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1 Continuity and limits

1.1 The concept of continuity

Unlimited Growth

A function is continuous if it has no jumps. Thus,
small changes in eacky, the input, correspond to"
small changes in the output(xo).

The
above figure is an example of linear growth. Thom-
as Robert Malthus (1766-1834) warned about the
dangers of uninhibited population growth.

1.1.1 Details

A function is said to be discontinuous if it has jumps. Thedhion is continuous if it has
no jumps. Thus, for a continuous function, small changesaigy, the input, correspond
to small changes in the outputxo).

Note 1.1.Note that polynomials are continuous as are logarithmspdsitive numbers).

1.2 Discrete probabilities and cumulative distribution functions

The cumulative distribution function for a discrete
random variable is discontinuous.

1.2.1 Details

Definition 1.1. If X is a random variable with a discrete probability distribntand the
probability mass function of
p(x) =PX =X

then thecumulative distribution function , defined by
F(X) =P[X<Xx

is discontinuous, i.e. it jumps at points in which a posifwebability occurs.




Note 1.2.When drawing discontinuous functions it is common pradiagse a filled circle
at (x, f(x)) to clarify what the function value is at a poixbf discontinuity.

1.2.2 Examples

Example 1.1. If a coinis tossed 3 independent times ahdenotes the number of healis,
thenX can only take on the values 0, 1, 2 and 3. The probability olitag exactlyx
headsP(X =), is p(x) = (})p"(1— p)"*. The probabilities are

o | 1/8 | 1/8
1 | 3/8 | 4/8
2 | 3/8 | 7/8
3 11/8 |1

o7

The cumulative distribution functiorf; (x) = P[X < x| = St<xp(t) has jumps and i
therefore discontinuous.

Note 1.3.Notice on the above figure how the circles are filled in, thedsoicles indicate
where the function value is.

1.3 Notes on discontinuous function

A function is discontinuous for values or ranges of
the variable that do not vary continuously as the ﬁ
variable increases. In other words, breaks or jumps \

f(x) =1, wherex #£ 0

1.3.1 Details

A function can be discontinuous in a number of different waylst commonly, it may
jump at certain points or increase without bound in certéacgs.

Consider the functiorf, defined byf (x) = 1/x whenx # 0. Naturally, ¥x is not defined
for x=0. This function increases towardse asx goes to zero from the right but decreases
to —oo asx goes to zero from the left. Since the function does not hazadme limit from
the right and the left, it can not be made continuous-atO even if one tries to defing(0)

as some number.



1.4 Continuity of polynomials

Polynomial Function

All polynomials, p(X) = ag+agx+apx? +... +anx", °
are continuous. ]

1.4.1 Details

It is easy to show that simple polynomials suchpé®) = x, p(x) = a+bx, p(x) = ax® +
bx+ c are continuous functions.

It is generally true that a polynomial of the form
p(X) = a9+ arx+ax’ + ... +anX"
is a continuous function.

1.5 Simple Limits

mmmmmmmmmmmmmm

A "limit"is used to describe the value that a function
or sequence "approaches"as the input or index app-
roaches some value. Limits are used to define cont
inuity, derivatives and integrals.

f(x) =x*, forx>0

1.5.1 Details

Definition 1.2. A limit describes the value that a function or sequence approas a
input or index approaches some value.

Limits are essential to calculus (and mathematical aralysigeneral) and are used to
define continuity, derivatives and integrals.

Consider a function and a poixg. If f(x) gets steadily closer to some numlseasx gets
closer to a numbexg, thenc is called the limit off (x) asx goes toxg and is written as:
c= Xlgr)}o f(x)

If c= f(xp) thenf is continuousatxg.



1.5.2 Examples

Example 1.2. A simple example of limits:
X *16 whenx — 4, or

Evaluate the limit off (x) =
jim X =16
x—4 X—4
Notice that in principle we can not simply stick in the value 4 since we would the
get 0/0 which is not defined. However we can look at the numeratotgnia factor it.

=

This gives us:
—-16 (x—4)(x+4)
pu— pu— 4
X—4 X—4 X+

and the result has the obvious limit of-l4 = 8 asx — 4

Example 1.3. Consider the function

wherex is a positive real number. Asincreasesy(Xx) decreases, approaching 0 but néver
imigod), asx

getting there sincg = 0 has no solution. One can therefore say, “The limig(

approaches infinity, is 0,” and write
lim g(x) = 0.

X— 00

1.6 More on limits

C

Limits impose a certain range of values that may b(

applied to the function.

The

function f(x) = .

1.6.1 Examples

Example 1.4. The Beverton-Holt stock recruitment curve is given by
asS
1+

R—




wherea, K > 0 are constants and S = biomass and R= recruitment.

The behavior of this curve as S increaSes « is

This is seen by rewriting the formula as follows:

. . a
||m S — I|m ﬁ:GK
%M1+K %m§+K

Example 1.5. A popular model for proportions is:

B 1
14 eX

f¥)

As x increasese * decreases which implies that the term & decreases and hente
Tirx increases, from which it follows thdtis an increasing function.

Notice thatf (0) = 3 and further,

lim f(x)=1.

X— 00

This is seen from considering the components:
Sincee * = é and the exponential function goes to infinity»as> «, e * goes to 0 and
hencef (x) goes to 1.

Through a similar analysis one finds that

lim f(x) =0,

X——00

since, ax — o, first —x — o and secon@ * — .

Example 1.6. Evaluate the limit of

as
X—0

. VX+4-2

lim ——

x—0 X
Since the square root is present we cannot just direct sutestihe 0 ax. This will give
usg, which is an indeterminate form. We must perform some akgébst. The way tc
get rid of the radical is to multiply the numerator by the caygte.




