sometimes used to describe a response function.

6.3 The cubic

The general form of a cubic polynomial is:
p(x) = ax3+bx2+cx+d
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6.4 The Quartic

The general form of the quartic polynomial isp(x) =
ax4+bx3+cx2+dx+e
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The
general shape. Here we used the following equation
y= x4−x3−7x2+x+6

6.5 Solving the linear equation

If the value ofy is given and we know thatx andy are on a specific line so thaty= a+bx,
then we can find the value ofx

6.5.1 Details

If a value of y is given and we know thatx andy lie on a specific straight line so that
y= a+bx, then we can find the value ofx by consideringy= a+bx as an equation to be
solved forx, sincey, a andb are all known.

The general solution is found through the following steps:

• Equation:y= a+bx

• Subtracta from both sides

– y−a= bx

– bx= y−a

• Divide by b on both sides ifb is not equal to 0.

– x= 1
b(y−a).

6.6 Roots of the quadratic equation

The general solution ofax2+bx+c= 0 is given byx= −b±
√

b2−4ac
2a .

6.6.1 Details

Suppose we want to solveax2+bx+c= 0, wherea 6= 0.
The general solution is given by the formula

x=
−b±

√
b2−4ac

2a
,

if b2−4ac≥ 0. On the other hand, ifb2− 4ac< 0, the quadratic equation has no real
solution.
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6.6.2 Examples

Example 6.1. Solvex2−3x+2= 0
Putting this into the context of the formulationax2+bx+c= 0, the constants are;
a= 1,b=−3,c= 2
Inserting this into the formula for the roots gives:

x =
−(−3)±

»

(−3)2−4(1)(2)
2(1)

x =
3±

√
9−8

2

x =
3±

√
1

2

x =
3+1

2
,
3−1

2

x =
4
2
,
2
2

x = 2,1

Example 6.2. Find the roots of the following polynomial

3x4+14x2+15

We can use the quadratic equation to solve for the roots of this polynomial if we substitute
a variable for

x2

Let’s use the letter
a

3a2+14a+15

We then plug the constants in to the quadratic equation.

x=
−(14)±

»

142− (4)(3)(15)
(2)(3)

which simplifies to

−(14)±
√

196−180
6

which equals

−1
2
3

and
−3

.
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Then, since we substituted a for
x2

we need to take the square root of these values to get the rootsof the polynomial.
So,

x1,2 =±
 

−1
2
3

and
x3,4 =±

√
3

7 Simple data analysis in R

7.1 Entering data; dataframes

Several methods exist to enter data into R:

1. Enter directly: x<-c(4,3,6,7,8)

2. Read in a single vector: x<-scan("filename")

3. Use: x<-read.table("file address")

7.1.1 Details

The most direct method will not work if there are a lot numbers; therefore, the second met-
hod is to read in a single vector by x<-scan("filename"), "filename- text string, either a full
path name or refers to a file in the working directory.

The scan() command returns a vector, but the read.table() command returns a dataframe,
which is a rectangular table of data whose columns have names. A column can be extracted
from a data frame, e.g., with x<- dat$a where"dat"is the nameof the data frame and "a"is
the name of a column.

Note 7.1.Note that for read.table("file address"), "file address"refers to the location of the
file. Thus, it can be the URL or the complete file directory depending on where the table is
stored.

7.1.2 Examples

Example 7.1. Below are three examples using R code to enter data

1. x<-c(4,3,6,7,8)

2. x<-scan("lecture 70.txt")

3. x<-read.table("http://notendur.hi.is/ gunnar/kennsla/alsm/data/set115.dat", hea-
der=T)
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7.2 Histograms

A histogram is a graphical display of tabulated frequ-
encies, shown as bars.
In R use the command: hist()
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7.2.1 Examples

A histogram is a graphical display of tabulated frequencies, shown as bars.

Example 7.2. If we toss a fair die 100 times and record the number of sixes, then we
can view that as the outcome of a random variableX, which is binomial withn = 100
andp= 1

6, i.eX ∼ b(n= 100, p= 1
6)

Now this can be done e.g. 1000 times to obtain numbers,x1, ...,x1000. Within R this can
be simulated using

x <- rbinom(1000,100,1/6)

We would typically plot these using a histogram, e.g.
hist(x)
or
hist(x,nclass=50);l

7.3 Bar Charts

The bars in a bar chart usually correspond to frequ-
encies in categories and are therefore kept apart.
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7.3.1 Details

A bar chart is similar to the histogram but is used for categorical data.
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7.4 Mean, standard error, standard deviations

7.4.1 Details

The most familiar measure of central tendency is the arithmetic mean.

