math612.3 612.3 Some notes on statistics and
probability

Gunnar Stefansson

19. desember 2016

Copyright This work is licensed under the Creative Commons Attribou&hareAlike License. To
view a copy of this license, visit http://creativecommangl/licenses/by-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, Califo84305, USA.

Acknowledgements

MareFrame is a EC-funded RTD project which seeks to remosédétriers preventing more wi-
despread use of the ecosystem-based approach to fisheriagenzent.
http://mareframe-£fp7.org

This project has received funding from the European Uni&@®genth Framework Programme for
research, technological development and demonstratidarigrant agreement no.613571.
http://mareframe-£fp7.org

Haskoli islands

http://www.hi.is/



Efnisyfirlit

|1 Multivariate probability distributions | 4







1 Multivariate probability distributions

1.1 Joint probability distribution

If

X1,..., %X, are discrete random variables with

P[X1 = X1,X2 = X2,...,Xn = Xn] = P(X1,...,%n), Wherexy,...,X, are numbers, the
the functionp is the joint probability mass function (p.m.f.) for the ramd variables
X1, ..., %n.

-

For continuous random variabl¥s,...,Y,, a functionf is called the joint probability
density function if,
PlYeA = /[[...[ f(y1,...Yn)dy1rdY2- - -d¥n.

1.1.1 Details

Definition 1.1. If Xi,...,X, are discrete random variables witR[X; = x3,Xz =
X2,..., Xn = Xn] = P(X1,...,%n) Wherex;...X, are numbers, then the functignis the
joint probability mass function (p.m.f.) for the random variableX;, .. ., X,.

Definition 1.2. For continuous random variablés,....Ys, a functionf is called the
joint probability density function if,

P[YEA]://.../f(yl,...yn)dyldyp_---dyn.

—_——
A

Note 1.1.Note that if Xy,...,X, are independent and identically distributed, each with
p.m.f. p, thenp(xg, X2, ..., Xn) =4(X1)q(X2) ...A(Xn), .6, P[Xg = X1, X0 =X2,..., Xn =Xp| =
P[X1 = x1]P[X2 = x| ... P[Xn = Xp].

Note 1.2.Note also that ifA is a set of possible outcoméa C R"), then we have

PXeA= > p(Xi,....%).

(X1,..-:Xn) EA

1.1.2 Examples

Example 1.1. An urn contains blue and red marbles, which are either lighteavy.
Let X denote the color and the weight of a marble, chosen at random

XlY L H TT

B 5 6 11
R 7 2 9
T 12 8 20




We haveP[X = “b*,Y ="I] = 2

The joint p.m.f. is:

XlY L H TT

B 5 & L
© PP g

%828020
T 55 5 1

1.2 The random sample

A set of random variableX,..., X, is a random
sample if they are independent and identically
distributed (i.i.d.).

A set of numbersxy,...,x, are called a random
sample if they can be viewed as an outcome of such
random variables.

1.2.1 Details

Samples from populations can be obtained in a number of widgsever, to draw valid
conclusions about populations, the samples need to obteamelomly.

Definition 1.3. In random sampling, each item or element of the population hag an
equal and independent chance of being selected.

A setof random variable; . .. X, is arandom sample if they are independent and identically
distributed (i.i.d.).

Definition 1.4. If a set of numbers; ...x, can be viewed as an outcome of rantl)m
variables, these are calledadom sample

1.2.2 Examples



Example 1.2. If Xy,...,Xn ~U(0,1), i.i.d., i.e. X3 and X, are independent and e%h
have a uniform distribution between 0 and 1. Then they hawadgensity which is th
product of the densities of; andX,.

Given the data in the above figure andifx, € R

1 ifO<x;,x<1

f(x1,x2) = f1(x1) fa(x2) = { 0 elsewhere

Example 1.3. Toss two dice independently, and I¥§,X> denote the two (future
outcomes.

Then

1
= If1<x X2 < 6
P[X1=X1,X2 =X2] = { 38 elsewhére

is the joint p.m.f.

1.3 The sum of discrete random variables
1.3.1 Details

SupposeX andY are discrete random values with a probability mass fungtiobhet Z =
X+Y. Then

PZ=2 = > pxy)

{(xy)xty=2)

1.3.2 Examples

Example 1.4. X,Y = outcomes

(,11 [,21 [,3]1 [,4]1 [,5] [,6]
[1,] 2 3 4 5 6 7
[2,] 3 4 5 6 7 8
[3,] 4 5 6 7 8 9
[4,] 5 6 7 8 9 10
(5,1 6 7 8 9 10 11
[6,] 7 8 9 10 11 12

6 1

PX4+Y=7=_==2

X+ ] 36 6




Because there are a total of 36 equally likely outcomes aratire six times this meafs

thatPX +Y =7] = 2.

Also 3
PX+Y=4=—=—

1.4 The sum of two continuous random variables

If X and Y are continuous random variables with jo-
int p.d.f. f andZ =X+Y, then we can find the
density ofZ by calculating the cumulative distributi- |
on function.

1.4.1 Details

If Xand Y are c.r.v. with joint p.d.f.f andZ = X +Y, then we can find the density gfby
first finding the cumulative distribution function

Plz<z=Px+y<g=[[ foxydxdy

1.4.2 Examples

Example 1.5.1f Xand Y ~ U(0,1), independent ard= X +Y then
0 for z<O0

% for O0<z<1
1 for z>2

1— (2_22)2 for 1<z<?2

the density of z becomes

z for 0<z<1
9(z)=q 2—2z for 1<z<2

Plz<Z=

0 for elsewhere

Example 1.6. To approximate the distribution &= X +Y whereX,Y ~U(0,1) i.i.d.,
we can use Monte Carlo simulation. So, generate 10.000, g&tshem up in a matrik
and compute the sum.




1.5 Means and variances of linear combinations of indepenaérandom
variables

If X andY are random variables aradb € R, then

E[aX + bY] = aE[X] + bE][Y].

