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1 Multivariate probability distributions

1.1 Joint probability distribution

If
X1, . . . ,Xn are discrete random variables with
P[X1 = x1,X2 = x2, . . . ,Xn = xn] = p(x1, . . . ,xn), wherex1, . . . ,xn are numbers, then
the functionp is the joint probability mass function (p.m.f.) for the random variables
X1, . . . ,Xn.

For continuous random variablesY1, . . . ,Yn, a function f is called the joint probability
density function if,
P[Y ∈ A] =

∫ ∫

. . .
∫

f (y1, . . .yn)dy1dy2 · · ·dyn.

1.1.1 Details

Definition 1.1. If X1, . . . ,Xn are discrete random variables withP[X1 = x1,X2 =
x2, . . . ,Xn = xn] = p(x1, . . . ,xn) wherex1 . . .xn are numbers, then the functionp is the
joint probability mass function (p.m.f.) for the random variablesX1, . . . ,Xn.

Definition 1.2. For continuous random variablesY1, . . . ,Yn, a function f is called the
joint probability density function if,

P[Y ∈ A] =
∫ ∫

. . .
∫

︸ ︷︷ ︸

A

f (y1, . . .yn)dy1dy2 · · ·dyn.

Note 1.1.Note that if X1, . . . ,Xn are independent and identically distributed, each with
p.m.f. p, thenp(x1,x2, . . . ,xn) = q(x1)q(x2) . . .q(xn), i.e,P[X1= x1,X2= x2, . . . ,Xn= xn] =
P[X1 = x1]P[X2 = x2] . . .P[Xn = xn].

Note 1.2.Note also that ifA is a set of possible outcomes(A⊆ R
n), then we have

P[X ∈ A] =
∑

(x1,...,xn)∈A

p(x1, . . . ,xn).

1.1.2 Examples

Example 1.1. An urn contains blue and red marbles, which are either light or heavy.
Let X denote the color andY the weight of a marble, chosen at random

X/Y L H TT

B 5 6 11
R 7 2 9

TT 12 8 20
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We haveP[X = “b“ ,Y = ” l “ ] = 5
20.

The joint p.m.f. is:

X/Y L H TT

B 5
20

6
20

11
20

R 7
20

2
20

9
20

TT 12
20

8
20 1

1.2 The random sample

A set of random variablesX1, . . . ,Xn is a random
sample if they are independent and identically
distributed (i.i.d.).

A set of numbersx1, . . . ,xn are called a random
sample if they can be viewed as an outcome of such
random variables.

x1

f(
x) 1

1

1.2.1 Details

Samples from populations can be obtained in a number of ways.However, to draw valid
conclusions about populations, the samples need to obtained randomly.

Definition 1.3. In random sampling, each item or element of the population has an
equal and independent chance of being selected.

A set of random variables;X1 . . .Xn is a random sample if they are independent and identically
distributed (i.i.d.).

Definition 1.4. If a set of numbersx1 . . .xn can be viewed as an outcome of random
variables, these are called arandom sample.

1.2.2 Examples
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Example 1.2. If X1, . . . ,Xn ∼ U(0,1), i.i.d., i.e. X1 and Xn are independent and each
have a uniform distribution between 0 and 1. Then they have a joint density which is the
product of the densities ofX1 andXn.

Given the data in the above figure and ifx1,x2 ∈ R

f (x1,x2) = f1(x1) f2(x2) =

®

1 if 0 ≤ x1,x2 ≤ 1
0 elsewhere

Example 1.3. Toss two dice independently, and letX1,X2 denote the two (future)
outcomes.

Then

P[X1 = x1,X2 = x2] =

® 1
36 if 1 ≤ x1,x2 ≤ 6
0 elsewhere

is the joint p.m.f.