VX+4—-2 X+442
X VX+4+2

(VX+4)? +2(vx+4) —2(Vx+4) —4
X(VX+4+2)

The numerator reduces xpand thexs will cancel out leaving us with

This gives us

1
VX+442

At this point we can direct substitute O ferwhich will give us

1
V0+4+2

Therefore,
im VX+4-2 1
x—0 X 4

1.7 One-sided limits

f(x) may tend towards different numbers depending
on whethex — Xp:

from the right ¢ — Xo)

or from the left & — xo_).

1.7.1 Details

Sometimes a function is such thifx) tends to different numbers depending on whether
X — Xp from the right & — Xo) or from the left ¢ — Xp_).

If
(X) = f(x0)

then we say that is continuous from the right ab.

lim f
X—=Xo+

2 Sequences and series

2.1 Sequences

A sequencss a string of indexed numbees, az, as, .... We denote this sequence with
(8n)n>1-

10



2.1.1 Details

In a sequence the same number can appear several timesedifplaces.

2.1.2 Examples

Example 2.1. ()51 is the sequence 3,1, 2. ...

Example 2.2. (n)n>1 is the sequence, 2,3,4,5, .. ..

Example 2.3. (2"n)>1 is the sequence, 8,24,64, . . ..

2.2 Convergent sequences

A sequence, is said toconvergeto the number b if for everg > 0 we can find an
N € N such thata, —b| < € for all n > N. We denote this with lim,. a8, =b ora, — b,
asn — oo,

2.2.1 Details

A sequence, is said toconvergeto the number b if for everg > 0 we can find ailN € N
such thata, —b| < € for all n > N. We denote this with lif,. 8, = bora, — b, asn — oo,
If X is @ number then,

(14+2)"— e asn— o

2.2.2 Examples

Example 2.4. The sequence}])nzoo converges to 0 ag — o

Example 2.5. If x is a number then,
(1+2)"—e‘asn— oo

2.3 Infinite sums (series)

We are interested in, whether infinite sums of sequencesedefined.

11



2.3.1 Detalils

Consider a sequence of numbeis,)n— .
Now define another sequen(®)n—«», where

2.3.2 Examples

Example 2.6. If
a=xk=0,1,....

then ]
si=> X =xC X
k=0
Note also that
X = XL+ x4 X)) =X X

We have
Si=1+X+EX+ .. X"
XS = X+ X2+ o X M
S‘]VXSn _ 1_Xn+1
i.e.

sh(1—x) =1—x"1

and we have
1— Xn+1

1—x
if x£ 1. If 0 < x < 1 thenx™ — 0 asn — « and we obtairs, — = SO % (X" = .

2.4 The exponential function and the Poisson distribution

The exponential function can be written as a series (infsuta):

The Poisson distribution is defined by the probabilities

X

p(X) :e)‘i\(—I forx=0,1, 2, ...

12



2.4.1 Details

The exponential function can be written as a series (infsuta):

A%
p(x) = )\g
add to one: - - \ -
o _\ Y AN
Xz:%p(x)_xz:%e = gxl_ =1

2.5 Relation to expected values

The expected value for the Poisson is given by

00 00 X

Sxpx) = Y xe? )\—'

x=0 x=0 X
= A

2.5.1 Details

The expected value for the Poisson is given by

00 X
Yoxpx) = > xe? A
o X!

13



3 Slopes of lines and curves

3.1 The slope of aline

Linear functions produce straight-line graphs. In
general, a straight line follows the following equati:
on:

y=a+bx

wherea andb are fixed numbers.

The line on the graph is the set of points: /
1

{(xy):x,yeR,y=a+bx}.

3.1.1 Details

The slope of a straight line represents the change iry tt@ordinate corresponding to a
unit change in the coordinate.

3.2 Segment slopes

Let’'s assume we have a more general function
y=f(x).

To find the slope of a line segment, considex-2 .
coordinatesyp andxz, and look at the slope between

(X0, f(x0)) and(xq, f (x1))- N

—

3.2.1 Detalils

Consider two points(xop,Yo) and(xy,y1). The slope of the straight line that goes through

these points is
Y1—Yo
X1 —Xo
Thus, the slope of a line segment passing throught the pot$(xo)) and (xq, f(x1)),
for some functionf, is
fx1) — f(x0)

X1 —Xo
If we let x; = Xg + h then the slope of the segment is

f(xo+h) —f(x0)

14



3.3 The slope ofy = x?

Consider the task of computing the slope of the
functiony = x? at a given point.

3.3.1 Examples

Consider the functiog = f(x) = x2.

In order to find the slope at a given poixy), we look at

f(xo+h) - f(x0)
h

for small values oh.

For this particular functionf (x) = x?, and hence
f(xo+h) = (x0+h)? = x* + 2hxy + h?.
The slope of a line segment is therefore given by

f(xo+h)—f(x) 2hxp+h?
h N h

As we makeh steadily smaller, the segment slope&g 2 h, tends towards>®. It follows
that the slopey’, of the curveat a general point Xs given byy = 2x.

=2Xp+h.

3.4 The tangentto a curve

A tangentto a curve is a line that intersects the curve
at exactly one point. The slope of a tangent for the
functiony = f(x) at the point(xo, f(Xo)) is “

h—0 h

3.4.1 Details

To find the slope of the tangent to a curve at a point, we lookestope of a line segment
between the points«, f(xg)) and(xo+ h, f(xo+ h)), which is

f(xo+h) — f(x0)
h

15



and then we takh to be closer and closer to 0. Thus the slope is

h—0 h

when this limit exists.