1.5.1 Details

If X andY are random variables, then

EX+Y]=E[X]+E[Y]

i.e. the expected value of the sum is just the sum of the ezgdeetilues. The same applies
to a finite sum, and more generally

E[iam] = iaaE[Xa]
i=1 i=1

whenX;, ..., X, are random variables ard, ..., a, are numbers (if the expectations exist).
If the random variables are independent, then the variasoeadd

VX +Y] = V[X] +V[Y]

and
V[im _ ia-sz

1.5.2 Examples

Example 1.7. X,Y ~U(0,1), i.i.d. then

1

E[X+Y] = E[X] +E[Y] = /O

1 1
x-ldx+/0 X-1ldx=|

2

X6+ |

1
2

2

X

]

1
0

1.

Example 1.8. Let X,Y ~ N(0,1). ThenE[X?+Y?3 =1+1=2.




1.6 Means and variances of linear combinations of measuremés

If Xq,....,X, andys, ...., ¥ are numbers, and we set

Z =X t+Yi

where a>0, then

and

1.6.1 Examples

Example 1.9. We set:

a<-3
x<-c(1:5)
y<-c(6:10)

Then:

z<-xty
w<-ax*x
n<-length(x)

Thenzis:

(sum(x)+sum(y))/n
[1] 11
mean (z)
[11 11

andw becomes:

a*mean (x)
[1]1 9
mean (w)
[11 9

ands, equals:

sum( (w-mean(w))~2))/(n-1)

[1] 22.5

sum( (a*x - a*mean(x))~2)/(n-1)
[1] 22.5




a~2xvar (x)
[1] 22.5

andsy equals:

a*sd(x)

[1] 4.743416
sd (w)

[1] 4.743416

1.7 The joint density of independent normal random variables

If Z1,Z, ~ n(0,1) are independent then they each have density

1 X2
OxX) = ——e€ Z,xeR

and the joint density is the produttz;, z,) = @(z1)@(z) or
Z 2

1.2
777,

f(z1,22) = e

(v2m?

1.7.1 Details

If X ~ n(,0%) andY ~ n(Wp,0%) are independent, then their densities are

)2
fx (X) ! e <2°%1)
X prm—
\/2T[O'1
and
1 —(y-1p)?
f — e 202
Y(y) \/E[O‘Z
and the joint density becomes
(x—up)? (1)
210102
NOw, SUppPOSy, ..., %n ~ N(W, 0?) are i.i.d., then
(6 —p?
R
f(x) = g i-1 9O
(2m2on

is the multivariate normal density in the case of i.i.d. ables.

1.8 More general multivariate probability density functions
1.8.1 Examples

10



Example 1.10. Suppose X and Y have the joint density

2 0<y<x<1

0 otherwise

First notice thatfy fg, f(x,y)dxdy= fi_o /iy o2dydx= fy2xdx=1, sof is indeed
density function.

Now, to find the density oKX we first find the c.d.f. oK, first note that folm < 0 we have
P[X <a] =0 butifa> 0, we obtain

f(X,y) =

a rX
Fx(a) =PX <a] = /XO [ 2y (g = a2

The density oiX is therefore

2x 0<x<1
f (x) = 3£ T
x(¥) = ax 0 otherwise

1.8.2 Handout

If

f:R" >R

is such that

PX €A = o[ (X1, Xn)dXg - - Xy
andf(x) >0forallxe R"

thenf is thejoint densityof

X1

X=|
Xn

If we have the joint density of some multidimensional randeamableX = (Xy,...,Xn)
given in this manner, then we can find the individual dengityctions of theX’s by in-
tegrating the other variables.

2 Some distributions related to the normal

2.1 The normal and sums of normals

The sum of independent normally distributed random vaesid also normally distrit
buted.

2.1.1 Details

The sum of independent normally distributed random vagisld also normally distribu-
ted. More specifically, iX; ~ n(pg, 6%2) andX, ~ n(lp, 03) are independent theXy + Xo ~
n(y, 62) sincep = E [Xg + Xo] = 1 + Wz and

02 =V [Xg + Xo] with 6% = 0% + 03

if X1 andX; are independent.

Similarly



is normal ifXy, ..., X, are normal and independent.

2.1.2 Examples

Example 2.1. Simulating and plotting a single normal distributioh~ n(0, 1)

library (MASS) # for truehist
par (mfcol=c(2,2))
y<-rnorm(1000) # generating 1000 n(0,1)
mn<-mean (y)
vr<-var (y)
truehist (y,ymax=0.5) # plot the histogram
xvec<-seq(-4,4,0.01) # generate the z-azis
yvec<-dnorm(xvec) # theoretical n(0,1) density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("Simulation and theory n(0,1)\n",
"mean=",round(mn,2),
"and, variance=",round(vr,2))
title(ttl)

Example 2.2. Sum of two normal distributions.

Y1 ~ n(2,22)

and
Yz ~ n(3,3?)

y1<-rnorm(10000,2,2) # n(2,2°2)
y2<-rnorm(10000,3,3) # n(3, 3°2)
y<-yl+y2
truehist (y)
xvec<-seq(-10,20,0.01)
# check
mn<-mean (y)
vr<-var (y)
cat ("The mean,is" ,mn,"\n")
cat ("The, variance is,",vr,"\n")
cat("The_standard, deviation is",sd(y),"\n")
yvec<-dnorm(xvec,mean=5,sd=sqrt (13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The_ sum 0f n(2,2°2) and n(3,3°2)\n",
"mean=",round(mn,?2),
"and, variance=",round(vr,2))
title(ttl)

12



Example 2.3. Sum of nine normal distributions, all wifh= 42 ando? = 22

ymat<-matrix (rnorm(10000%9,42,2) ,ncol=9)
y<-apply(ymat,1,mean)
truehist (y)
# check
mn<-mean (y)
vr<-var (y)
cat ("The mean,is" ,mn,"\n")
cat ("The, variance is,",vr,"\n")
cat("The_standard, deviation is",sd(y),"\n")
# plot the theoretical curve
xvec<-seq(39,45,0.01)
yvec<-dnorm(xvec,mean=5,sd=sqrt(13)) # n() density
lines(xvec,yvec,lwd=2,col="red")
ttl<-paste("The sum of nine n(42°2),\n",
"mean=",round(mn,2),
"and, variance=",round(vr,2))
title(ttl)

2.2 The Chi-square distribution

If X ~n (0,1),thenY = X? has a distribution which :
is called the Chi - square distributio?) on one
degree of freedom. This can be written as:

Y ~ X2

2.2.1 Detalils

Definition 2.1. If Xy, Xp,..., X, are i.i.d.N(0, 1) then the distribution of
Y = X2+ X2 +...+ X2 has aChi square (x?)distribution .