1.3 The sum of discrete random variables

1.3.1 Details

SupposeX andY are discrete random values with a probability mass functionp. Let Z =
X+Y. Then

P(Z = z) =
∑

{(x,y):x+y=z}
p(x,y)

1.3.2 Examples

Example 1.4. X,Y = outcomes,

[,1℄ [,2℄ [,3℄ [,4℄ [,5℄ [,6℄

[1,℄ 2 3 4 5 6 7

[2,℄ 3 4 5 6 7 8

[3,℄ 4 5 6 7 8 9

[4,℄ 5 6 7 8 9 10

[5,℄ 6 7 8 9 10 11

[6,℄ 7 8 9 10 11 12

P[X+Y = 7] =
6
36

=
1
6

6



Because there are a total of 36 equally likely outcomes and 7 occurs six times this means
thatP[X+Y = 7] = 1

6.
Also

P[X+Y = 4] =
3
36

=
1
12

1.4 The sum of two continuous random variables

If X and Y are continuous random variables with jo-
int p.d.f. f and Z = X +Y, then we can find the
density ofZ by calculating the cumulative distributi-
on function.

x

y

1

1

z1−1

z1−1

2−z2

{(x,y):x+y=1/2} {(x,y):x+y=3/2}

P[X+Y leq 1]=1/2

P[X+Y leq 1/2]=1/8

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

1.4.1 Details

If X and Y are c.r.v. with joint p.d.f.f andZ = X+Y, then we can find the density ofZ by
first finding the cumulative distribution function

P[Z ≤ z] = P[X+Y ≤ z] =
∫ ∫

{(x,y):x+y≤z}
f (x,y)dxdy.

1.4.2 Examples

Example 1.5. If X and Y ∼ U(0,1), independent andZ = X+Y then

P[Z ≤ z] =







0 for z≤ 0
z2

2 for 0< z< 1
1 for z> 2

1− (2−z)2

2 for 1< z< 2
the density of z becomes

g(z) =







z for 0< z≤ 1
2−z for 1< z≤ 2

0 for elsewhere

Example 1.6. To approximate the distribution ofZ = X+Y whereX,Y ∼U(0,1) i.i.d.,
we can use Monte Carlo simulation. So, generate 10.000 pairs, set them up in a matrix
and compute the sum.
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1.5 Means and variances of linear combinations of independent random
variables

If X andY are random variables anda,b∈ R, then

E[aX+bY] = aE[X]+bE[Y].

1.5.1 Details

If X andY are random variables, then

E[X+Y] = E[X]+E[Y]

i.e. the expected value of the sum is just the sum of the expected values. The same applies
to a finite sum, and more generally

E[
n∑

i=1

aiXi ] =
n∑

i=1

aiE[Xi]

whenXi, ...,Xn are random variables anda1, ...,an are numbers (if the expectations exist).
If the random variables are independent, then the variance also add

V[X+Y] =V[X]+V[Y]

and

V[
n∑

i=1

aiXi] =
n∑

i=1

a2
i V[Xi]

1.5.2 Examples

Example 1.7. X,Y ∼U(0,1), i.i.d. then

E[X+Y] = E[X]+E[Y] =
∫ 1

0
x·1dx+

∫ 1

0
x·1dx= [

1
2

x2]10+[
1
2

x2]10 = 1.

Example 1.8. Let X,Y ∼ N(0,1). ThenE[X2+Y2] = 1+1= 2.
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1.6 Means and variances of linear combinations of measurements

If x1, ....,xn andy1, ....,yn are numbers, and we set

zi = xi +yi

wi = axi

where a>0, then

z=
1
n

n∑

i=1

zi = x+y

w= ax

s2
w =

1
n−1

n∑

i=1

(wi −w)2

=
1

n−1

n∑

i=1

(axi −ax)2

= a2s2
x

and
sw = asx

1.6.1 Examples

Example 1.9. We set:

a<-3

x<-
(1:5)

y<-
(6:10)

Then:

z<-x+y

w<-a*x

n<-length(x)

Thenz is:

(sum(x)+sum(y))/n

[1℄ 11

mean(z)

[1℄ 11

andw becomes:

a*mean(x)

[1℄ 9

mean(w)

[1℄ 9

ands2
w equals:

sum((w-mean(w))^2))/(n-1)

[1℄ 22.5

sum((a*x - a*mean(x))^2)/(n-1)

[1℄ 22.5
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a^2*var(x)

[1℄ 22.5

andsw equals:

a*sd(x)

[1℄ 4.743416

sd(w)

[1℄ 4.743416

1.7 The joint density of independent normal random variables

If Z1,Z2 ∼ n(0,1) are independent then they each have density

φ(x) =
1√
2π

e−
x2
2 ,x∈ R

and the joint density is the productf (z1,z2) = φ(z1)φ(z2) or

f (z1,z2) =
1

(
√

2π)2
e
−z21

2 − z22
2 .