Definition 7.1. An arithmetic mean is the sum of the values divided by the number
values, typically expressed as:

ȳ=
∑n

i=1yi

n

Definition 7.2. Thesample varianceis a measure of the spread of a set of values from
the mean value:

s2 =
1

n−1

n∑

i=1

(xi − x̄)2

The sample standard deviation is more commonly used as a measure of the spread of a set
of values from the mean value.

Definition 7.3. The standard deviation is the square root of the variance and may be
expressed as:

s=

Ã

1
n−1

n∑

i=1

(xi − x̄)2

Definition 7.4. The standard error is a method used to indicate the reliability of the
sample mean:

SĒy =

√

s2

n

If a vector x in R contains an array of numbers then:
mean(x) returns the average, ¯x
sd(x) returns the standard deviation,s
var(x) returns the variance,s2

We may also want to use several other related operations in R:
median(x), the median value in vector x
range(x), which list the range:max(x)-\verbmin(x);
If the variablex contains discrete categories,table(x) returns counts of the frequency in
each category.
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7.5 Scatter plots and correlations

If we have paired explanatory and response data we
are often interested in seeing if a relationship exists
between them. To do this, we first plot the data in a
scatter plot.
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Figure: Scatter plot showing the length-weight
relationship of fish species "X". Data source :
Marine Resource Institution - Iceland.

7.5.1 Details

A first step in analyzing data is to prepare different plots. The type of variable will determ-
ine the type of plot. For example, when using a scatter plot both the explanatory and
response data should be continuous variables.

The equation for the Pearson correlation coefficient is:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)2 ,

wherex̄ andȳ are the sample means of the x- and y-values.
The correlation is always between -1 and 1.

7.5.2 Examples

The following R commands can be used to generate a scatter plot for vectors x and y

Example 7.3. plot(x,y)

8 Indices and the apply commands in R

8.1 Giving names to elements

We can name elements of vectors and data frames in R using the "names"command.

8.1.1 Examples

Example 8.1. X<-(41, 3, 73)

names(X)<-("One", "Two", "Three")

View the results by simply typing "X"and the output of "X"is given as follows:
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X

One Two Three

41 3 73

With this we can refer to the elements by name as well as locations using...

X[1℄

One

X["Three"℄

Three

73

8.2 Regular matrix indices and naming

A matrix is a table of numbers. Typical matrix indexing: mat[i,j], mat[1:2,] etc

A matrix can have row and column names Indexing with row and column names:
mat["a","B"]

8.2.1 Details

Definition 8.1. A matrix is a (two-dimensional) table of numbers, indexed by row and
column numbers.

Note 8.1.Note that a matrix can also have row and column names so that the matrix can
be indexed by its names rather than numbers.

8.2.2 Examples

Example 8.2. Consider a matrix with 2 rows and 3 columns. Consider extracting first
element (1,2), then all of line 2 and then columns 2-3 in an R session:

mat<-matrix(1:6,nol=3)

mat

[,1℄ [,2℄ [,3℄

[1,℄ 1 3 5

[2,℄ 2 4 6

mat[1,2℄

[1℄ 3

mat[2,℄

[1℄ 2 4 6

mat[,2:3℄
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[,1℄ [,2℄

[1,℄ 3 5

[2,℄ 4 6

Next, consider the same matrix, but give names to the rows andcolumns. The rows will
get the names "a"and "b"and the columns will be named "A", "B"and "C".
The entire R session could look like this:

mat<-matrix(1:6,nol=3)

dimnames(mat)<-list(("a","b"),("A","B","C"))

mat

A B C

a 1 3 5

b 2 4 6

mat["b",("B","C")℄

B C

4 6

8.3 The apply command

The apply command...
apply(mat,2,sum) – applies the sum function within each column
apply(mat,1,mean) – computes the mean within each row

8.4 The tapply command

Commonly one has a data vector and another vector of the same length giving categories
for the measurements. In this case one often wants to computethe mean or variance (or
median etc) within each category. To do this we use the tapplycommand in R.