13



2.3 Sum of Chi square Distributions

LetY; ande be independent variables. Y{ = )(\2,l
andY; = x\, ,

then the sum of these two variables also foIIows a
chi-squaredy?)distribution :

Yl + Y2 = X\2)1+V2 B m

2.3.1 Detalils
Note 2.1.Recall that if

are i.i.d., then

2.4 Sum of squared deviation

If Xq,---,%n ~ n(W,0?) i.i.d, then

- 2
> (T5H) ~

i=1

but we are often interested in

1 2 —
> (%= X)*~ Xf1-
n—lg :

2.4.1 Details

Consider a random sample of Gaussian random variablesgi,e.- , Xn ~ n(y, ¢?) i.i.d.
Such a collection of random variables have properties wbahbe used in a number of

ways.
X — 1\ 2
Z( = ) ~ X3,

i=1

but we are often interested in

‘ -
H

n
Z ~ X%—l-

Note 2.2.A degree of freedom is lost because of subtracting the egimpathe mean as
opposed to the true mean.

14



The correct notation is:
1 = population mean

X = sample mean (a random variable)
X = sample mean (a number)

2.5 The t-distribution

If U ~n(0,1) andW ~ x2 are independent, then the random variable

U
ﬁ
\Y
has a distribution which we call the t-distribution eregrees of freedom denotéd~
ty.

T=

2.5.1 Details

Definition 2.2. If U ~ n(0,1) andW ~ X3 are independent, then the random variabl

U
ﬁ
\Y
has a distribution which we call thiedistribution on v degrees of freedom, denot
T (N tv.

T:=

\24

13%

It turns out that ifXy, ..., X, ~ n(W, 0°) and we set

- 1A,
i=1
and
1 M 5
S—\/—l_ngm—m
then _
X

AT
s/n
This follows fromX andy=I"_, (X, — X)2 being independent a% ~n(0,1), 3 (x.;# ~

2
anl'

15



3 Estimation, estimates and estimators

3.1 Ordinary least squares for a single mean

If pis unknown and;,..., X, are data, we can estimaidy finding
n
min>_ (% —W?
i=1
In this case the resulting estimate is simply

H=X
and can easily be derived by setting the derivative to zero.

3.1.1 Examples

Example 3.1. Consider the numbers, ..., x5 to be
13,7,4,16 and 9

We can ploty(x — 1)? vs. pand find the minimum.

3.2 Maximum likelihood estimation

If (Y1,...,Yn)" is a random vector from a densify where® is an unknown paramete
andy is a vector of observations then we define likelihood function to be

-

3.2.1 Examples

is
f(x) - f(X2) ... F(Xn)
1 _q-w? 1 _a-w?
:\/z_me 202 -...-\/Z_me 202
%12
:ﬂi"_l\/zl_nce%
_ 1 s yhew?
(21'[)n/20”

and if we assume? is known then the likelihood function is

1 — oy Do (i)
LM = g S

Example 3.2. If, x1,...,X, are assumed to be observations of independent random
bles with a normal distributions and meanyodind variance o672, then the joint density

/aria-

16



Maximizing this is done by maximizing the log, i.e. findingethfor which:

d
—InL(p) =
ap"-H =0,
which again results in the estimate
p=x

3.2.2 Detall

Definition 3.1. If (Y1,...,Yn)" is a random vector from a densitfy where 8 is an
unknown parameter, anglis a vector of observations then we define tikelihood
function to be

3.3 Ordinary least squares

4 °

Consider the regression problem where we fit a ling

through (xi,yi) pairs withx, ..., X, fixed numbers”/a““/ag/
but wherey; is measured with error. T e e

Regression line through data pairs.

3.3.1 Detalils

The ordinary least squares (OLS) estimates of the parasttand3 in the modely; =
o + Bx; + & are obtained by minimizing the sum of squares

> (% — (o +Bxi))?

17



3.4 Random variables and outcomes
3.4.1 Details

Recall thatXy, ..., X, are random varibles (reflecting the population distribntendx,, . . . , Xy
are numerical outcomes of these distributions. We use ugser letters to denote random
variables and lower case letters to denote outcome or data.

3.4.2 Examples

\1%4

Example 3.3. Let the mean of a population be zero and the- 4. Then draw thre
samples from this population with size, n, either 4, 16 or e sample meaK will
have a distribution with mean zero and standard deviatioﬁﬁoﬁlhere n=4, 16 or 64.

3.5 Estimators and estimates

In OLS regression, note that the valuesaaindb

a=y—bx Al

b i1 —X)(i =)

YLy (% —X)?
are outcomes of random variables e.dn is the
outcome of
n V(Y. _ VY o : : :
g Sl —R(M V)
Z{‘Zl(xi —)_()2 Shows an example of the distribution of the
estimator3

the estimator which has some distribution.