3.4.2 Examples

Example 3.1. We wish to find tangent line for the functidi{x) = x? at the point(1, 1).
First we need to find the slope of this tangent, it is given as

2 12 2
jim = 2 i =2
h—0 h h—0 h h—0

Then, since we know the tangent goes through the gairt) the line isy = 2x— 1.

3.5 The slope of a general curve

3.5.1 Detalils

Imagine a nonlinear function whose graph is a curve destiiyehe equation,
y = f(x).

Here we want to find the slope of a line tangent to the curve peaiic point(Xp).
The slope of the line segment is given by the equaﬁ%@h”‘ﬂfﬂ.

Reducingh towards zero, gives the slope of this curve if it exists.

4 Derivatives

4.1 The derivative as a limit

The derivative of the functioffi at the poinix is defined as

h—0 h

if this limit exists.

16



4.1.1 Details

Definition 4.1. The derivative of the function f at the point x is defined as

im f(x+h)— f(x)
h—0 h

if this limit exists.

When we writey = f(x), we commonly use the notaticga or f/(x) for this limit.

4.2 The derivative of f(x) = a+ bx

If f(x) =a+bxthenf(x+h)=a-+b(x+h)=a-+
bx+ bhand thus

jim FXER =) b
h—0 h h—0 h
4.2.1 Details

If f(x)=a+bxthenf(x+h)=a+b(x+h)=a+bx+bhand thus

jim LX) = F09 o bh
h—0 h h—0 h

Thusf’(x) = b.

4.3 The derivative of f (x) = X"

If f(x) =x", thenf’(x) = nx"L.

4.3.1 Details

Let f(x) = X", wheren is a positive integer. To calculafé we use the binomial theorem in
the third step:

f(x+h)—f(x) (x+h)"=x"

h
S0 (o)™
- h

- nz—:l n xdph-a-1 _ n X1 — -1
n—-1

g=0 \4

Thus, we obtairf’(x) = nxX"1,

17



4.4 The derivative of In and exp

If

f(x) =€
then

f'(x) =€
If

g(x) =In(x)

then 1

g(x)= X

441 Details

The derivatives of the exponential function is the expoméfiunction itself i.e.
if

f(x) =€
then
f'(x) = &
The derivatives of the natural logarithm(J), is )—1( i.e. if
g(x) = In(x)
then 1
/ —_ —
g(x) =

4.5 The derivative of a sum and linear combination

If f andg are functions then the derivative bf+ g is given byf’ +¢'.

45.1 Details

Similarly, the derivative of a linear combination is thedar combination of the derivatives.
If f andg are functions an#(x) = af(x) + bg(x) thenk'(x) = af’(x) + bg (x).

4.5.2 Examples

Example 4.1. If f(x) = 2+ 3x andg(x) +x3
then we know that
f/(x) = 3, g(x) = 3x% and if we write

h(x) = f(X) +9(x) = 2+ 3x+x°

then
h (x) = 34 3x?

4.6 The derivative of a polynomial

The derivative of a polynomial is the sum of the derivativéshe terms of the po
lynomial.

18



4.6.1 Details

If

p(X) = ap+aiX+ ... + apX"
then
p'(X) = a3 + 2a,x+ 3agx? + 4ag + ... + nax("-Y

4.6.2 Examples

Example 4.2. If

p(x) = 2x* +x°

then

p(x)=29¢ L ¢ _ 5. 43 32 — 834 32

4.7 The derivative of a product

If

then

4.7.1 Details

Consider two functionsf andg and their producth:

The derivative of the product is given by
W (x) = f'(x) - g(x) + f(x) - g'(x).

4.7.2 Examples

Example 4.3. Suppose the functiofis given by
f(x) = x&+*%Inx.
Then the derivative can be computed step by step as

dx de¢  d¥ ,dInx
f(x) = &e"+x&+alnx+xw

1
= 1~ex+x~e?‘+2x-lnx+x2-)—(
= € (1+X)+ 2xInx+x

19



4.8 Derivatives of composite functions

If f andg are functions anti = f o g so that

h(x) = f(g(x)) then

4.8.1 Examples

Example 4.4. For fixedx consider:

f(p) = In(p‘(1-p)")
= Inp*+In(1-p)"*
= XInp+(n—x)In(1—p)

Example 4.5. f(b) = (y— bx)? (y, x fixed)

f'(b) = 2(y—bx)(-x)
= —2X(y—bx)
= (~2x)+(20)b

5 Applications of differentiation

5.1 Tracking the sign of the derivative

If f is a function, then the sign of its derivativ€/, indicates whethef is increasing
(f’ > 0), decreasingf( < 0), or zero.f’ can be zero at points whefehas a maximum
minimum, or a saddle point.

5.1.1 Details

If f is a function, then the sign of its derivativé), indicates whethef is increasing
(f’ > 0), decreasingf( < 0), or zero. f’ can be zero at points whefehas a maximum,

20



minimum, or a saddle point.

If f(x) > 0 forx < xo,
If f(x) < 0 forx < Xo,
If £(x) > 0 for x < Xo,
If f/(x) <0 forx < Xo,

5.1.2 Examples

f/(
f/(
f/(
f/(

X0
X0
X0
X0

)=
)=
)=
)=

0 andf’(x) < 0 for x > Xp thenf has a maximum at
0 andf’(x) > 0 for x > X then f has a minimum atg
0 andf’(x) > 0 for x < X then f has a saddle point &
0 andf’(x) < 0 for x < xp thenf has a saddle point &g

Example 5.1. If f is a function such that its derivative is given by

(%) = (x=1)(x=2)(x—=3)(x—4),

then applying the above criteria for maxima and minima, weeteatf has maxima at
and 3 andf has minima at 2 and 4.

