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1 Continuity and limits

1.1 The concept of continuity

A function is continuous if it has no jumps. Thus,
small changes in eachx0, the input, correspond to
small changes in the output,f (x0).
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The
above figure is an example of linear growth. Thom-
as Robert Malthus (1766-1834) warned about the
dangers of uninhibited population growth.

1.1.1 Details

A function is said to be discontinuous if it has jumps. The function is continuous if it has
no jumps. Thus, for a continuous function, small changes in eachx0, the input, correspond
to small changes in the output,f (x0).

Note 1.1.Note that polynomials are continuous as are logarithms (forpositive numbers).

1.2 Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete
random variable is discontinuous.

x

y

1.2.1 Details

Definition 1.1. If X is a random variable with a discrete probability distribution and the
probability mass function of

p(x) = P[X = x]

then thecumulative distribution function , defined by

F(X) = P[X ≤ x]

is discontinuous, i.e. it jumps at points in which a positiveprobability occurs.

5



Note 1.2.When drawing discontinuous functions it is common practiceto use a filled circle
at (x, f (x)) to clarify what the function value is at a pointx of discontinuity.

1.2.2 Examples

Example 1.1. If a coin is tossed 3 independent times andX denotes the number of heads,
thenX can only take on the values 0, 1, 2 and 3. The probability of landing exactlyx
heads,P(X = x), is p(x) =

Än
x

ä

pn(1− p)n−x. The probabilities are

x | p(x) | F(x)

----------------

0 | 1/8 | 1/8

1 | 3/8 | 4/8

2 | 3/8 | 7/8

3 | 1/8 | 1

The cumulative distribution function,F(x) = P[X ≤ x] =
∑

t≤x p(t) has jumps and is
therefore discontinuous.

Note 1.3.Notice on the above figure how the circles are filled in, the solid circles indicate
where the function value is.

1.3 Notes on discontinuous function

A function is discontinuous for values or ranges of
the variable that do not vary continuously as the
variable increases. In other words, breaks or jumps.

−10 −5 0 5 10

−
4

−
2

0
2

4

Discontinuous Function

x

y

f (x) = 1
x , wherex 6= 0

1.3.1 Details

A function can be discontinuous in a number of different ways. Most commonly, it may
jump at certain points or increase without bound in certain places.

Consider the functionf , defined byf (x) = 1/x whenx 6= 0. Naturally, 1/x is not defined
for x= 0. This function increases towards+∞ asx goes to zero from the right but decreases
to−∞ asx goes to zero from the left. Since the function does not have the same limit from
the right and the left, it can not be made continuous atx= 0 even if one tries to definef (0)
as some number.
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1.4 Continuity of polynomials

All polynomials,p(x) = a0+a1x+a2x2+ . . .+anxn,
are continuous.
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1.4.1 Details

It is easy to show that simple polynomials such asp(x) = x, p(x) = a+bx, p(x) = ax2+
bx+c are continuous functions.

It is generally true that a polynomial of the form

p(x) = a0+a1x+a2x2+ . . .+anxn

is a continuous function.

1.5 Simple Limits

A "limit"is used to describe the value that a function
or sequence "approaches"as the input or index app-
roaches some value. Limits are used to define cont-
inuity, derivatives and integrals.
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+
10

Example of Limit

X

Y

f (x) = xx, for x> 0

1.5.1 Details

Definition 1.2. A limit describes the value that a function or sequence approaches as the
input or index approaches some value.

Limits are essential to calculus (and mathematical analysis in general) and are used to
define continuity, derivatives and integrals.

Consider a function and a pointx0. If f (x) gets steadily closer to some numberc asx gets
closer to a numberx0, thenc is called the limit off (x) asx goes tox0 and is written as:

c= lim
x→x0

f (x)

If c= f (x0) then f is continuousat x0.
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1.5.2 Examples

Example 1.2. A simple example of limits:
Evaluate the limit off (x) = x2−16

x−4 whenx→ 4, or

lim
x→4

x2−16
x−4

.

Notice that in principle we can not simply stick in the valuex= 4 since we would then
get 0/0 which is not defined. However we can look at the numerator andtry to factor it.
This gives us:

x2−16
x−4

=
(x−4)(x+4)

x−4
= x+4

and the result has the obvious limit of 4+4= 8 asx→ 4.

Example 1.3. Consider the function

g(x) =
1
x

wherex is a positive real number. Asx increases,g(x) decreases, approaching 0 but never
getting there since1x = 0 has no solution. One can therefore say, “The limit ofg(x), asx
approaches infinity, is 0,” and write

lim
x→∞

g(x) = 0.

1.6 More on limits

Limits impose a certain range of values that may be
applied to the function.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

The
function f (x) = 1

1+e−x .

1.6.1 Examples

Example 1.4. The Beverton-Holt stock recruitment curve is given by:

R=
αS

1+ S
K
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whereα,K > 0 are constants and S = biomass and R= recruitment.

The behavior of this curve as S increasesS→ ∞ is

lim
S→∞

αS

1+ S
K

= αK.

This is seen by rewriting the formula as follows:

lim
S→∞

αS

1+ S
K

= lim
S→∞

α
1
S+

1
K

= αK.

Example 1.5. A popular model for proportions is:

f (x) =
1

1+e−x

As x increases,e−x decreases which implies that the term 1+e−x decreases and hence
1

1+e−x increases, from which it follows thatf is an increasing function.

Notice thatf (0) = 1
2 and further,

lim
x→∞

f (x) = 1.

This is seen from considering the components:
Sincee−x = 1

ex and the exponential function goes to infinity asx→ ∞, e−x goes to 0 and
hencef (x) goes to 1.

Through a similar analysis one finds that

lim
x→−∞

f (x) = 0,

since, asx→ ∞, first−x→ ∞ and seconde−x → ∞.

Example 1.6. Evaluate the limit of

f (x) =

√
x+4−2

x

as
x→ 0

lim
x→0

√
x+4−2

x
Since the square root is present we cannot just direct substitute the 0 asx. This will give
us 0

0, which is an indeterminate form. We must perform some algebra first. The way to
get rid of the radical is to multiply the numerator by the conjugate.
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√
x+4−2

x
·
√

x+4+2√
x+4+2

This gives us
(
√

x+4)2+2(
√

x+4)−2(
√

x+4)−4

x(
√

x+4+2)

The numerator reduces tox, and thexs will cancel out leaving us with

1√
x+4+2

At this point we can direct substitute 0 forx, which will give us

1√
0+4+2

Therefore,

lim
x→0

√
x+4−2

x
=

1
4

1.7 One-sided limits

f (x) may tend towards different numbers depending
on whetherx→ x0:
from the right (x→ x0+)
or from the left (x→ x0−).

x

y

1.7.1 Details

Sometimes a function is such thatf (x) tends to different numbers depending on whether
x→ x0 from the right (x→ x0+) or from the left (x→ x0−).