3.5.1 Detalils

The following R commands can be used to generate a distitédr the estimatofS

library (MASS)
nsim <- 1000 # replicates
betahat <- NULL
for (i in 1:nsim){
n <- 20
x <- seq(l:n) # Fized z wvector
y <- 2 + 0.4*x + rnorm(n, 0, 1)
xbar <- mean(x)
ybar <- mean(y)
b <- sum((x-xbar)*(y-ybar))/sum((x-xbar)~2)
a <- ybar - b* xbar
betahat <- c(betahat, b)
}
truehist (betahat)

18



4 Test of hypothesis, P values and related concepts

4.1 The principle of the hypothesis test

The principle is to formulate a hypothesis and an alterealtiypothesisHg and Ha
respectively, and then select a statistic with a given ibistion whenHg is true and
select a rejection region which has a specified probalisijywhenHg is true.

The rejection region is chosen to refléty, i.e to ensure a high probability of rejection
whenHg is true.

4.1.1 Examples

Example 4.1. Suppose we want to evaluate whether a coin is biased. We aarmj
experiment for this. Suppose we toss the coin 5 times andt¢bamumber of head§.
We can test the following hypothesis simply.

Ho: p= 3 whereHg is the null hypothesis
Ha p > % whereHjg is an alternative hypothesis
andp is probability of having a head.

We rejectHp if we get all heads. (Assuming the only interest is in a tewgidowards
larger probabilities). So the probability of rejecting tindl hypothesiHy is:
P[rejectHo]= P [ all heads in 5 trialsk p°

If Ho is true, then P [rejedtlg] = 3

Need to choose 5 trials to ensufe= 4 < 55 < 0.05

i.e. The probability of incorrectly rejectingg is less tharm = 0.05

Example 4.2. Flip a coin to test
Ho:P=2vsHa:P# 3

Reject, if no heads or all heads are obtained in 6 trials, e/tes error rate is
P [rejectHp when true] = P [all heads or all tails]

= P[all heads] + P [all tails]

- 1,1 1_ 1

A variation of this test is called the sign test, which is usetest hypothesis of the forr
Ho: true median = 0 using a count of the number of positive values

—4

19



4.2 The one sided z test for normal mean

Consider testing

Ho: M= Ho
VS

Ha: > Mo

Where dat; .. . x, are collected as independent observation$of . X, ~ n(y, 02) and
o2 is known. IfHg is true, then

2
_ o
~ N —_—
(Ho. —)
So,
z=""% o)
Vn
It follows that,
P[Z >z« =qa
Where
Zx = Zl_a
So if the data(; . . . Xy are such that,
2= 4
Vn

ThenHy is rejected.

4.2.1 Examples

Example 4.3. Consider the following data set:47, 42, 41, 45, 46.
Suppose we want to test the following hypothesis

Ho:u=42
VS
Ha:pu> 42
o =2isgiven
The mean of the given data set can be calculated as
X=44.2
we can calculate by using following equation
_X—W 44242

z2=—5 5
NG

G

20



2.2

zx = 1.645

Here
Z> zx
SoHp is rejected witho = 0.05

4.3 The two-sided z test for a normal mean

_X—to
=57

Z.

~n(0,1)

4.3.1 Details

Consider testindHo : 1 = Mo versusH; : U # o based on observation frobg, ..., X ~
n(y, 02) i.i.d. wherea? is known. IfHg is true, then

X—Ho
Z = ~ 1
G N0
and
PllzZ > Z]=a
with

=7

We rejectHy if || > z". If |z] > z" is not true, then we "Cannot reject thig".

4.3.2 Examples

Example 4.4. In R, you may generate values to calculatezkalue. The command thlit
is generally used isjuantile
To illustrate:

z<-rnorm(1000,0,1)

quantile(z,c(0.025,0.975))
2.5% 97.5%

-1.995806 2.009849

So, thez value for a two-sided normal mean|is1.99|.

4.4 The one-sided t-test for a single normal mean

Recall that ifXy, ..., Xn ~ N(i, 02) i.i.d. then

X—H ‘
Svn "

21




4.4.1 Detalls
Recall that ifXg, ..., Xy ~ N(i,02) i.i.d. then

X—u

S/vn T
To test the hypothesldg : 1= o VSH1 : L > [ first note that ifHg is true, then
X —Ho
Ty
SO
P[T >tx]=a

tx=th-11-«a

Hence, we rejecHp if the dataxy, ..., X, results in a a value df:= é/_% such that t>t*,
otherwiseHg can not be rejected.

4.4.2 Examples

Example 4.5. Suppose the following data set (12,19,17,23,15,27) contepiendentl
from a normal distribution and we need to tekt: L= o VSH; : 4> o. Here we have
n=6,X= 1883 s=5.46,p = 18 so we obtain

f— X—Ho
s/v/n

=0.37

SOoHp cannot be rejected.

In R, t* is found using gt(n-1,0.95) but the entire hypotlsesan be tested using

t.test(x,alternative="greater" ,mu=<$\mu_0$>)

4.5 Comparing means from normal populations

Suppose data are gathered independently from two normalgtagms resulting in
X1,....,%Xn @Ndy1, ...Ym

45.1 Details
We know that if

X1,y Xn~ n(ul, O')
Y1, o0y Ym~ N2, 0)
are all independent then
0% o2

X—Y ~ lp, — 4 —
N(p1 — Mo, = m)

22



Further,

n 2
(X —X) 2
Zl o2 ~Xh1
1=
and . ( _)2
Yi—Y 2
Z; g2 ~ Xin-1
J:
S0 ay) V)2
S (i = X)2+ 32 (Y =Y) 5
g2 ~ Xn+m—2
and it follows that _
X=Y — (W1 — o)
1 1 ~ tn-|—m—2
(7+)

where

S Sl (X —=X)2 4+ (Y —Y)?
n+m-—2
consider testinddp : u = 2 VS H1 = muw. > Wp. Hence, ifHg is true then the observed

value _
t=—

_|_
comes from a t-test with4 m— 2 df and we rejecHo if |t| > t*. Here,

S_ \/Zi(xi—>32+21(yj—ﬂz
N n+m—2

Sl
3l

andt* =thym-21-q

4.6 Comparing means from large samples <OI.B.M.>

If X1, ....Xp andYs, .....Ymy, are all independent (with finite variance) with expecteldea
of Wy and, respectively, and variances of,ando? respectively, then

X=Y — (o —M2) .