5.2 Describing extrema usingf”

%o with f/(xg) = 0 corresponds to a maximumfif'(xg) < 0O
Xo with f/(xg) = O corresponds to a minimum ff’(xg) > 0

5.2.1 Detalils

If f'(x0) = 0 corresponds to a maximum, then the derivative is decrgasid the second
derivative can not be positive, (i.€.”(xp) < 0). In particular, if the second derivative is
strictly negative, {”(xo) < 0), then we are assured that the point is indeed a maximum, and

not a saddle point.

If f/(x0) =0 corresponds to a minimum, then the derivative is incrgpaimd the second

derivative can not be negative, (i.€/(xp) > 0).

If the second derivative is zero, then the point may be a sapdint, as happens with

f(x) =x3 atx=0.

21




5.3 The likelihood function

If pis the probability mass function (p.m.f.):

then the joint probability of obtaining a sequence of outesnifrom independen
sampling is

~—+

p(x1) - P(X2) - P(X3) - . P(Xn)
Suppose each probability includes some parantgteais is written,

Po(X1), -- - Pa(Xn)

If the experiment givesi,Xz...,X, we can write the probability as a function of the
parameters:

Lx(8) = pg(X1), - - - Pe(Xn)-
This is thelikelihood function.

5.3.1 Details

Definition 5.1. Recall that thegprobability mass function (p.m.f) is a function giving
the probability of outcomes of an experiment.

We typically denote the p.m.f. by so p(x) gives the probability of a given outcome,of
an experiment. The p.m.f. commonly depends on some parariéeften write,
p(x) = P[X =X].

If we take a sample of independent measurements, fspthen the joint probability of a
given set of numbers is,

P(x1) - P(X2) - P(X3) - .. P(Xn)
Suppose each probability includes the same pararfieteen this is typically written,

Pe(X1),- .- Pe(Xn)

Now consider the set of outcomeg x,. .., x, from the experiment. We can now take the
probability of this outcome as a function of the parameters.

Definition 5.2. Ly(B) = pg(X1), ... Pe(Xn)
This is thelikelihood function and we often seek to maximize it to estimate the unknpwn
parameters.

22



5.3.2 Examples

Example 5.2. Suppose we toss a biased coiindependent times and obtain x heLs,
we know the probability of obtaining x heads is,

n x _ A\N—X
(Qpﬂ p)
The parameter of interest sand the likelihood function is,

n
X

um:()wu—m”x

If pis unknown we sometimes wish to maximize this function wébpect tgo in order
to estimate thérue probabilityp.

5.4 Plotting the likelihood

‘ missing slide — want to give a numeric example and plot

5.4.1 Examples

missing example — want to give a numeric example andlplot

5.5 Maximum likelihood estimation

If L is a likelihood function for a p.m.f.pg, then the valu® which gives the maximum
of L:
L(B) = max(Le)

is the maximum likelihood estimator (MLE) &f

5.5.1 Details

Definition 5.3. If L is a likelihood function for a p.m.fpg, then the valu® which gives
the maximum of L:

L(8) = maxLo)

is themaximum likelihood estimator of ©

5.5.2 Examples

Example 5.3. If xis the number of heads fromindependent tosses of a coin, the likeli-
hood function is:

14m=<®wu—m“x

23



Maximizing this is equivalent to maximizing the logarithritbe likelihood, since loga:
rithmic functions are increasing. The log-likelihood canvxitten as:

In(L(p)) =In (2) +xIn(p) + (n—=x)In(1—p).

To find possible maxima , we need to differentiate this forrand set the derivative

zero
di(p) X n-—x
O=—F"=0+—-4+—=(-1
Y p 1—IO( )
0—pt—p X - pr-p =X
Y 1-p
0= (1-p)x—p(n—x)
0 =X— pX— pn+ px=Xx—pn
So,
O0=x—pn
_X
P=4

is the extreme and so we can write

o)
I
S5 X

for the MLE

| (0]

5.6 Least squares estimation

Least squares: Estimate the paramebdrg minimizing

(Vi —gi(8))?
1

n

5.6.1 Details

Suppose we have a model linking data to parameters. In demer@e predicting; asg;

(6).

In this case it makes sense to estimate param@teysmninimizing

(i —Gi(8))%.
1

n
1=

5.6.2 Examples

24



Example 5.4. One may predict numbers;, as a meany, plus error. Consider t}‘}e
simple modek; = pu+ €j, wherep is an unknown parameter (constant) an the erro
in measurement when obtaining tfi# observationsy, i =1,...,n

A natural method to estimate the parameter is to minimizesthmared deviations

It is not hard to see that thethat minimizes this is the mean:

L=X

Example 5.5. One also commonly predicts datga - - - , y, with values on a straight Iinl
i.e. witha 4 Bx;, wherexy, ..., x, are fixed numbers.

This leads to theegression problem of finding parameter valuesﬁf(alndﬁ which gives
the best fitting straight line in relation to least squares:

mlnz — (0 +PBx))?

Example 5.6. As a general exercise in finding the extreme of a functiors lebk at
the functionf (8) = S, (x0 — 3)2 wherex are some constants. We wish to find the
that minimizes this sum. We simply differenti&¢o obtainf’(6) = > 1 2(x0—3)x1 =
25 x28 25", 3x. Thus,

n n
=20 % -2% 3% =0
i=1 i=1

szl 3Xi

&S 0= )
Y

25



6 Integrals and probability density functions

6.1 Areaunder acurve

The area under a curve between x=a and x=b (for|a

positive function) is called the integral of the functi-
on.
Exampie 1,2and 3 I |

6.1.1 Details

Definition 6.1. The area under a curve between x=a and x=b (for a positiveitum)as
called theintegral of the function and is denotedf§ f(x)dxwhen it exists.