1.7.1 Details

If X ∼ n(µ1,σ2
1) andY ∼ n(µ2,σ2

2) are independent, then their densities are

fX(x) =
1√

2πσ1
e
−(x−µ1)

2

2σ2
1

and

fY(y) =
1√

2πσ2
e
−(y−µ2)

2

2σ2
2

and the joint density becomes

1
2πσ1σ2

e
− (x−µ1)

2

2σ2
1

− (y−µ2)
2

2σ2
2

Now, supposeX1, . . . ,Xn ∼ n(µ,σ2) are i.i.d., then

f (x) =
1

(2π)
n
2 σn

e
−

n∑

i=1

(xi −µ)2

aσ2

is the multivariate normal density in the case of i.i.d. variables.

1.8 More general multivariate probability density functions

1.8.1 Examples
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Example 1.10. Suppose X and Y have the joint density

f (x,y) =







2 0≤ y≤ x≤ 1

0 otherwise

First notice that
∫

R

∫

R
f (x,y)dxdy=

∫ 1
x=0

∫ x
y=02dydx=

∫ 1
0 2xdx= 1, so f is indeed a

density function.
Now, to find the density ofX we first find the c.d.f. ofX, first note that fora< 0 we have
P[X ≤ a] = 0 but if a≥ 0, we obtain

FX(a) = P[X ≤ a] =
∫ a

x0

∫ x

y=0
2dydx= [x2]a0 = a2.

The density ofX is therefore

fX(x) =
dF(x)

dx







2x 0≤ x≤ 1

0 otherwise
.

1.8.2 Handout

If
f : Rn → R

is such that
P[X ∈ A] =

∫

A . . .
∫

f (x1, . . . ,xn)dx1 · · ·dxn

and f (x)≥ 0 for all x∈ R
n

then f is thejoint densityof

X =

Ü

X1
...

Xn

ê

If we have the joint density of some multidimensional randomvariableX = (X1, . . . ,Xn)
given in this manner, then we can find the individual density functions of theXi ’s by in-
tegrating the other variables.

2 Some distributions related to the normal

2.1 The normal and sums of normals

The sum of independent normally distributed random variables is also normally distri-
buted.

2.1.1 Details

The sum of independent normally distributed random variables is also normally distribu-
ted. More specifically, ifX1 ∼ n(µ1,σ2

1) andX2 ∼ n(µ2,σ2
2) are independent thenX1+X2 ∼

n(µ,σ2) sinceµ= E [X1+X2] = µ1+µ2 and
σ2 =V [X1+X2] with σ2 = σ2

1+σ2
2

if X1 andX2 are independent.

Similarly
n∑

i=1

Xi
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is normal ifX1, . . . ,Xn are normal and independent.

2.1.2 Examples

Example 2.1. Simulating and plotting a single normal distribution.Y ∼ n(0,1)

library(MASS) # for truehist

par(mf
ol=
(2,2))

y<-rnorm(1000) # generating 1000 n(0,1)

mn<-mean(y)

vr<-var(y)

truehist(y,ymax=0.5) # plot the histogram

xve
<-seq(-4,4,0.01) # generate the x-axis

yve
<-dnorm(xve
) # theoreti
al n(0,1) density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("Simulation and theory n(0,1)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

Example 2.2. Sum of two normal distributions.

Y1 ∼ n(2,22)

and
Y2 ∼ n(3,32)

y1<-rnorm(10000,2,2) # n(2,2^2)

y2<-rnorm(10000,3,3) # n(3, 3^2)

y<-y1+y2

truehist(y)

xve
<-seq(-10,20,0.01)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of n(2,2^2) and n(3,3^2)\n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

12



Example 2.3. Sum of nine normal distributions, all withµ= 42 andσ2 = 22

ymat<-matrix(rnorm(10000*9,42,2),n
ol=9)

y<-apply(ymat,1,mean)

truehist(y)

# 
he
k

mn<-mean(y)

vr<-var(y)


at("The mean is",mn,"\n")


at("The varian
e is ",vr,"\n")


at("The standard deviation is",sd(y),"\n")

# plot the theoreti
al 
urve

xve
<-seq(39,45,0.01)

yve
<-dnorm(xve
,mean=5,sd=sqrt(13)) # n() density

lines(xve
,yve
,lwd=2,
ol="red")

ttl<-paste("The sum of nine n(42^2) \n",

"mean=",round(mn,2),

"and varian
e=",round(vr,2))

title(ttl)