(“1 “2) Nn(o, 1)
%, %
n m

if the sample sizes are large enough.

This is the central limit theorem.

4.6.1 Details
Another theorem (Slutzky) stakes that replacifganda3 with S andS3 will result in the
same (limiting) distribution.
It follows that for large samples we can test
Ho: i =2 Vs Ha:a > W2
by computing
X—y

T2

AT
and rejecHp if z> z1_4.

23



4.7 The P-value

The p-value of a test is an evaluation of the probability dagling results which are a
extreme as those observed in the context of the hypothesis.

4.7.1 Examples

Example 4.6. Consider a dataset and the following hypotheses

Ho:u=42
VS.
Ha:pu> 42
and suppose we obtain
z=23

We rejectHg since
2.3> 1.645+ 75,95

The p-value is
P[Z>23=1—d(2.3)

obtained in R using

1-pnorm(2.3)
[1] 0.01072411

If this had been a two tailed test, then
P=P[|Z|>23

=P[Z< -23]|+P[Z> 23]
=2-P[Z>23]

4.8 The concept of significance
4.8.1 Details

Two sample means are statisticadignificantlydif ferentif their null hypothesis|f; =
H2)can bere jected In this case, one can make the following statements:

e The population means are different.
e The sample means are significantly different.
o g # o
e Xis significantly different frony.
But one does not say:
e The sample means are different.

e The population means are different with probability 0.95.
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Similarly, if the hypothesi$lg : 41 = o can not be rejected, we can say:
e There is no significant difference between the sample means.
e We can not reject the equality of population means.
e We can not rule out...
But we can not say:
e The sample means are equal.
e The population means are equal.

e The population means are equal with probability 0.95.

5 Power and sample sizes

5.1 The power of a test

Suppose we have a method to test a null hypothesis againsteamative hypothesis.
The test would be "controlled"at some leweli.e. P[re ject Hy] < a wheneveHy is true.

On the other hand, whet is false one wantB|re ject Hy| to be as high as possible.

If the parameter to be testedsand 8y is a value withinHy and 6, is in Hy then we
wantPy,[re ject Hy] < a andPs,[re ject Hy] as large as possible.

For a genera we write
B(6) = Py[reject Hy)

for the power of the test

5.1.1 Details

Do not use the phrase "accept".

5.2 The power of tests for proportions

5.2.1 Examples

25



Example 5.1. Suppose 7 students are involved in an experiment which ipadeed oII
7 trails and each trial consists of rolling a dice 9 times.

Experiment 1: A student records a O if they toss an even nunibdr6), and
records a 1 if they toss an odd number (1,3,5). After tossimgdice 9 times anlj
recording a 0 or 1 the student tabulates the number of 1s. prbsess is repeated]6
more times.

Data and outcomes: x = number of successes in n trigl§ & Thus, x = num
ber of odd numbers

Question: Test whethgy = Ploddnumbelr= 3 that is
Ho:p=3vs.Ha:p# 3

Solution: Now, x is an outcome of ~ Bin(n, p). We know from the CLT that
X—np -

——— ~N(0,1)
np(1—p)
write po = 3 S0 if Ho : p= po is true then
7. X0 | N(0, 1)
Npo(1—po)

SO we rejecH if the observed value
X—Npo

vNpo(1— po)

is such thatz| > 2 g

Outcomes from 21 trials
7 4 4

346
5 3 4
55 3
6 4 5
4 3 5
36 7
1
,_1-93 :7—41.5:14—9:§<1.96
9.1.1 35 3 3
2°2

So we do not reject the null hypothesis!

Note 5.1.Note that we can rewrite the test statistics slightly

n
X—5 X—

,/n.%.%: 3.

Note 5.2.Note that we reject i52 > 1.96 i.e. if X>9+3-1.96~ 9+ 6 =15

_2x—9

2= 3

NI NIl

x> 7.5 [forx=8 or 9] or X < 9—3-1.96,x < 1.5 [for x=0 or 1].
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Example 5.2. Suppose 7 students are involved in an experiment which i9dsed oiI
7 trails and each trial consists of rolling a dice 9 times.

Experiment 2: The procedure is the same as in experiment hpluthe student recor
Oforalor2andalfora3,4,5,0r6.

Data and outcomes:
X = number of successes in n trials’# ; Thus, x = number of 'b’s

olution: Outcomes from 21 experiments
4 3

o 00O~ Ul
H 00 01w N

S
5
8
5
7
7
5
2

57
This time our test iddo : p= % vsHa : p= 3. Note that we rejectl if 5% > 1,96
[for x=9] or if 5% < —1,96 [for x=0,1,2,3].

We rejectHp in 3 out of 21 trials.

Example 5.3. Suppose 7 students are involved in an experiment which ipdsed oiI
7 trails and each trial consists of rolling a dice 9 times.

Experiment 3: Same as experiment 1 except O is recorded §8,4,5 and a 1 i§

recorded for 6.

Data and outcomes:
X = number of successes in n trials’2 ; Thus, x = number of '1’s

Solution: Outcomes from 21 experiments

012

1 21

1 4 2

111

131

11 2

020

With the same kind of calculations as above, we find that wectéhe null hypothesis
Ho: p= % in 14 out of 21 trials.
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5.3 The Power of the one sided z test for the mean

The one sided z-test for the megp) is based on a random sample wh¢
X1... % ~ n(Y,c?) are independent araf is known.

The power of the test for an arbitramcan be computed as:

B(u):1—¢(“°;“+zl_a>
NG

5.3.1 Details

The one sided z-test for the medén) is based on a random sample whéte .. X, ~
n(u, 02) are independent araf is known.