If
lim

x→x0+
f (x) = f (x0)

then we say thatf is continuous from the right atx0.

2 Sequences and series

2.1 Sequences

A sequenceis a string of indexed numbersa1,a2,a3, . . .. We denote this sequence with
(an)n≥1.
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2.1.1 Details

In a sequence the same number can appear several times in different places.

2.1.2 Examples

Example 2.1. (1
n)n≥1 is the sequence 1, 1

2,
1
3,

1
4, . . ..

Example 2.2. (n)n≥1 is the sequence 1,2,3,4,5, . . ..

Example 2.3. (2nn)n≥1 is the sequence 2,8,24,64, . . ..

2.2 Convergent sequences

A sequencean is said toconvergeto the number b if for everyε > 0 we can find an
N ∈N such that|an−b|< ε for all n≥ N. We denote this with limn→∞ an = b or an → b,
asn→ ∞.

2.2.1 Details

A sequencean is said toconvergeto the number b if for everyε > 0 we can find anN ∈ N

such that|an−b|< ε for all n≥N. We denote this with limn→∞ an = b or an→ b, asn→∞.
If x is a number then,
(1+ x

n)
n → ex asn→ ∞

2.2.2 Examples

Example 2.4. The sequence(1
n)n≥∞ converges to 0 asn→ ∞

Example 2.5. If x is a number then,
(1+ x

n)
n → ex asn→ ∞

2.3 Infinite sums (series)

We are interested in, whether infinite sums of sequences can be defined.

11



2.3.1 Details

Consider a sequence of numbers,(an)n→∞.
Now define another sequence(sn)n→∞, where

sn =
n
∑

k=1

ak.

If (sn)n→∞ is convergent toS= limn→∞ sn, then we write

S=
∞
∑

n=1

an.

2.3.2 Examples

Example 2.6. If
ak = xk,k= 0,1, .....

then

sn =
n
∑

k=0

xk = x0+x1+ ......+xn

Note also that
xsn = x(x0+x1+ ......+xn) = x+x2+ .....+xn+1

We have
sn = 1+x+x2+ ....+xn

xsn = x+x2+ .....+xn+xn+1

sn˘xsn = 1−xn+1

i.e.
sn(1−x) = 1−xn+1

and we have

sn =
1−xn+1

1−x

if x 6= 1. If 0< x< 1 thenxn+1 → 0 asn→ ∞ and we obtainsn → 1
1−x so

∑∞
n=0xn = 1

1−x.

2.4 The exponential function and the Poisson distribution

The exponential function can be written as a series (infinitesum):

ex =
∞
∑

n=0

xn

n!
.

The Poisson distribution is defined by the probabilities

p(x) = e−λ λx

x!
for x= 0, 1, 2, . . .

12



2.4.1 Details

The exponential function can be written as a series (infinitesum):

ex =
∞
∑

n=0

xn

n!
.

Knowing this we can see why the Poisson probabilities

p(x) = e−λ λx

x!

add to one: ∞
∑

x=0

p(x) =
∞
∑

x=0

e−λ λx

x!
= e−λ

∞
∑

x=0

λx

x!
= e−λeλ = 1.

2.5 Relation to expected values

The expected value for the Poisson is given by

∞
∑

x=0

xp(x) =
∞
∑

x=0

xe−λ λx

x!

= λ

2.5.1 Details

The expected value for the Poisson is given by

∞
∑

x=0

xp(x) =
∞
∑

x=0

xe−λ λx

x!

= e−λ
∞
∑

x=1

xλx

x!

= e−λ
∞
∑

x=1

λx

(x−1)!

= e−λλ
∞
∑

x=1

λ(x−1)

(x−1)!

= e−λλ
∞
∑

x=0

λx

x!

= e−λλeλ

= λ

13



3 Slopes of lines and curves

3.1 The slope of a line

Linear functions produce straight-line graphs. In
general, a straight line follows the following equati-
on:

y= a+bx,

wherea andb are fixed numbers.

The line on the graph is the set of points:

{(x,y) : x,y∈ R,y= a+bx} . 2 4 6 8 10

5
10

15
20

x

y

3.1.1 Details

The slope of a straight line represents the change in they coordinate corresponding to a
unit change in thex coordinate.

3.2 Segment slopes

Let’s assume we have a more general function
y= f (x).

To find the slope of a line segment, consider 2x-
coordinates,x0 andx1, and look at the slope between
(x0, f (x0)) and(x1, f (x1)).

0 2 4 6 8 10

0
10

20
30

40
50

x

y

3.2.1 Details

Consider two points,(x0,y0) and(x1,y1). The slope of the straight line that goes through
these points is

y1−y0

x1−x0
.

Thus, the slope of a line segment passing throught the points(x0, f (x0)) and(x1, f (x1)),
for some function,f , is

f (x1)− f (x0)

x1−x0

If we let x1 = x0+h then the slope of the segment is

f (x0+h)− f (x0)

h
.

14



3.3 The slope ofy= x2

Consider the task of computing the slope of the
functiony= x2 at a given point.

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

3.3.1 Examples

Consider the functiony= f (x) = x2.

In order to find the slope at a given point(x0), we look at

y=
f (x0+h)− f (x0)

h

for small values ofh.

For this particular function,f (x) = x2, and hence

f (x0+h) = (x0+h)2 = x2+2hx0+h2.

The slope of a line segment is therefore given by

f (x0+h)− f (x0)

h
=

2hx0+h2

h
= 2x0+h.

As we makeh steadily smaller, the segment slope, 2x0+h, tends towards 2x0. It follows
that the slope,y′, of the curveat a general point xis given byy′ = 2x.

3.4 The tangent to a curve

A tangent to a curve is a line that intersects the curve
at exactly one point. The slope of a tangent for the
functiony= f (x) at the point(x0, f (x0)) is

lim
h→0

f (x0+h)− f (x0)

h
.

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

3.4.1 Details

To find the slope of the tangent to a curve at a point, we look at the slope of a line segment
between the points(x0, f (x0)) and(x0+h, f (x0+h)), which is

f (x0+h)− f (x0)

h

15



and then we takeh to be closer and closer to 0. Thus the slope is

lim
h→0

f (x0+h)− f (x0)

h

when this limit exists.