8.4.1 Examples

Example 8.3. z<-(5,7,2,9,3,4,8)
i<-("m","f","m","m","f","m","f")

A. Find the sum within each group

tapply(z,i,sum)

f m

18 20

B.Find the sample sizes

tapply(z,i,length)

f m

3 4

C.Store outputs and use names
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n<-tapply(z,i,length)

n

f m

3 4

n["m"℄

m

4

8.5 Logical indexing

A logical vector consists ofTRUE(1) orFALSE(0) values. These can be used to index
vectors or matrices.

8.5.1 Examples

Example 8.4. i<-("m","f","m","m","f","m","f")
z<-(5,7,2,9,3,4,8)

i=="m"

[1℄ TRUE FALSE TRUE TRUE FALSE TRUE FALSE

z[i=="m"℄

[1℄ 5 2 9 4

z[(T,F,T,T,F,T,F)℄

[1℄ 5 2 9 4

8.6 Lists, indexing lists

A list is a collection of objects. Thus, data frames are lists.

8.6.1 Examples

Example 8.5. x<-list(y=2,z=(2,3),w=("a","b",""))
x[["z"℄℄

[1℄ 2 3

names(x)

[1℄ "y" "z" "w"

x["w"℄

$w

[1℄ "a" "b" ""

x$w

[1℄ "a" "b" ""
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9 Functions of functions and the exponential function

9.1 Exponential growth and decline

Exponential growth is typically expressed as:
y(t) = Aekt
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Exponential growth curve

9.1.1 Details

Definition 9.1. Exponential growth is the rate of population increase across time when
a population is devoid of limiting factors (i.e. competition, resources, etc.) and
experiences a constant growth rate.

Exponential growth is typically expressed as:
y(t) = Aekt

where
A (sometimes denotedP)=initial population size
k= growth rate
t =number of time intervals

Note 9.1.Note that exponential growth occurs whenk> 0 and exponential decline occurs
whenk< 0.

9.2 The exponential function

An exponential function is a function with the form:f (x) = bx

9.2.1 Details

For the exponential functionf (x) = bx, x is a positive integer andb is a fixed positive real
number. The equation can be rewritten as:

f (x) = bx = b ·b ·b...b

.
When the exponential function is written asf (x) = ex then, it has a growth rate at timex
equivalent to the value ofex for the function atx.
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9.3 Properties of the exponential function

Recall that the methods of the basic arithmetic implies that:

ea+b = eaeb

for any real numbersa andb.

9.4 Functions of functions

9.4.1 Details

Consider two functions,f andg, each defined for some set of real numbers. Wherex can be
solved in functionf usingY = f (x) wheng(Y) exists for all such resultingY. If Y = f (x)
andg(Y) exist then we can computeg( f (x)) for anyx.
If
f (x) = x2 and
g(y) = ey then
g( f (x)) = ef (x) = ex2

If we call the resulting functionh;
h(x) = g( f (x))
Thenh is commonly written as
h= g◦ f

9.4.2 Examples

Example 9.1. If
g(x) = 3+2x and
f (x) = 5x2

Then
g( f (x)) = 3+2 f (x)
g( f (x)) = 3+10x2

f (g(x)) = 5(g(x))2

f (g(x)) = 5(3+2x)2

f (g(x)) = 45+60x+20x2

9.5 Storing and using R code

As R code gets more complex (more lines) it is usually stored in files. Functions are
typically stored in separate files.

9.5.1 Examples
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Example 9.2. Save the following file (test.r):

x=4

y=8

at("x+y is", x+y, "\n")$

To read the file use:

soure("test.r")

\end{lstllisting}

and the outome of the equation is displayed in R

\end{xmpl}

%% Slide http://tutor-web.net/math/math612.1/leture190/slide60

\subsetion{Storing and alling funtions in R}

\fbox{

\begin{minipage}{0.97\textwidth}

To save a funtion in a separate file use a ommand of the form "

funtion.r".

\end{minipage}

}

\subsubsetion{Examples}

\begin{xmpl}

\begin{lstlisting}

f<-funtion(x) {

return (exp(sum(x)))

}

can be stored in a file function.r and subsequently read usingthe source command.