If the hypotheses are:
Ho: L= Mo VS
Ha: > o

Then we know that, iHg is true

Given dataxy, . .. Xn, the z-value is

We rejectHg if z> 2z 4
The level of this test is

X

Pu[Rejecth] = Pyl —ilJo > 714

B

=Plz>z7_4]=0

sinceZ ~ n(0, 1) whenyy is the true value.

The power of the test for an arbitramcan be computed as follows.

B(W) = Pulrejecthb)
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We obtain

5.3.2 Examples

Example 5.4. Suppose we know = 2 and we will take a sample from(u,oz)

against a one-tailed alternative when the true mean is lactua= 4 when the samp
size isn = 25.

We can set this up in R with:

alpha<-0.05

n<-25

sigma<-2

mu0<-3

mu<-4
zcrit<-qnorm(1l-alpha)

Sticking the formula into R gives

1-pnorm((mu0-mu) / (sigma/sqrt (n))+zcrit)
[1] 0.803765

samples are to be simulated (Nsim). Then, generate all sétb@mples, arrange them
a matrix and compute the mean of each sample. The z-valuebfcdhese Nsim tes
are then computed and a check is made whether it exceedstita @oint (1) or not (0)

Nsim<-10000

m<-matrix (rnorm(Nsim*n,mu,sigma),ncol=n)
mn<-apply(m,1,mean)
z<-(mn-mu0) / (sigma/sqrt(n))
i<-ifelse(z>zcrit,1,0)

sum(i/Nsim)

[1] 0.8081

intending to test the hypothesis= 3 at levela = 0.05. We want to know the poer
I

Onthe other hand, one can also use a simple simulation agprbast, decide how marly

in
S
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5.4 The non central t - distribution

Recall that ifZ ~ n(0,1) andU ~ X2, are independent then
Z

—— ~t
U V

Vv

and it follows for a random sampl . .. X, ~ n(y, 62) independent; that

_ X—p
X;u = Tn—z Ntnfl
v XX

5.4.1 Details
On the other hand, W ~ n(A,1) andU ~ X2 are independent, theHVU has a non central

t-distribution withv degrees of freedom and non centrality paramAterhis distribution
arises, ifXy... Xy ~ n(y, 02) independent and we want to consider the distribution of:

X

_ —H | H-Ho H=—Ho
g + [¢] Z + ]
X-W_ % Vi _ Vi
S S N /U
Vvn Vi v
Wherep # pp which is a non central t with non centrality parameters
A— U—GUO
Vn

with n— 1 df. Herev=n— 1d f sinceZ ~ n(0,1) andU ~ X2_; in this equation

5.5 The power of t-test for a normal mean
5.5.1 Details

ConsiderX, ..., Xn ~ n(y,¢?) i.i.d. wherea? is unknown and we want to telly : 1 = o
VS. Ha : 1> Ho. We know that
_X—p
T = TR
and we will rejectHg if the computed value
to— X—Ho
~s/yn

is such that
t>t =th 11 q-

The power of this test is:

B(p) = Pyfreject Hy] = Pu[)_(s/_—\/ug > t*]

= Py[X— o >t*-s/y/n|
X—H o Ho—H

= PU[W >t +W]
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Which is the probability that &_ 1_4-variable exceetr + £ s/f

5.6 Power and sample size for the one-sided z-test for a sieghormal
mean

Suppose we want to teBly : 1= o VS Ha : 1> Ho. We will rejectHg if the observed
value o

I

~o/yn

is such thaz > z;_4.

5.6.1 Details

Suppose we want to telly : 1= po VS Hg : 1> Ho. So based 0iXy, ..., Xp ~ n(l, 62) i.i.d.
with a2 known we will rejectHy if the observed value

_X—to
~o/yn
is such thaz > z;_4. The power is given by:
H—Ho
=1- _
B = 1= (- 2+ 21-0)

and describes the probability of rejectirlg whenp is the correct value of the parameter.
Suppose we want to rejekky with a prespecified probabilit§;, whenyy; is the true value
of W For this, we need to select the sample size so that

B(k1) > Ba

i.e. find n which satisfies
M1 —

Ll m

Ho | Z1q) > P

5.6.2 Examples

Example 5.5. mu0<-10
sigma<-2

mul<-11

n<-50

d<- (mu1-mu0)

power.t.test(n=n,delta=d,sd=sigma,sig.level=0.05,type="one.sample",
alternative="one.sided",strict

= TRUE)

One-sample t test power calculation

= 50
delta =1
sd = 2
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sig.level = 0.05
power = 0.9672067
alternative = one.sided

5.7 Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test ingle mean (on
sample), this can easily be done in R with tharer .t .test command.

D

5.7.1 Details
A=W -
8=k

5.7.2 Examples

Example 5.6. For a one sided power analysis we wish to test the followingpliyeses

For a one sample test:
Ho:U=HoVS.Ha: > o

For a two sample test:
Ho:M1 =M VS.Ha 1 > o2

In R, thepower.t.test command is useful to calculate how many samples one 1
to obtain a certain power of a test, but also to calculate tveep when we have a givé
number of samples.

eeds
n

Example 5.7. How many samples do | need to get a power of .97

power.t.test(power = .95, delta=1.5,sd=2, type="one.sample",
alternative = "one.sided")

One-sample t test power calculation

n = 20.67702
delta = 1.5
sd = 2
sig.level = 0.05
power = 0.95

alternative = one.sided
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We would thus need a sample size of n = 31.15@2 samples to obtain a power of @.
for our analysis.

Example 5.8. With a sample size of n = 45, what will the power of my test be?

power.t.test(n=45,delta=1.5,sd=2,sig.level=0.05,type="one.sample",
alternative="one.sided")

One-sample t test power calculation

n = 45
delta = 1.5
sd = 2

sig.level = 0.05
power = 0.9995287
alternative = one.sided

This is done the same way for two samples only by changing ttenative toj
"two.sample”. For two sided power analysis, one only neeadhiinge the alternative
"two.sided".