3.4.2 Examples

Example 3.1. We wish to find tangent line for the functionf (x) = x2 at the point(1,1).
First we need to find the slope of this tangent, it is given as

lim
h→0

(1+h)2−12

h
= lim

h→0

2h+h2

h
= lim

h→0
(2+h) = 2.

Then, since we know the tangent goes through the point(1,1) the line isy= 2x−1.

3.5 The slope of a general curve

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

3.5.1 Details

Imagine a nonlinear function whose graph is a curve described by the equation,
y= f (x).

Here we want to find the slope of a line tangent to the curve at a specific point(x0).
The slope of the line segment is given by the equationf (x0+h)− f (x0)

h .

Reducingh towards zero, gives the slope of this curve if it exists.

4 Derivatives

4.1 The derivative as a limit

The derivative of the functionf at the pointx is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists.

16



4.1.1 Details

Definition 4.1. The derivative of the function f at the point x is defined as

lim
h→0

f (x+h)− f (x)
h

if this limit exists.

When we writey= f (x), we commonly use the notationdy
dx or f ′(x) for this limit.

4.2 The derivative of f (x) = a+bx

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+
bx+bh and thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b

0 2 4 6 8 10

5
10

15
20

x

y

f(x)=3+2x

4.2.1 Details

If f (x) = a+bx then f (x+h) = a+b(x+h) = a+bx+bh and thus

lim
h→0

f (x+h)− f (x)
h

= lim
h→0

bh
h

= b.

Thus f ′(x) = b.

4.3 The derivative of f (x) = xn

If f (x) = xn, then f ′(x) = nxn−1.

4.3.1 Details

Let f (x) = xn, wheren is a positive integer. To calculatef ′ we use the binomial theorem in
the third step:

f (x+h)− f (x)
h

=
(x+h)n−xn

h

=

∑n−1
q=0

Än
q

ä

xqhn−q

h

=
n−1
∑

q=0

(

n
q

)

xqhn−q−1 →
(

n
n−1

)

xn−1 = nxn−1

Thus, we obtainf ′(x) = nxn−1.
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4.4 The derivative of ln and exp

If
f (x) = ex

then
f ′(x) = ex

If
g(x) = ln(x)

then

g′(x) =
1
x

4.4.1 Details

The derivatives of the exponential function is the exponential function itself i.e.
if

f (x) = ex

then
f ′(x) = ex

The derivatives of the natural logarithm, ln(x), is 1
x , i.e. if

g(x) = ln(x)

then

g′(x) =
1
x

4.5 The derivative of a sum and linear combination

If f andg are functions then the derivative off +g is given by f ′+g′.

4.5.1 Details

Similarly, the derivative of a linear combination is the linear combination of the derivatives.
If f andg are functions andk(x) = a f(x)+bg(x) thenk′(x) = a f ′(x)+bg′(x).

4.5.2 Examples

Example 4.1. If f (x) = 2+3x andg(x)+x3

then we know that
f ′(x) = 3, g(x) = 3x2 and if we write

h(x) = f (x)+g(x) = 2+3x+x3

then
h′(x) = 3+3x2

4.6 The derivative of a polynomial

The derivative of a polynomial is the sum of the derivatives of the terms of the po-
lynomial.

18



4.6.1 Details

If
p(x) = a0+a1x+ ...+anxn

then
p′(x) = a1+2a2x+3a3x2+4a4x3+ ...+nanx(n−1)

4.6.2 Examples

Example 4.2. If
p(x) = 2x4+x3

then
p′(x) = 2dx4

dx + dx3

dx = 2 ·4x3+3x2 = 8x3+3x2

4.7 The derivative of a product

If
h(x) = f (x) ·g(x)

then
h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x)

4.7.1 Details

Consider two functions,f andg and their product,h:

h(x) = f (x) ·g(x).

The derivative of the product is given by

h′(x) = f ′(x) ·g(x)+ f (x) ·g′(x).

4.7.2 Examples

Example 4.3. Suppose the functionf is given by

f (x) = xex+x2 lnx.

Then the derivative can be computed step by step as

f (x) =
dx
dx

ex+x
dex

dx
+

dx2

dx
lnx+x2d lnx

dx

= 1 ·ex+x·ex+2x· lnx+x2 · 1
x

= ex (1+x)+2xlnx+x
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4.8 Derivatives of composite functions

If f andg are functions andh= f ◦g so that

h(x) = f (g(x)) then

h′(x) = dh(x)
dx = f ′(g(x))g′(x)

4.8.1 Examples

Example 4.4. For fixedx consider:

f (p) = ln(px(1− p)n−x)

= ln px+ ln(1− p)n−x

= xln p+(n−x) ln(1− p)

f ′(p) = x
1
p
+

n−x
1− p

(−1)

=
x
p
− n−x

1− p

Example 4.5. f (b) = (y−bx)2 (y,x fixed)

f ′(b) = 2(y−bx)(−x)

= −2x(y−bx)

= (−2xy)+(2x2)b

5 Applications of differentiation

5.1 Tracking the sign of the derivative

If f is a function, then the sign of its derivative,f ′, indicates whetherf is increasing
( f ′ > 0), decreasing (f ′ < 0), or zero. f ′ can be zero at points wheref has a maximum,
minimum, or a saddle point.

5.1.1 Details

If f is a function, then the sign of its derivative,f ′, indicates whetherf is increasing
( f ′ > 0), decreasing (f ′ < 0), or zero. f ′ can be zero at points wheref has a maximum,
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minimum, or a saddle point.

If f ′(x)> 0 for x< x0, f ′(x0) = 0 and f ′(x)< 0 for x> x0 then f has a maximum atx0

If f ′(x)< 0 for x< x0, f ′(x0) = 0 and f ′(x)> 0 for x> x0 then f has a minimum atx0

If f ′(x)> 0 for x< x0, f ′(x0) = 0 and f ′(x)> 0 for x< x0 then f has a saddle point atx0

If f ′(x)< 0 for x< x0, f ′(x0) = 0 and f ′(x)< 0 for x< x0 then f has a saddle point atx0

5.1.2 Examples

Example 5.1. If f is a function such that its derivative is given by

f ′(x) = (x−1)(x−2)(x−3)(x−4),

then applying the above criteria for maxima and minima, we see that f has maxima at 1
and 3 andf has minima at 2 and 4.