6.2 The antiderivative

Given a functionf, if there is another functioR such thatr’ = f, we say thafF is the
antiderivativeof f. For a functionf the antiderivative is denoted kyfdx.
Note that ifF is one antiderivative of andC is a constant, the® = F +C is also an

antiderivative. It is therefore customary to always inéutie constant, e.gf xdx=
1,2

5Xc+4C.

2

6.2.1 Examples

Example 6.1. The antiderivative ok to a power raises the powgix"dx= -1 x"1+C.

Example 6.2. [ e‘dx=¢€*+C.

Example 6.3. [ 2dx=In(x) +C.

26




Example 6.4. f2xe?‘2dx: e¢ +C.

6.3 The fundamental theorem of calculus
If F'(x) = f(x) for x € [a,b], then 2 f (x)dx= F (b) — F(a)

6.3.1 Detalil

It is not too hard to see that the area under the graph of aym&inction f on the interval
[a,b] must be equal to the difference of the values of its anti@ikie ata andb. This also
holds for functions which take on negative values and is &iyrstated below.

Definition 6.2. Fundamental theorem of calculus:If F is the antiderivative of, i.e.
F’ = f for x € [a,b], then P f (x)dx= F (b) — F(a).
This difference is often written a& fdx or [F (x)]2.

6.3.2 Examples

Example 6.5. The area under the graphxfbetween 0 and 3 i xX"dx = [~ X2 =

n+1
1 gn+l_ 1 gl 3l
n+1 n+1 T n4l

Example 6.6. The area under the graphefbetween 3 and 4 iy e*dx= [e]§ = &* — &

Example 6.7. The area under the graph éfbetween 1 and is /2 1dx = [In(x)]? =
In(a) —In(1) = In(a).

6.4 Density functions

The probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.).
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6.4.1 Details

Definition 6.3. If X is a random variable such that
b
Pla<X <b) = / F(x)dx
a
for some functionf which satisfies (x) > 0 for all x and
/ f(x)dx=1

thenf is said to be grobability density function (p.d.f.) for X.

Definition 6.4. The function

FO) = [ fdt

is thecumulative distribution function (c.d.f.).

6.4.2 Examples

X ~U(0,1). This distribution has density

f(x):{ 1 ifo<x<1

0 ew.

The cumulative distribution function is given by

x 0 ifx<0
P[xgx]:/f(t)dt: x if0<x<1
A 1

Example 6.8. Consider a random variab) from the uniform distribution, denoted lly

Example 6.9. SupposeX ~ P(A), where X may denote the number of events per
time. The p.m.f. of Xis described liy(x) = P[X =x] = _"7)‘(—!x forx=0,1,2,.... Conside
now the waiting time, T, between events, or simply until thetfevent. Consider t

time, then lefX; denote the number of events during the time period for O gjinduThe
it is natural to assume

Linit

eventT >t for some number t>0. IK ~ p(A) denotes the number of events per ynit
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X ~ P(At) and it follows thafl >t if and only if X; = 0 and we obtaif[T >t] = P[X =
0] = e M. Itfollows that the c.d.f. of Ti§r(t) =P[T <t]=1—-P[T >t]=1—e M for
t>0.

The p.d.f. of T is therefordr (t) = Ff(t) = $Fr(t) = $(1-e M =0—eMx(-A) =
AeMfort > 0andfr(t) =0fort =0.

The resulting density
for t>0

)\e—)\t
f(t)_{ 0 for t<O

describes the exponential distribution.
This distribution has the expected value

[ee]

E[T]= |

—00

tf(t)dt= /t)\e*“dt.
0

the stuff below is all messed up...
We setu = At anddu = Adt to obtain

/ue*”du: %/ue”du: % :/1-e’”du
0 0

6.5 Probabilities in R: The normal distribution

R has functions to compute values of probability densityfioms (p.d.f.) and cumulati
ve distribution functions (c.m.d.) for most common distitions.

6.5.1 Details

The p.d.f. for the normal distribution is

)= —=e"
p - \/E'[
The c.d.f. for the normal distribution is
X
2
P(x) = / ie*2dt
211

6.5.2 Examples

Example 6.10. dnorm() gives the value of the normal p.d.f.
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Example 6.11. pnorm() gives the value of the normal c.d.f.

6.6 Some rules of integration
6.6.1 Examples

Example 6.12. Using integration by parts we obtain

1, flely 1, 1 1,
/In(x)xdx_ 5% In(x) X de 2x In(x /ZXdX 2x In(x) — 25

Example 6.13. Consider/[? 2xe dx. By settingx = g(t) = v/t we obtain

/122xé<2dx / 2\/e‘—dt—/ ddt=€¢*-e

6.6.2 Handout

The two most common "tricks"applied in integration are daggmation by parts and b) in-
tegration by substitution.

a) Integration by parts

(fg)'=f'g+fd
by integrating both sides of the equation we obtain:

fg:/f’gdx+/fg’dx<:>/fg’dx: fg—/f’gdx

b) Integration by substitution

Consider the definite mtegrg(ff )dx and letg be a one-to-one differential function for
the interval(c,d) to (a,b). Then

b d
| f09dx= [ f(g)g )y
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7 Principles of programming

7.1 Modularity

Modularity involves designing a system that is divided iat@et of functional units
(named modules) that can be composed into a larger applicati

Any programming project should be split into logical modpleces of code which arg
combined into a complete program.

7.1.1 Details

Typically input, initialization, analysis, and output corands are grouped into separate
parts.

7.1.2 Examples

Example 7.1. Input

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/
setl115.dat", header=T)

cols<- c("le", "osl")
Analysis

Mn<-mean(dat[, cols[1]1])
Output

print (Mn)

7.2 Modularity and functions

‘ In many cases groups of commands can be collected togetbex fanction.