Example 5.9. If one is interested in doing a power analysis for an ANOVA,t#ss is
done in a fairly similar way.

With a given sample size of n=20:
power.anova.test(groups=4, n=20, between.var=1, within.var=3)

Balanced one-way analysis of variance power calculation

groups = 4

n =20

between.var = 1

within.var = 3
sig.level = 0.05

power = 0.9679022
To calculate the sample size needed to obtain a power of 6r30tést:
power.anova.test (groups=4, between.var=1, within.var=3, power=.9)
Balanced one-way analysis of variance power calculation

groups = 4

o

n = 15.18834
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between.var =
within.var
sig.level
power =

1
3
0.05
0.9

5.8 The power of the 2-sided t-test

‘ A power analysis on a two-sided t-test can be done in R usmpadivert.testcommand.

5.8.1 Details

For a one sample test:
Ho:H=HoVs.Ha:l+# Ho

The powett.testcommand is useful to provide information for determining thinim-
um sample size one needs to obtain a certain power of a test:

power.t.test(n= ,delta= ,sd= ,sig.level= ,power= ,type=c("two.sample"
,"one.sample","paired") ,alternative=c("two.sided"))

where:

n=sample size

d=effect size

sd=standard deviation

sig.level=significance level

power= normally 0.8, 0.9 or 0.95

type= two sample, one sample or paired (the type selecteshdemn the research)
alternative= either one sided or two sided

5.8.2 Examples

Example 5.10. How many samples do | need in my research to obtain a poweBaf tl

power.t.test(delta=1.5,sd=2,sig.level=0.05,power=0.8,type=c("two.
sample") ,alternative=c("two.sided"))

Two-sample t test power calculation

n = 28.89962
delta = 1.5
sd = 2
sig.level = 0.05
power = 0.8

alternative = two.sided

So, one needs 29 samples (n=29) to obtain a power level 0bOtBi§ analysis.
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5.9 The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computedi@ass:

B(Hluz) = Py,

Z+A St
U/(n+m—2) 1-a,n+m-2
and the power of a two sample, two-sided t-test is give by:

B _p Z+A St
(Makp) = Mhake 0/(ntm—2) 1—a,ntm—2

whereA = L\/ﬁ andU is the SSE.

oy/2+1

Z+A
+PI11L12 [

Sl

5.9.1 Detalils

Two Sample, One-sided t-Test:
Suppose data are gathered independently from two normalgiams resulting in
Xl, .. .,Xn ~ n(ul, 0'2)

Yl7 oo 7Ym ~ n(“27 02)
where all data are independent then

2 2
— (0) (0)
XY ~n(ps— po, — +—

(B — e, — + )

The null hypothesis in question i, : iy = [ versus alternativel, : g > po. If Hog is true
then the observed value -y
t= 2=
/1,1
S n -+ m

comes from a t-distribution with+ m— 2 degrees of freedom and we rejét if |t| >
tffa.n+m72

The power of the test can be computed as follows:

B(uluz) Pllﬂlz [rejECt H)]
X-Y
= PFuw T 1 >q—a,n+m—2
_+_
L2V T m
'7—\7—(u1—uz)_|_ (H1—1p)
o/bd  ofbk .
Pulug S/O' > tlfa,n+m72
7+ (1—1p)
o\/ata .
PUlUZ

Z+A .
PUl H2

>t _
U/(n+m—2) 1-a,n+m-2
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whereA = (\/% andU is the SSE of the samples which is divided by the appropriate
_+_

degrees of freedom to givex@ distribution.

This is the probability that a non-centtaVariable exceeds'.

Two Sample, Two-sided t-Test:

In this case the null hypothesis is defineds 1 = [ versus alternativel, : Py # po.

The power of the test can be computed as follows:

B(ulug) = Puw reject Hy]

- Plll H2

*
> tla7n+m2]

Y
= | H1H2 > q—a n+m—2]
S /1 1 )
I ﬁ + =

X-Y
+PH1H2 1 1 tl a,n+m-2
ntm
“Y-(u—to) | (i)
/i /i
= Pup >t>1k—a.n+m—2
S/y/(n+m-2) ’
—Y (4 )+ (M—o)
0\/%+% 0\/%+% .
+PH1H2 S/ (n+m 2) _tl—a,n+m—2
Z+A
= P >t _
el O/ (ntm—2) ~ oM 2]
Z+A .
+PU1U2 U/(n+m—2) < _tl—a,n+m—2

whereA = (¥ andU is the SSE of the samples which is divided by the appropriate
o/t

degrees of freedom to givexg distribution.

Note 5.3.Note that the power of a test can be obtained usingptheert.testfunction in
R.

5.10 Sample sizes for two-sample one and two-sided t-tests

‘ The sample size should always satisfy the desired power.
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5.10.1 Details

Suppose we want to reject the with a pre-specified probabilitg; whenp; andp, are
true values of.. For this, we need to select the sample sizndm so thatB ) > Ba
i.e. findn andmwhich satisfies

P Z+A -
Ha Mo U /(I’H— m— 2) 1-a,n+m-2

for a two sample, one-sided t-test.

Similarly for a two sample, two-sided t-test we need to firmhdm that satisfies

Z+A *
Pate | 57 (remg) ~ -anem-2

Z+A *
+ Plllllz { U/(ntm-2) < _tl—a,n+m—2

5.11 A case study in power

Want to compute power in analysis of covariance:
yij = M+BX|J +€ij7 |: 1727 J = 17""]7
wheregjj ~ n(0,02) are i.i.d.?

This can be done by simulation and can easily be expandeti¢o cases.

5.11.1 Handout

Example 5.11. If you want to compute a power analysis in analysis of covenga
yij = M+BX|J +€ij7 |: 1727 J = 17""]7
wheregjj ~ n(0,02) are i.i.d. then use simulation.

To do this one needs to first define the task in more detail,gaath what exactly i
known and what the assumptions are.