5.2 Describing extrema usingf ′′

x0 with f ′(x0) = 0 corresponds to a maximum iff ′′(x0)< 0
x0 with f ′(x0) = 0 corresponds to a minimum iff ′′(x0)> 0

5.2.1 Details

If f ′(x0) = 0 corresponds to a maximum, then the derivative is decreasing and the second
derivative can not be positive, (i.e.f ′′(x0) ≤ 0). In particular, if the second derivative is
strictly negative, (f ′′(x0)< 0), then we are assured that the point is indeed a maximum, and
not a saddle point.

If f ′(x0) = 0 corresponds to a minimum, then the derivative is increasing and the second
derivative can not be negative, (i.e.f ′′(x0)≥ 0).

If the second derivative is zero, then the point may be a saddle point, as happens with
f (x) = x3 atx= 0.
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5.3 The likelihood function

If p is the probability mass function (p.m.f.):

p(x) = P[X = x]

then the joint probability of obtaining a sequence of outcomes from independent
sampling is

p(x1) · p(x2) · p(x3) . . .p(xn)

Suppose each probability includes some parameterθ, this is written,

pθ(x1), . . .pθ(xn)

If the experiment givesx1,x2 . . . ,xn we can write the probability as a function of the
parameters:

Lx(θ) = pθ(x1), . . . pθ(xn).

This is thelikelihood function.

5.3.1 Details

Definition 5.1. Recall that theprobability mass function (p.m.f) is a function giving
the probability of outcomes of an experiment.

We typically denote the p.m.f. byp so p(x) gives the probability of a given outcome,x, of
an experiment. The p.m.f. commonly depends on some parameter. We often write,

p(x) = P[X = x].

If we take a sample of independent measurements, fromp, then the joint probability of a
given set of numbers is,

p(x1) · p(x2) · p(x3) . . . p(xn)

Suppose each probability includes the same parameterθ, then this is typically written,

pθ(x1), . . .pθ(xn)

Now consider the set of outcomesx1,x2 . . . ,xn from the experiment. We can now take the
probability of this outcome as a function of the parameters.

Definition 5.2. Lx(θ) = pθ(x1), . . .pθ(xn)
This is thelikelihood function and we often seek to maximize it to estimate the unknown
parameters.
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5.3.2 Examples

Example 5.2. Suppose we toss a biased coinn independent times and obtain x heads,
we know the probability of obtaining x heads is,

(

n
x

)

px(1− p)n−x

The parameter of interest isp and the likelihood function is,

L(p) =

(

n
x

)

px(1− p)n−x

If p is unknown we sometimes wish to maximize this function with respect top in order
to estimate thetrue probabilityp.

5.4 Plotting the likelihood

missing slide – want to give a numeric example and plotL

5.4.1 Examples

missing example – want to give a numeric example and plotL

5.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.f.pθ, then the valuêθ which gives the maximum
of L:

L(θ̂) = max
θ

(Lθ)

is the maximum likelihood estimator (MLE) ofθ

5.5.1 Details

Definition 5.3. If L is a likelihood function for a p.m.f.pθ, then the valuêθ which gives
the maximum of L:

L(θ̂) = max
θ

(Lθ)

is themaximum likelihood estimator of θ

5.5.2 Examples

Example 5.3. If x is the number of heads fromn independent tosses of a coin, the likeli-
hood function is:

Lx(p) =

(

n
x

)

px(1− p)n−x
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Maximizing this is equivalent to maximizing the logarithm of the likelihood, since loga-
rithmic functions are increasing. The log-likelihood can be written as:

ln(L(p)) = ln

(

n
x

)

+xln(p)+(n−x) ln(1− p).

To find possible maxima , we need to differentiate this formula and set the derivative to
zero

0=
dl(p)
dp

= 0+
x
p
+

n−x
1− p

(−1)

0= p(1− p)
(x)
p

− p(1− p)
n−x
1− p

0= (1− p)x− p(n−x)

0= x− px− pn+ px= x− pn

So,

0= x− pn

p=
x
n

is the extreme and so we can write

p̂=
x
n

for the MLE

5.6 Least squares estimation

Least squares: Estimate the parametersθ by minimizing

n
∑

i=1

(yi −gi(θ))2

5.6.1 Details

Suppose we have a model linking data to parameters. In general we are predictingyi asgi

(θ).
In this case it makes sense to estimate parametersθ by minimizing

n
∑

i=1

(yi −gi(θ))2.

5.6.2 Examples
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Example 5.4. One may predict numbers,xi , as a mean,µ, plus error. Consider the
simple modelxi = µ+ εi, whereµ is an unknown parameter (constant) andεi is the error
in measurement when obtaining thei’th observations,xi , i = 1, . . . ,n.

A natural method to estimate the parameter is to minimize thesquared deviations

min
µ

n
∑

i=1
(x−µ)2 .

It is not hard to see that the ˆµ that minimizes this is the mean:

µ̂= x̄.

Example 5.5. One also commonly predicts datay1, · · · ,yn with values on a straight line,
i.e. withα+βxi , wherex1, . . . ,xn are fixed numbers.

This leads to theregression problem of finding parameter values forα̂ andβ̂ which gives
the best fitting straight line in relation to least squares:

min
α,β

∑

(yi − (α+βxi))
2

Example 5.6. As a general exercise in finding the extreme of a function, let’s look at
the function f (θ) =∑n

i=1(xiθ−3)2 wherexi are some constants. We wish to find theθ
that minimizes this sum. We simply differentiateθ to obtainf ′(θ) =∑n

i=12(xiθ−3)x1 =
2
∑n

i=1x2
i θ−2

∑n
i=13xi . Thus,

f ′(θ) = 2θ
n
∑

i=1

x2
i −2

n
∑

i=1

3xi = 0

⇔ θ =

∑n
i=13xi

∑n
i=1x2

i
.
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6 Integrals and probability density functions

6.1 Area under a curve

The area under a curve between x=a and x=b (for a
positive function) is called the integral of the functi-
on.

x

y

a b

f(x)=c

area=c*(b−a)

x

y

a

a f(x)=x

area=1/2 a2

x

y

a b

f(x)=x

area=1/2 b2−1/2 a2

Example 1, 2 and 3

6.1.1 Details

Definition 6.1. The area under a curve between x=a and x=b (for a positive function) is
called theintegral of the function and is denoted:

∫ b
a f (x)dxwhen it exists.

6.2 The antiderivative

Given a functionf , if there is another functionF such thatF ′ = f , we say thatF is the
antiderivativeof f . For a functionf the antiderivative is denoted by

∫

f dx.
Note that ifF is one antiderivative off andC is a constant, thenG= F +C is also an
antiderivative. It is therefore customary to always include the constant, e.g.

∫

xdx=
1
2x2+C.