7.2.1 Details

Typically a project has several such functions.

7.2.2 Examples

Example 7.2. Suppose you want to plot the weight vs. length for severalsids in

http://hi.is/"gunnar/kennsla/alsm/data
A function can then be set up with the file number as an argument

plotwtle<-function (fnum){

fname<-paste (
"http://hi.is/“gunnar/kennsla/alsm/data/set",fnum,".dat",sep="")
cat ("The URL.B", fname,"\n")
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dat<-read.table(fname,header=T)
ttl<-paste("Data from file number", fnum)
plot(dat$le,dat$osl,main=tt1)

}

Now call this with
plotwtle (105)

7.3 Modularity and files

‘ It is advisable to split larger projects into several mardefiles.

7.3.1 Detalils

Once a project reaches more than five lines of code, it shaailstdred in one or more
separate files. In order to combine these files a single “sdwammand file can be crea-
ted.

Typically function definitions are stored in separate fissspne may have several separate
files like:

"Input.r"
"function.r"
"analysis.r"
output.r"
While developing the analysis, the data would only be reaskavith

source(“input.r’)

The goal of this practice is to end up with a set of files whiegh@mpletely self-contained,
SO one can start with an empty R session and give only the coucsiike:

source (“input.r’)
source (“functions.r”)
source (“analysis.r’)

Furthermore, this ensures repeatability.

7.3.2 Examples

Example 7.3. For a given project “input”, “functions” “analysis” and “¢put” files carl
be created as below.
input.r

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/
set115.dat", header=T)
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functions.r

plotwtle<-function (fnum){
fname<-paste("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set",
fnum,".dat",sep="")
cat ("The URL_ is",fname,"\n")
dat<-read.table(fname,header=T)
ttl<-paste("My_data set_was",fnum)
plot(dat$le,dat$osl,main=ttl,xlab="Length(cm)",ylab="Live weight,,(
g)'")
}

output.r

source("functions.r")

for(i in 101:150){
fnam<-paste("plot",i,".pdf",sep="")
pdf (fnam)
plotwtle (i)
dev.off ()

}

These files can be executed with source commands as below:
source (“input.r”)
source (“functions.r”)

source (“output.r”)

7.4 Structuring an R project
7.4.1 Details

We already covered how to split code into different funcsi@md linking them together
with the help of one executable file that is "sourcing"theso$h However, when you und-
ertake a larger project, there will be a lot of different daal files and it is very advisable
to have a consistent structure throughout the project.

A common project layout is to allocate all project files intéo&er, something along the
lines of:

/project

/data

/src

/doc

/figs (or /out)

Such a structure is quite normal in programming languagels as C, Matlab, and R.
Purpose of the different folders:

/data: Contains all important data to the project, which wiluuse. This folder should be
read-only! No function is allowed to write anything intosHolder.
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Isrc: (abbreviation for "source(-code)") Here you will itaall the functions that you
programmed. You can decide to store the executable funbioa as well or, alternati-
vely, have that one in the root project folder.

/doc: Contains further documentation material about yawjget. This could be, for
example, readme files for other people who use your functionghe paper you wrote
about the project, or the latex files while you're writing.

/figs or /out: Here your functions are allowed to write and pesduce the different results,
like graphs, figures or anything else.

Finally, a large programming project should at some stagpbiinto packages and stored
on dedicated servers such as github or CRAN.

7.4.2 Examples

Example 7.4. Consider first the issue of maintaining the code itself. &aasxmon for Fi
beginners to only work interactively within the commanakeliinterface. However, it
essential that the code be kept in one or more files.

For large projects these will be several different files heatith its own purpose. To ruh
a complete analysis one would typically set up one file to futha tasks by reading ip
data through analyses to outputs.

For example, a file named "run.r"could contain the sequehceramands:

source("setup.r")
source("analysis.r")

source("plot.r)

7.5 Loops, for

‘ If a piece of code is to be run repeatedly, the for-loop is rallyrused.

7.5.1 Details

If a piece of code is to be run repeatedly, the for-loop is radlyrused. The R code form
is:

for(index in sequence){
commands

}

7.5.2 Examples
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Example 7.5. To add numbers we can use

tot <- 100

for(i in 1:100){
tot <- tot + 1

}

cat ("the sum,,is,", tot, "\n")

Example 7.6. Define the plot function

plotwtle <- AS BEFORE
To plot several of these we can use a sequence:

plotwtle (101)
plotwtle (102)

or a loop

for (i in 101:150){
fname<- paste("plot", i, ".pdf", sep="")
pdf (fname)
plotwtle (i)
dev.off ()
}

7.6 The if and ifelse commands

The "if'statement is used to conditionally execute stat&se
The "ifelse"statement conditionally replaces elements sifucture.

7.6.1 Examples

Example 7.7. If we want to compute for x-values in the range 0 through 5, we
use

x1ist<-seq(0,5,0.01)
y<-NULL
for(x in xlist){
if (x==0){
y<-c(y,1)

q

an
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Yelsed{
y<-c(y,x**x)
+
+

Example 7.8. x<-seq(0,5,0.01)
y<-ifelse(x==0,1,x"x)

Example 7.9. dat<-read.table ("file")
dat<-ifelse (dat==0,0.01,dat)

Example 7.10.x<-ifelse (is.na(x),0,x)

7.7 Indenting

Code should be properly indented!

7.7.1 Details

fFunctions, for-loops, and if-statements should alwaystdented.

7.8 Comments

All code should contain informative comments. Commentssaparated out from cod
using the pound symbol (#).