Note 5.4.Note that there are only two groups, with intercgatandpy. The "power"will
refer to the power of a test far = |, i.e. we want to test whether the group meangare
equal, correcting for the effect of the continuous variable

In principle, thex-values will be either fixed a priori or they may be a randont pathe
experiment. Here we will assume that tkwalues are randomly selected in the rapge
20-30 (could e.g. be the ages of patients).

Since this is in the planning stage of the experiment, welzdse a choice of the samgle
size within each group. For convenience, the sample siztaken to be the same jn
each group,] so the total number of measurements willibe- 2J. We also need tp
decide at which levels gfy andp the power is to be computed (but it is really only a
function of the differencaj; — ).

The following pieces of R code can be saved into a file, "angower"and then commarid
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source ("ancovapow.r")

can be used to run the whole thing.

The beginning of the command sequence merely consists aheos and definitions ¢
parameter values. These need to be changed for each cassakgpa

#

# ancovapow.r - power computations for analysis of covarariance

# - one factor, two levels mu0, mul

# - one covartate z, 0 stores possible wvalues from which a random
set ©s chosen

#

# first set values of parameters
#

alpha<-0.05

sigma<-7.5 # the common standard deviation

x0<-20:30 # the set of z wvalues

delta<-10 # the difference in the means

muO0<-0 # the first mean

mul<-muO+delta # the second mean

slope<-2.5 # the slope in the ancova

J<-10 # the common sample size per factor level

n<-2xJ # the total sample size

Nsim<- 40000 # the number of simulations for power computations

Rather than head straight for the ancova, start with a singaglge, namely ignoring thie

covariate X) and merely doing a regular two-sample, two-tailed t-t&dtis should bé
reasonably similar to the ancova power computations anyway

#

# Next do the power computations just for a regular two-sided, two-
sample t-test

# and use simulation

#

Yi<-matrix (rnorm(J*Nsim,mu0,sigma) ,ncol=J) # Simulate Nsim samples
of size J, ea n(mul,sigma~2)

Y2<-matrix (rnorm(J*Nsim,mul,sigma) ,ncol=J) # Simulate Nsim samples
of size J, ea n(mu2,sigma~2)

ylmn<-apply(Y1,1,mean) # compute all the simulated yIl-means

y2mn<-apply(Y2,1,mean) # compute all the simulated y2-means

syl<-apply(Y1,1,sd) # compute all the stimulated yl-std.devs

sy2<-apply(Y2,1,sd) # compute all the simulated y2-std.devs

s<-sqrt (((J-1)*sy1~2+(J-1)*sy2~2)/(n-2)) # compute all the pooled
std.devs

t<-(ylmn-y2mn) /(s*sqrt(1/J+1/J)) # compute all the Nsim t-statistics

i<-ifelse(abs(t)>qt(1-alpha/2,n-2),1,0) # for ea t, compute I=reject
, 0=do not reject

powsim2<-sum(i)/Nsim # the simulated power

cat("The_ simulated power is, " ,powsim2,"\n")

The above gave the simulated power. In R there is a functido the same computatio

S

and it is worth while to verify the code (and approach) by éfeg whether these giv|e
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the same thing:

#

# Then compute the exact power for the t-test

#

pow2<-power.t.test (delta=delta,sd=sigma,sig.level=alpha,n=J ,type=c(
"two.sample") ,alternative=c("two.sided"))

cat ("The_exact power:\n")

print (pow2)

Finally, start setting up the code to do the ancova simulatidlote that for this we negd
to generate the x-values. In this example it is assumedhbat-alues are not under the
control of the experimenter but arrive randomly, in the mafrgm 20 to 30 (could e.qg. lL
the age of participants in an experiment).

#

# Finally compute the power in the ancova - note we already have
simulated Y1, Y2-values but have not added the z-part yet

#

x1<-matrix(sample (x0,Nsim*J,replace=T) ,ncol=J) # simulate z-values
for yi

x2<-matrix(sample (x0,Nsim*J,replace=T) ,ncol=J) # simulate z-values
for y2

Y1<-Yil+slopex*xl

Y2<-Y2+slope*x2

fulldat<-cbind(Y1,Y2,x1,x2) # a row now contains all yl, then all y2
, then all x1, then all xz2; Nsim rows

Rather than try to write code to do an ancova, it is naturakmthe R function Im to d
this. The “trick” below is to extract the P-value from the smary command. By definiI

J

a “wrapper” function which takes a single line as an argumeentill subsequently b
possible to use the “apply” function to extract the P-valugisg a one-line R comma

ancova.pval<-function(onerow){ # eztract the ancova p-value for diff

in means

J<-length(onerow) /4

n<-2%J

y<-onerow[l:n] # get the y-data from the row

x<-onerow[(n+1) : (2*n)] # get the z-data from the row

grps<-factor(c(rep(1,J),rep(2,J))) # define the groups

sm<-summary (Im(y~x+grps)) # fit the ancova model

pval<-sm$coefficients[3,4] # extract ezactly the right thing from
the summary command-the P-value for HO:mul=mu2

return(pval)

}

Everything has now been defined so it is possible to compluteeaP-values in a single
command line:

pvec<-apply(fulldat,1,ancova.pval)

i2<-ifelse(pvec<alpha,1,0) # for ea test, compute 1=reject, 0=do not
reject

ancovapow<-sum(i2)/Nsim # the simulated power

cat ("The simulated ancova power is " ,ancovapow,'"\n")

39



When run, this script returns:

The simulated power is 0.803025
The exact power:

Two-sample t test power calculation

n = 10
delta = 10
sd = 7.5

sig.level = 0.05
power = 0.8049123
alternative = two.sided

NOTE: n is number in *each* group

The simulated ancova power is 0.775175

It is seen that when thevalues are not included in any way (in particul@s= 0), the
power is 80.5%. However, this is not the correct model in fiesent situation. Using the
above value op and taking this into account, the power is actually a bit loare77.5%
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