6.2.1 Examples

Example 6.1. The antiderivative ofx to a power raises the power.
∫

xndx= 1
n+1xn+1+C.

Example 6.2.
∫

exdx= ex+C.

Example 6.3.
∫ 1

xdx= ln(x)+C.
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Example 6.4.
∫

2xex2
dx= ex2

+C.

6.3 The fundamental theorem of calculus

If F ′(x) = f (x) for x∈ [a,b], then
∫ b
a f (x)dx= F(b)−F(a)

6.3.1 Detail

It is not too hard to see that the area under the graph of a positive function f on the interval
[a,b] must be equal to the difference of the values of its antiderivative ata andb. This also
holds for functions which take on negative values and is formally stated below.

Definition 6.2. Fundamental theorem of calculus:If F is the antiderivative off , i.e.
F ′ = f for x∈ [a,b], then

∫ b
a f (x)dx= F(b)−F(a).

This difference is often written as
∫ b
a f dxor [F(x)]ba.

6.3.2 Examples

Example 6.5. The area under the graph ofxn between 0 and 3 is
∫ 3
0 xndx= [ 1

n+1xn+1]30 =
1

n+13n+1− 1
n+10n+1 = 3n+1

n+1

Example 6.6. The area under the graph ofex between 3 and 4 is
∫ 4
3 exdx= [ex]43 = e4−e3

Example 6.7. The area under the graph of1
x between 1 anda is

∫ a
1

1
xdx= [ln(x)]a1 =

ln(a)− ln(1) = ln(a).

6.4 Density functions

The probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.).

x

f(
x) 1

1x
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6.4.1 Details

Definition 6.3. If X is a random variable such that

P(a≤ X ≤ b) =
b
∫

a

f (x)dx,

for some functionf which satisfiesf (x)≥ 0 for all x and

∞
∫

−∞

f (x)dx= 1

then f is said to be aprobability density function (p.d.f.) for X.

Definition 6.4. The function

F(x) =
x
∫

−∞

f (t)dt

is thecumulative distribution function (c.d.f.) .

6.4.2 Examples

Example 6.8. Consider a random variableX from the uniform distribution, denoted by
X ∼U(0,1). This distribution has density

f (x) =
®

1 if 0 ≤ x≤ 1
0 e.w.

The cumulative distribution function is given by

P[X ≤ x] =
x
∫

−∞

f (t)dt =











0 if x< 0
x if 0 ≤ x≤ 1
1

Example 6.9. SupposeX ∼ P(λ), where X may denote the number of events per unit
time. The p.m.f. of X is described byp(x)=P[X = x] =e−λ λx

x! for x=0,1,2, .... Consider
now the waiting time, T, between events, or simply until the first event. Consider the
eventT > t for some number t>0. IfX ∼ p(λ) denotes the number of events per unit
time, then letXt denote the number of events during the time period for 0 through t. Then
it is natural to assume
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Xt ∼ P(λt) and it follows thatT > t if and only if Xt = 0 and we obtainP[T > t] = P[Xt =
0] = e−λt . It follows that the c.d.f. of T isFT(t) = P[T ≤ t] = 1−P[T > t] = 1−e−λt for
t > 0.

The p.d.f. of T is thereforefT(t) = F ′
T(t) =

d
dtFT(t) = d

dt(1−e−λt = 0−e−λt ∗ (−λ) =
λe−λt for t ≥ 0 and fT(t) = 0 for t = 0.

The resulting density

f (t) =
®

λe−λt for t ≥ 0
0 for t < 0

describes the exponential distribution.
This distribution has the expected value

E[T] =
∞
∫

−∞

t f (t)dt =
∞
∫

0

tλe−λtdt.

the stuff below is all messed up...
We setu= λt anddu= λdt to obtain

∫

ue−udu=
1
λ

∞
∫

0

ue−udu=
1
λ
=

∞
∫

0

1 ·e−udu

=
î

−ue−u
ó∞
0

=

ñ

1
λ
(−e−u)

ô∞

0
−0=

1
λ
.

6.5 Probabilities in R: The normal distribution
R has functions to compute values of probability density functions (p.d.f.) and cumulati-
ve distribution functions (c.m.d.) for most common distributions.

6.5.1 Details

The p.d.f. for the normal distribution is

p(t) =
1√
2π

e−
t2
2

The c.d.f. for the normal distribution is

Φ(x) =
x
∫

−∞

1√
2π

e−
t2
2 dt

6.5.2 Examples

Example 6.10. dnorm() gives the value of the normal p.d.f.

29



Example 6.11. pnorm() gives the value of the normal c.d.f.

6.6 Some rules of integration

6.6.1 Examples

Example 6.12. Using integration by parts we obtain

∫

ln(x)xdx=
1
2

x2 ln(x)−
∫ 1

2
x2 · 1

x
dx=

1
2

x2 ln(x)−
∫ 1

2
xdx=

1
2

x2 ln(x)− 1
4

x2.

Example 6.13. Consider
∫ 2
1 2xex2

dx. By settingx= g(t) =
√

t we obtain

∫ 2

1
2xex2

dx=
∫ 4

1
2
√

tet 1
2
√

t
dt =

∫ 4

1
etdt = e4−e.

6.6.2 Handout

The two most common "tricks"applied in integration are a) integration by parts and b) in-
tegration by substitution.

a) Integration by parts

( f g)′ = f ′g+ f g′

by integrating both sides of the equation we obtain:

f g=
∫

f ′gdx+
∫

f g′dx⇔
∫

f g′dx= f g−
∫

f ′gdx

b) Integration by substitution

Consider the definite integral
∫ b
a f (x)dx and letg be a one-to-one differential function for

the interval(c,d) to (a,b). Then

∫ b

a
f (x)dx=

∫ d

c
f (g(y))g′(y)dy
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7 Principles of programming

7.1 Modularity

Modularity involves designing a system that is divided intoa set of functional units
(named modules) that can be composed into a larger application.

Any programming project should be split into logical modulepieces of code which are
combined into a complete program.

7.1.1 Details

Typically input, initialization, analysis, and output commands are grouped into separate
parts.

7.1.2 Examples

Example 7.1. Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)


ols<- 
("le", "osl")

Analysis

Mn<-mean(dat[, 
ols[1℄℄)

Output

print (Mn)

7.2 Modularity and functions

In many cases groups of commands can be collected together into a function.

7.2.1 Details

Typically a project has several such functions.