10 Inverse functions and the logarithm

10.1 Inverse Function

If f is a function, then the functiong is the inverse function off if

g( f (x)) = x

for all x in which f (x) can be calculated

10.1.1 Details

The inverse of a functionf is denoted byf−1, i.e.

f−1( f (x)) = x

10.1.2 Examples
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Example 10.1. If f (x) = x2 for x< 0 then the functiong, defined asg(y) =
√

y for y> 0,

is not the inverse off sinceg( f (x)) =
√

x2 = |x|=−x for x< 0.

10.2 When the inverse exists: The domain question

Inverses do not always exist. For an inverse off to
exist, f must be one-to-one, i.e. for eachx, f (x) must
be unique.

x

x^
2

f(x) = x2

− 1 1

The
function f (x) = x2 does not have an inverse since
f(x)=1 has two possible solutions -1 and 1.

10.2.1 Examples

Example 10.2. f (x)= x2 does not have an inverse sincef (x)= 1 has two possible soluti-
ons -1 and 1.

Note 10.1.Note that iff f is a function, then the functiong is the inverse function off , if
g( f (x)) = x for all calculated values ofx in f (x).

The inverse function off is denoted byf−1, i.e. f−1( f (x)) = x.

Example 10.3. What is the inverse function,f−1, of f if f (x) = 5+4x.

The simplest approach is to writey= f (x) and solve forx:
With

f (x) = 5+4x

we write
y= 5+4x

which we can now rewrite as
y−5= 4x

and this implies
y−5

4
= x

And there we have it, very simple:

f−1( f (x)) =
y−5

4

50



10.3 The base 10 logarithm

Whenx is a positive real number inx= 10y, y is referred to as the base 10 logarithm of
x and is written as:

y= log10(x)

or
y= log(x)

10.3.1 Details

If log(x) = a and log(y) = b, thenx= 10a andy= 10b, and

x·y= 10a ·10b = 10a+b

so that
log(xy) = a+b

10.3.2 Examples

Example 10.4.

log(100) = 2

log(1000) = 3

Example 10.5. If
log(2)≈ 0.3

then
10y = 2

Note 10.2.Note that
210 = 1024≈ 1000= 103

therefore
2≈ 103/10

so
log(2)≈ 0.3
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10.4 The natural logarithm

A logarithm with e as a base is referred to as the
natural logarithm and is denoted asln :

y= ln(x)

if
x= ey = exp(y)

Note thatln is the inverse ofexp.

y = ln(x)

10 x

The
curve depicts the fuctiony = ln(x) and shows that
ln is the inverse ofexp. Note that ln(1) = 0 and
wheny= 0 thene0 = 1.

10.5 Properties of logarithm(s)

Logarithms transform multiplicative models into additivemodels, i.e.

ln(a ·b) = lna+ lnb

10.5.1 Details

This implies that any statistical model, which is multiplicative becomes additive on a log
scale, e.g.

y= a ·wb ·xc

lny= (lna)+ ln(wb)+ ln(xc)

Next, note that

ln(x2) = ln(x·x)
= lnx+ lnx

= 2 · lnx

and similarly ln(xn) = n · lnx for any integer n.
In general ln(xc) = c· lnx for any real number c (for x>0).
Thus the multiplicative model (from above)

y= a ·wb ·xc

becomes
y= (lna)+b · lnw+c· lnx

which is a linear model with parameters(lna), b andc.
In addition, the log-transform is often variance-stabilizing.

10.6 The exponential function and the logarithm

The exponential function and the logarithms are inverses ofeach other

x= ey ⇔ y= lnx
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10.6.1 Details

Note 10.3.Note the properties:

ln(x·y) = ln(x)+ ln(y)

and
ea ·eb = ea+b

10.6.2 Examples

Example 10.6. Solve the equation

10e1/3x+3= 24

for x.
First, get the 3 out of the way.

10e1/3x = 21

Then the 10.

e1/3x = 2.1

Next, we can take the natural log of 2.1. Sinceln is an inverse function ofe this would
result in

1
3

x= ln(2.1)

This yields
x= ln(2.1) ·3

which is
≈ 2.23
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