7.8.1 Examples

Example 7.11. ###HHHHHAHHHHHHHHHHH
HAHHSETUP DATA####
HIHHHHBRHIHH AR R

dat<-read.table(filename)
x<-log(dat$le) #log-transformation of length

36



y<-log(dat$wt) #log-transformation of weight

HEHHHBHIHH B
#HH#HTHE ANALY SISH##H#
W T T T

8 The Central Limit Theorem and related topics

8.1 The Central Limit Theorem

If measurements are obtained independently and
come from a process with finite variance, then the
distribution of their mean tends towards a Gaussian
(normal) distribution as the sample size increases.:

The

standard normal density

8.1.1 Detalils

Theorem 8.1 The Central Limit Theorem states that iX;, X, ... are independent arld
identically distributed random variables with meamnd (finite) variances?, then thg
distribution ofX, := Xt=-*% tends towards a normal distribution.

It follows that for a large enough sample sizethe distribution random variabd, can be
approximated by(y, a?/n).
The standard normal distribution is given by the p.d.f.

1 -2

b(2) = ﬁeT

forze R.
The standard normal distribution has an expected valuerof ze
H= /zq)(z)dz: 0

and a variance of

o? = [(z-W*(@)dz=1
If a random variabl&Z has the standard normal (or Gaussian) distribution, wee\drit-
n(0,1).
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If we define a new random variablé, by writingY = oZ + |, thenY has an expected value
of Y, a variance 062 and a density (p.d.f.) given by the formula:

1 —(y-pw?

This is general normal (or Gaussian) density, with mgand variance?.

The Central Limit Theorem states that if you take the mearweéal independent random
variables, the distribution of that mean will look more andrenlike a Gaussian distribution
(if the variance of the original random variables is finite).

More precisely, the cumulative distribution function of

Xn—
o/\/n

converges tep, then(0,1) cumulative distribution function.

8.1.2 Examples

Example 8.1. If we collect measurements on waiting times, these are aMpiassumenl
to come from an exponential distribution with density
f(t)=xe™ fort>0

The Central Limit Theorem states that the mean of severél s@dting times will tend
to have a normal distribution.

Example 8.2. We are often interested in computing

X—Ho
W= S

n
which comes from a t-distribution (see below), if theare independent outcomes frgm
a normal distribution.

However, ifn is large and? is finite thenw values will look as though they came fronj a
normal distribution. This is in part a consequence of thet@éhimit Theorem, but algll
of the fact thas will become close t@ asn increases.

8.2 Properties of the binomial and Poisson distributions

The binomial distribution is really a sum of 0 and 1 valuesufas of failures = 0 and
successes =1). So, a simple, single binomial outcome wiltespond to coming from
normal distribution if the count is large enough.

18

38



8.2.1 Detalils

Consider the binomial probabilities:

w00 = ()1 p

for x=0,1,2,3,---,n wheren is a hon-negative integer. Suppoges a small positive
number, specifically consider a sequence of decregswajues, specified witp, = % and
consider the behavior of the probabilityms+ . We obtain:

n\ nx n! M M
<X>pn(l_pn) = 7X!(n—x!)(ﬁ) <1—ﬁ) 1)
Con(n=1)(n—2)--(n—x+1) 2 A"
- X! (1—AY<1_5) @
nn—(n—2)---(n—x+1) N A"
_ 2 T (--3)  ©

(n—=1)(n=2)---(n—x+1)
nX

Note 8.1.Notice that" — 1 asn — . Also notice tha{1— %)X —1las

n— o. Also

and it follows that

—A\X
[N\ nx €N
lim <X> pn(l_ pn) - X! y X = 07 17 27 ,N

n—o0

and hence the binomial probabilities may be approximatéil tive corresponding Poisson.

8.2.2 Examples

Example 8.3. The mean of a binomial (n,p) variable jis= n- p and the variance Is
o? =np(1—p).

The R commandibinon(g,n, p) calculates the probability of successes im trials
assuming that the probability of a succesgiis each trial (binomial distribution), and ti§e
R commandpbinon{qg, n, p) calculates the probability of obtainiregor fewer successds
in n trials.
The normal approximation of this distribution can be catedl withj
pnorm(g, mu,sigma which becomespnorm(g,n* p,sqrt(n* p(1 — p)). Three nu;
merical examples (note that pbinom and pnorm give similaresfor large n):

pbinom(3,10,0.2)

[1] 0.8791261

pnorm(3,10%0.2,sqrt (10*%0.2%(1-0.2)))
[1] 0.7854023
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pbinom(3,20,0.2)

[1] 0.4114489

pnorm(3,20%0.2,sqrt (20%0.2%(1-0.2)))
[1] 0.2880751

pbinom(30,200,0.2)

[1] 0.04302156

pnorm(30,200%0.2,sqrt (200%0.2*%(1-0.2)))
[1] 0.03854994

Example 8.4. We are often interested in computing= s);% which has a t-distributio

if the x; are independent outcomes from a normal distributionn i large ando? is
finite, this will look as if it comes from a normal distributio

—4

The numerical examples below demonstrate how the t-digtob approaches the normjal
distribution.

qnorm(0.7)

[1] 0.5244005

#Thts ts the wvalue which gives the cumulative probadbility of p=0.7
for a n~(0,1)

qt(0.7,2)

[1] 0.6172134

#The value, which gives the cumulative probabilety of p=0.7 with n=2
for the t-distribution.

qt(0.7,5)

[1] 0.5594296

qt(0.7,10)

[1] 0.541528

qt(0.7,20)

[1] 0.5328628

qt(0.7,100)
[1] 0.5260763
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8.3 Monte Carlo simulation

If we know an underlying process we can simulate
data from the process and evaluate the dlstrlbutlon

of any quantity based on such data. W{W k
BY o X . s A

simulated set ot-values based on data from g
exponential distribution.