7.2.2 Examples

Example 7.2. Suppose you want to plot the weight vs. length for several datasets in

http://hi.is/~gunnar/kennsla/alsm/data

A function can then be set up with the file number as an argument:

plotwtle<-fun
tion (fnum){

fname<-paste(

"http://hi.is/~gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")


at("The URL B", fname,"\n")
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dat<-read.table(fname,header=T)

ttl<-paste("Data from file number", fnum)

plot(dat$le,dat$osl,main=ttl)

}

Now call this with

plotwtle(105)

7.3 Modularity and files

It is advisable to split larger projects into several manageable files.

7.3.1 Details

Once a project reaches more than five lines of code, it should be stored in one or more
separate files. In order to combine these files a single “source” command file can be crea-
ted.

Typically function definitions are stored in separate files,so one may have several separate
files like:

"input.r"
"function.r"
"analysis.r"

ǫutput.r"

While developing the analysis, the data would only be read once with

source(“input.r”)

The goal of this practice is to end up with a set of files which are completely self-contained,
so one can start with an empty R session and give only the commands like:

source (“input.r”)
source (“functions.r”)
source (“analysis.r”)

Furthermore, this ensures repeatability.

7.3.2 Examples

Example 7.3. For a given project “input”, “functions” “analysis” and “output” files can
be created as below.
input.r

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/

set115.dat", header=T)
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functions.r

plotwtle<-fun
tion(fnum){

fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",

fnum,".dat",sep="")


at("The URL is",fname,"\n")

dat<-read.table(fname,header=T)

ttl<-paste("My data set was",fnum)

plot(dat$le,dat$osl,main=ttl,xlab="Length(
m)",ylab="Live weight (

g)")

}

output.r

sour
e("fun
tions.r")

for(i in 101:150){

fnam<-paste("plot",i,".pdf",sep="")

pdf(fnam)

plotwtle(i)

dev.off()

}

These files can be executed with source commands as below:

source (“input.r”)

source (“functions.r”)

source (“output.r”)

7.4 Structuring an R project

7.4.1 Details

We already covered how to split code into different functions and linking them together
with the help of one executable file that is "sourcing"the others. However, when you und-
ertake a larger project, there will be a lot of different dataand files and it is very advisable
to have a consistent structure throughout the project.

A common project layout is to allocate all project files into afolder, something along the
lines of:

/proje
t

/data

/sr


/do


/figs (or /out)

Such a structure is quite normal in programming languages such as C, Matlab, and R.

Purpose of the different folders:

/data: Contains all important data to the project, which youwill use. This folder should be
read-only! No function is allowed to write anything into this folder.
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/src: (abbreviation for "source(-code)") Here you will store all the functions that you
programmed. You can decide to store the executable functionhere as well or, alternati-
vely, have that one in the root project folder.

/doc: Contains further documentation material about your project. This could be, for
example, readme files for other people who use your functions, or the paper you wrote
about the project, or the latex files while you’re writing.

/figs or /out: Here your functions are allowed to write and canproduce the different results,
like graphs, figures or anything else.

Finally, a large programming project should at some stage besplit into packages and stored
on dedicated servers such as github or CRAN.

7.4.2 Examples

Example 7.4. Consider first the issue of maintaining the code itself. It iscommon for R
beginners to only work interactively within the command-line interface. However, it is
essential that the code be kept in one or more files.

For large projects these will be several different files, each with its own purpose. To run
a complete analysis one would typically set up one file to run all the tasks by reading in
data through analyses to outputs.

For example, a file named "run.r"could contain the sequence of commands:

source("setup.r")

source("analysis.r")

source("plot.r")

7.5 Loops, for

If a piece of code is to be run repeatedly, the for-loop is normally used.

7.5.1 Details

If a piece of code is to be run repeatedly, the for-loop is normally used. The R code form
is:

for(index in sequen
e){


ommands

}

7.5.2 Examples
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Example 7.5. To add numbers we can use

tot <- 100

for(i in 1:100){

tot <- tot + i

}


at ("the sum is ", tot, "\n")

Example 7.6. Define the plot function

plotwtle <- AS BEFORE

To plot several of these we can use a sequence:

plotwtle(101)

plotwtle(102)

.

.

.

or a loop

for (i in 101:150){

fname<- paste("plot", i, ".pdf", sep="")

pdf(fname)

plotwtle(i)

dev.off()

}

7.6 The if and ifelse commands
The "if"statement is used to conditionally execute statements.
The "ifelse"statement conditionally replaces elements ofa structure.

7.6.1 Examples

Example 7.7. If we want to computexx for x-values in the range 0 through 5, we can
use

xlist<-seq(0,5,0.01)

y<-NULL

for(x in xlist){

if(x==0){

y<-
(y,1)
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}else{

y<-
(y,x**x)

}

}

Example 7.8. x<-seq(0,5,0.01)
y<-ifelse(x==0,1,x^x)

Example 7.9. dat<-read.table ("file")

dat<-ifelse (dat==0,0.01,dat)

Example 7.10.x<-ifelse (is.na(x),0,x)

7.7 Indenting

Code should be properly indented!

7.7.1 Details

fFunctions, for-loops, and if-statements should always beindented.

7.8 Comments

All code should contain informative comments. Comments areseparated out from code
using the pound symbol (#).

7.8.1 Examples

Example 7.11. ####################
####SETUP DATA####
####################

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length
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y<-log(dat$wt) #log-transformation of weight

######################
####THE ANALYSIS####
######################

8 The Central Limit Theorem and related topics

8.1 The Central Limit Theorem

If measurements are obtained independently and
come from a process with finite variance, then the
distribution of their mean tends towards a Gaussian
(normal) distribution as the sample size increases.
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8.1.1 Details

Theorem 8.1 TheCentral Limit Theorem states that ifX1,X2, . . . are independent and
identically distributed random variables with meanµ and (finite) varianceσ2, then the
distribution ofX̄n := X1+···+Xn

n tends towards a normal distribution.

It follows that for a large enough sample sizen, the distribution random variablēXn can be
approximated byn(µ,σ2/n).
The standard normal distribution is given by the p.d.f.

ϕ(z) =
1√
2π

e
−z2

2

for z∈ R.

The standard normal distribution has an expected value of zero,

µ=
∫

zϕ(z)dz= 0

and a variance of
σ2 =

∫

(z−µ)2ϕ(z)dz= 1

If a random variableZ has the standard normal (or Gaussian) distribution, we write Z ∼
n(0,1).
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If we define a new random variable,Y, by writingY = σZ+µ, thenY has an expected value
of µ, a variance ofσ2 and a density (p.d.f.) given by the formula:

f (y) =
1√
2πσ

e
−(y−µ)2

2σ2 .

This is general normal (or Gaussian) density, with meanµ and varianceσ2.
The Central Limit Theorem states that if you take the mean of several independent random
variables, the distribution of that mean will look more and more like a Gaussian distribution
(if the variance of the original random variables is finite).
More precisely, the cumulative distribution function of

X̄n−µ
σ/

√
n

converges toΦ, then(0,1) cumulative distribution function.

8.1.2 Examples

Example 8.1. If we collect measurements on waiting times, these are typically assumed
to come from an exponential distribution with density

f (t) = λe−λt , for t > 0

The Central Limit Theorem states that the mean of several such waiting times will tend
to have a normal distribution.

Example 8.2. We are often interested in computing

w=
x̄−µ0

s√
n

which comes from a t-distribution (see below), if thexi are independent outcomes from
a normal distribution.
However, ifn is large andσ2 is finite thenw values will look as though they came from a
normal distribution. This is in part a consequence of the Central Limit Theorem, but also
of the fact thatswill become close toσ asn increases.

8.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of 0 and 1 values (counts of failures = 0 and
successes =1). So, a simple, single binomial outcome will correspond to coming from a
normal distribution if the count is large enough.
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8.2.1 Details

Consider the binomial probabilities:

p(x) =

(

n
x

)

px(1− p)n−x

for x = 0,1,2,3, · · · ,n wheren is a non-negative integer. Supposep is a small positive
number, specifically consider a sequence of decreasingp-values, specified withpn =

λ
n and

consider the behavior of the probability asn→ ∞. We obtain:

(

n
x

)

px
n(1− pn)

n−x =
n!

x!(n−x!)

Ç

λ
n

åxÇ

1− λ
n

ån−x

(1)

=
n(n−1)(n−2) · · ·(n−x+1)

x!

λ
n

x

Ä

1− λ
n

äx

Ç

1− λ
n

ån

(2)

=
n(n−1)(n−2) · · ·(n−x+1)

x!nx

λx

Ä

1− λ
n

äx

Ç

1− λ
n

ån

(3)

(4)

Note 8.1.Notice thatn(n−1)(n−2)···(n−x+1)
nx → 1 asn→ ∞. Also notice that(1− λ

n)
x → 1 as

n→ ∞. Also

lim
n→∞

Ç

1− λ
n

å

= e−λ

and it follows that

lim
n→∞

(

n
x

)

px
n(1− pn)

n−x =
e−λλx

x!
,x= 0,1,2, · · · ,n

and hence the binomial probabilities may be approximated with the corresponding Poisson.

8.2.2 Examples

Example 8.3. The mean of a binomial (n,p) variable isµ = n · p and the variance is
σ2 = np(1− p).

The R commanddbinom(q,n, p) calculates the probability ofq successes inn trials
assuming that the probability of a success isp in each trial (binomial distribution), and the
R commandpbinom(q,n, p) calculates the probability of obtainingq or fewer successes
in n trials.
The normal approximation of this distribution can be calculated with
pnorm(q,mu,sigma) which becomespnorm(q,n ∗ p,sqrt(n ∗ p(1− p)). Three nu-
merical examples (note that pbinom and pnorm give similar values for large n):

pbinom(3,10,0.2)

[1℄ 0.8791261

pnorm(3,10*0.2,sqrt(10*0.2*(1-0.2)))

[1℄ 0.7854023
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pbinom(3,20,0.2)

[1℄ 0.4114489

pnorm(3,20*0.2,sqrt(20*0.2*(1-0.2)))

[1℄ 0.2880751

pbinom(30,200,0.2)

[1℄ 0.04302156

pnorm(30,200*0.2,sqrt(200*0.2*(1-0.2)))

[1℄ 0.03854994

Example 8.4. We are often interested in computingw= x̄−µ
s/
√

n which has a t-distribution

if the xi are independent outcomes from a normal distribution. Ifn is large andσ2 is
finite, this will look as if it comes from a normal distribution.

The numerical examples below demonstrate how the t-distribution approaches the normal
distribution.

qnorm(0.7)

[1℄ 0.5244005

#This is the value whi
h gives the 
umulative probability of p=0.7

for a n~(0,1)

qt(0.7,2)

[1℄ 0.6172134

#The value, whi
h gives the 
umulative probability of p=0.7 with n=2

for the t-distribution.

qt(0.7,5)

[1℄ 0.5594296

qt(0.7,10)

[1℄ 0.541528

qt(0.7,20)

[1℄ 0.5328628

qt(0.7,100)

[1℄ 0.5260763
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8.3 Monte Carlo simulation

If we know an underlying process we can simulate
data from the process and evaluate the distribution
of any quantity based on such data.
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8.3.1 Examples

Example 8.5. Suppose our measurements come from an exponential distribution and we
want to compute

t =
x−µ
s/
√

n

but we want to know the distribution of those whenµ is the true mean.

For instance,n = 5 andµ = 1, we can simulate (repeatedly)x1, . . . ,x5 and compute a
t-value for each. The following R commands can be used for this:

library(MASS)

n<-5

mu<-1

lambda<-1

tve
<-NULL

for(sim in 1:10000){

x<-rexp(n,lambda)

xbar<-mean(x)

s<-sd(x)

t<-(xbar-mu)/(s/sqrt(n))

tve
<-
(tve
,t)

}

#then do...

truehist(tve
) #truehist gives a better histogram

sort(tve
)[9750℄

sort(tve
)[250℄
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9 Miscellanea

9.1 Simple probabilities in R

R has functions to compute probabilities based on most common distributions.

If X is a random variable with a known distribution, then R can typically compute values
of the cumulative distribution function or:

F(x) = P[X ≤ x]

9.1.1 Examples

Example 9.1. If X ∼ b(n, p) has binomial distribution, i.e.

P(X = x) =

(

n
x

)

px(1− p)n−x,

then cumulative probabilities can be computed withpbinom, e.g.

pbinom(5,10,0.5)

gives
P[X ≤ 5] = 0.623

where

X ∼ b(n= 10, p=
1
2
).

This can also be computed by hand. Here we haven= 10, p= 1/2 and the probability
P[X ≤ 5] is obtained by adding up the individual probabilities,P[X = 0] +P[X = 1] +
P[X = 2]+P[X = 3]+P[X = 4]+P[X = 5]

P[X ≤ 5] =
5
∑

x=0

(

10
x

)

1
2

x1
2

10−x

.