8.3.1 Examples

Example 8.5. Suppose our measurements come from an exponential digintand we
want to compute

_x—p
~s/yn

but we want to know the distribution of those whers the true mean.

For instancen = 5 andp = 1, we can simulate (repeatedby),...,xs and compute @
t-value for each. The following R commands can be used far thi

library (MASS)

n<-5

mu<-1

lambda<-1

tvec<-NULL

for(sim in 1:10000){
x<-rexp(n,lambda)
xbar<-mean (x)
s<-sd (x)
t<-(xbar-mu)/(s/sqrt(n))
tvec<-c(tvec,t)

#then do. ..
truehist (tvec) #truehist gives a better histogram

sort (tvec) [9750]
sort (tvec) [250]
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9 Miscellanea

9.1 Simple probabilities in R

R has functions to compute probabilities based on most camdistributions.

If X is a random variable with a known distribution, then R candglly compute values
of the cumulative distribution function or:

F(x) =P[X <X

9.1.1 Examples

Example 9.1. If X ~ b(n, p) has binomial distribution, i.e.

PX=x) = (2) pP(1—p)"%,

then cumulative probabilities can be computed vgthinom e.g.
pbinom(5,10,0.5)

gives
P[X <5] =0.623
where 1
X~b(n=10,p= E).
This can also be computed by hand. Here we hax€10, p = 1/2 and the probabilit
P[X < 5] is obtained by adding up the individual probabiliti€X = 0] + P[X = 1] +
PIX =2]+P[X=3]+PX=4]+P[X =5

5 X1 10—x

10\ 1*1

P[X§5]:Z< )—— :
o\X /)22

This becomes

10 1011&0 10 1111&1 10 1211(%2 10 1311(%3 10 14 10-4 10 1511&
PX <5] = == -z -z -z g | ==
X <9] (O)ZZ <1>22 <1>22 <3>22 (4)2'2 (5)22
or

10\ 119 /10\121° /10\110 /10\21° /10\11° /10\210 110
P[X < 5] — b Z Z Z — — =— [W+10+454 ...
[ _5] (O)Z +(1)2 +(1)2 +<3>2 +<4>2 +<5>2 2 [+ O0+45+ ]
Furthermore,
pbinom(10,10,0.5)
[11 1
and

pbinom(0,10,0.5)
[1] 0.0009765625
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It is sometimes of interest to compulX = x| in this case, and this is given by t
dbinomfunction, e.g.

dbinom(1,10,0.5)
[1] 0.009765625

10
Or 1622

Example 9.2. SupposeX has a uniform distribution between 0 and 1, de~ U (0,1).
Then thepunif function will return probabilities of the form

X X

PMgﬂ:/fmeAfmm

—00

wheref(t) =1if0 <t <1andf(t) =0. For example:

punif (0.75)
[1] 0.75

To obtainP[a < X < b], we usepunif twice, e.g.

punif (0.75) -punif (0.25)
[1] 0.5

9.2 Computing normal probabilities in R

To compute probabilitieX ~ n(p, 6?) is usually transformed, since we know that

X —p
Z="""-(01
£~

The probabilities can then be computed for eithesr Z with the pnormfunction in R.

9.2.1 Details

SupposeX has a normal distribution with mearand variance
X ~n(k,0?%)

then to compute probabilitie¥; is usually transformed, since we know that

X—H
z="—F~ (01

and the probabilities can be computed for eitkesr Z with the pnormfunction.

9.2.2 Examples
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Example 9.3. If Z ~ n(0,1) then we can e.g. obtal®Z < 1.96] with
pnorm(1.96)
[11 0.9750021

pnorm(0)
[1] 0.5

pnorm(1.96) -pnorm(1.96)
[1]1 0

pnorm(1.96) -pnorm(-1.96)
[1] 0.9500042

The last one gives the area between -1.96 and 1.96.

Example 9.4. If X ~ n(42,3?) then we can compute probabilites either by transforrlwing

PX <X =P~ <

(e) (e)
—pz<H
(6)

X—U X_ﬁ

- . . Xiu . .
ang callingpnormwith the computed value= ==, or call pnormwith x and specifyu
ando.

To computeP[X < 48], either sez = (48— 42)/3 = 2 and obtain

pnorm(2)
[1] 0.9772499

or specifypando

pnorm(42,42,3)
[1] 0.5

9.3 Introduction to hypothesis testing
9.3.1 Details

If we have a random sampie, ..., X, from a normal distribution, then we consider them
to be outcomes of independent random varialfles. . , X, whereX; ~ n(p, 62). Typically,
pando? are unknown but assume for now tlegtis known.

Consider the hypothesis:

Ho:H=HMo VS.H1 U > o
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wherey is a specified number.

Under the assumption of independence, the sample mean

Sl

U

X = Xi

i=1
is also an observation from a normal distribution, with mgant a smaller variance.Specifically,
X is the outcome of

_ 1.
X==-3"%
ni=1
and
2
o
XNn(“vF)

so the standard deviation of X % so the appropriate error measure ¥das fraco,/n,
wheno is unknown.

If Ho is true, then

7= X—Ho
~a/yn
is an observation from am~ n(0, 1) distribution, i.e. an outcome of
z- X"t
a/yvn

whereZ ~ n(0,1) whenHg is correct. It follows that e.gP[|Z| > 1.96] = 0.05 and if we
observeZ| > 1.96 then we reject the null hypothesis.

Note that the value z* = 1.96 is a quantile of the normal disttion and we can obtain
other quantiles with th@normfunction, e.g.pnorm(0.975) gives 1.96.
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