This becomes

P[X ≤5] =

(

10
0

)

1
2

01
2

10−0

+

(

10
1

)

1
2

11
2

10−1

+

(

10
1

)

1
2

21
2

10−2

+

(

10
3

)

1
2

31
2

10−3

+

(

10
4

)

1
2

41
2

10−4

+

(

10
5

)

1
2

51
2

10−

or

P[X ≤5] =

(

10
0

)

1
2

10

+

(

10
1

)

1
2

10

+

(

10
1

)

1
2

10

+

(

10
3

)

1
2

10

+

(

10
4

)

1
2

10

+

(

10
5

)

1
2

10

=
1
2

10

[1+10+45+ ...] .

Furthermore,

pbinom(10,10,0.5)

[1℄ 1

and

pbinom(0,10,0.5)

[1℄ 0.0009765625
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It is sometimes of interest to computeP[X = x] in this case, and this is given by the
dbinomfunction, e.g.

dbinom(1,10,0.5)

[1℄ 0.009765625

or 10
1024

Example 9.2. SupposeX has a uniform distribution between 0 and 1, i.e.X ∼U(0,1).
Then thepuni f function will return probabilities of the form

P[X ≤ x] =
∫ x

−∞
f (t)dt =

∫ x

0
f (t)dt

where f (t) = 1 if 0 ≤ t ≤ 1 and f (t) = 0. For example:

punif(0.75)

[1℄ 0.75

To obtainP[a≤ X ≤ b], we usepuni f twice, e.g.

punif(0.75)-punif(0.25)

[1℄ 0.5

9.2 Computing normal probabilities in R

To compute probabilitiesX ∼ n(µ,σ2) is usually transformed, since we know that

Z :=
X−µ

σ
∼ (0,1)

The probabilities can then be computed for eitherX or Z with the pnormfunction in R.

9.2.1 Details

SupposeX has a normal distribution with meanµ and variance

X ∼ n(µ,σ2)

then to compute probabilities,X is usually transformed, since we know that

Z =
X−µ

σ
∼ (0,1)

and the probabilities can be computed for eitherX or Z with the pnormfunction.

9.2.2 Examples
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Example 9.3. If Z ∼ n(0,1) then we can e.g. obtainP[Z ≤ 1.96] with

pnorm(1.96)

[1℄ 0.9750021

pnorm(0)

[1℄ 0.5

pnorm(1.96)-pnorm(1.96)

[1℄ 0

pnorm(1.96)-pnorm(-1.96)

[1℄ 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 9.4. If X ∼ n(42,32) then we can compute probabilites either by transforming

P[X ≤ x] = P[
X−µ

σ
≤ x−µ

σ
]

= P[Z ≤ x−µ
σ

]

and callingpnormwith the computed valuez= x−µ
σ , or call pnormwith x and specifyµ

andσ.

To computeP[X ≤ 48], either setz= (48−42)/3= 2 and obtain

pnorm(2)

[1℄ 0.9772499

or specifyµ andσ

pnorm(42,42,3)

[1℄ 0.5

9.3 Introduction to hypothesis testing

9.3.1 Details

If we have a random samplex1, . . . ,xn from a normal distribution, then we consider them
to be outcomes of independent random variablesX1, . . . ,Xn whereXi ∼ n(µ,σ2). Typically,
µ andσ2 are unknown but assume for now thatσ2 is known.

Consider the hypothesis:

H0 : µ= µ0 vs. H1 : µ> µ0
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whereµ0 is a specified number.

Under the assumption of independence, the sample mean

x=
1
n

n
∑

i=1
xi

is also an observation from a normal distribution, with meanµbut a smaller variance.Specifically,
x is the outcome of

X =
1
n

n
∑

i=1

Xi

and

X ∼ n(µ,
σ2

n
)

so the standard deviation of X isσ√n, so the appropriate error measure forx is f racσ
√

n,
whenσ is unknown.

If H0 is true, then

z :=
x−µ0

σ/
√

n

is an observation from ann∼ n(0,1) distribution, i.e. an outcome of

Z =
X−µ0

σ/
√

n

whereZ ∼ n(0,1) whenH0 is correct. It follows that e.g.P[|Z| > 1.96] = 0.05 and if we
observe|Z|> 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is a quantile of the normal distribution and we can obtain
other quantiles with thepnormfunction, e.g.pnorm(0.975) gives 1.96.

45


	Continuity and limits
	The concept of continuity
	Details

	Discrete probabilities and cumulative distribution functions
	Details
	Examples

	Notes on discontinuous function
	Details

	Continuity of polynomials
	Details

	Simple Limits
	Details
	Examples

	More on limits
	Examples

	One-sided limits
	Details


	Sequences and series
	Sequences
	Details
	Examples

	Convergent sequences
	Details
	Examples

	Infinite sums (series)
	Details
	Examples

	The exponential function and the Poisson distribution
	Details

	Relation to expected values
	Details


	Slopes of lines and curves
	The slope of a line
	Details

	Segment slopes
	Details

	The slope of y=x2
	Examples

	The tangent to a curve
	Details
	Examples

	The slope of a general curve
	Details


	Derivatives
	The derivative as a limit
	Details

	The derivative of f(x)=a+bx
	Details

	The derivative of f(x)=xn
	Details

	The derivative of ln and exp
	Details

	The derivative of a sum and linear combination
	Details
	Examples

	The derivative of a polynomial
	Details
	Examples

	The derivative of a product
	Details
	Examples

	Derivatives of composite functions
	Examples


	Applications of differentiation
	Tracking the sign of the derivative
	Details
	Examples

	Describing extrema using f''
	Details

	The likelihood function
	Details
	Examples

	Plotting the likelihood
	Examples

	Maximum likelihood estimation
	Details
	Examples

	Least squares estimation
	Details
	Examples


	Integrals and probability density functions
	Area under a curve
	Details

	The antiderivative
	Examples

	The fundamental theorem of calculus
	Detail
	Examples

	Density functions
	Details
	Examples

	Probabilities in R: The normal distribution
	Details
	Examples

	Some rules of integration
	Examples
	Handout


	Principles of programming
	Modularity
	Details
	Examples

	Modularity and functions
	Details
	Examples

	Modularity and files
	Details
	Examples

	Structuring an R project
	Details
	Examples

	Loops, for
	Details
	Examples

	The if and ifelse commands
	Examples

	Indenting
	Details

	Comments
	Examples


	The Central Limit Theorem and related topics
	The Central Limit Theorem
	Details
	Examples

	Properties of the binomial and Poisson distributions
	Details
	Examples

	Monte Carlo simulation
	Examples


	Miscellanea
	Simple probabilities in R
	Examples

	Computing normal probabilities in R
	Details
	Examples

	Introduction to hypothesis testing
	Details