2.2 The Chi-square distribution

If X ∼ n (0,1),thenY = X2 has a distribution which
is called the Chi - square distribution (χ2) on one
degree of freedom. This can be written as:

Y ∼ χ2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

2.2.1 Details

Definition 2.1. If X1,X2, . . . ,Xn are i.i.d.N(0,1) then the distribution of
Y = X2

1 +X2
1 + . . .+X2

n has aChi square (χ2)distribution .
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2.3 Sum of Chi square Distributions

Let Y1 andY2 be independent variables. IfY1 = χ2
ν1

andY2 = χ2
ν2

,
then the sum of these two variables also follows a
chi-squared (χ2)distribution

Y1+Y2 = χ2
ν1+ν2

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

X

2.3.1 Details

Note 2.1.Recall that if
X1, . . . ,Xn ∼ n(µ,σ2)

are i.i.d., then

n∑

i=1

Ç

X̄−µ
σ

å2

=
n∑

i=1

(X̄−µ)2

σ
∼ χ2

2.4 Sum of squared deviation

If X1, · · · ,Xn ∼ n(µ,σ2) i.i.d, then

n∑

i=1

Ç

Xi −µ
σ

å2

∼ χ2
n,

but we are often interested in

1
n−1

n∑

i=1

(Xi − X̄)2 ∼ χ2
n−1.

2.4.1 Details

Consider a random sample of Gaussian random variables, i.e.X1, · · · ,Xn ∼ n(µ,σ2) i.i.d.
Such a collection of random variables have properties whichcan be used in a number of
ways.

n∑

i=1

Ç

Xi −µ
σ

å2

∼ χ2
n,

but we are often interested in

1
n−1

n∑

i=1

(Xi − X̄)2 ∼ χ2
n−1.

Note 2.2.A degree of freedom is lost because of subtracting the estimator of the mean as
opposed to the true mean.

14



The correct notation is:
µ = population mean
X̄ = sample mean (a random variable)
x̄ = sample mean (a number)

2.5 The t-distribution

If U ∼ n(0,1) andW ∼ χ2
ν are independent, then the random variable

T =
U
»

w
ν

has a distribution which we call the t-distribution onν degrees of freedom denotedT ∼
tν.

2.5.1 Details

Definition 2.2. If U ∼ n(0,1) andW ∼ χ2
ν are independent, then the random variable

T :=
U
»

w
ν

has a distribution which we call thet-distribution on ν degrees of freedom, denoted
T ∼ tν.

It turns out that ifX1, . . . ,Xn ∼ n(µ,σ2) and we set

X̄ =
1
n

n∑

i=1

Xi

and

S=

Ã

1
1−n

n∑

i=1

(Xi −X)2

then
X̄−µ
S/

√
n
∼ tn−1.

This follows fromX̄ and
∑n

i=1(Xi−X̄)2 being independent andX̄−µ
σ/

√
n ∼ n(0,1),

∑ (Xi−X̄)2

σ2 ∼
χ2

n−1.
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3 Estimation, estimates and estimators

3.1 Ordinary least squares for a single mean

If µ is unknown andxi , . . . ,xn are data, we can estimateµ by finding

min
µ

n∑

i=1

(xi −µ)2

In this case the resulting estimate is simply

µ= x

and can easily be derived by setting the derivative to zero.

3.1.1 Examples

Example 3.1. Consider the numbersx1, . . . ,x5 to be

13,7,4,16 and 9

We can plot
∑
(xi −µ)2 vs. µ and find the minimum.

3.2 Maximum likelihood estimation

If (Y1, . . . ,Yn)
′ is a random vector from a densityfθ whereθ is an unknown parameter,

andy is a vector of observations then we define thelikelihood function to be

Ly(θ) = fθ(y).

3.2.1 Examples

Example 3.2. If, x1, . . . ,xn are assumed to be observations of independent random varia-
bles with a normal distributions and mean ofµ and variance ofσ2, then the joint density
is

f (x1) · f (x2) · . . . · f (xn)

=
1√
2πσ

e−
(x1−µ)2

2σ2 · . . . · 1√
2πσ

e−
(xn−µ)2

2σ2

= Πn
i=1

1√
2πσ

e−
(xi−µ)2

2σ2

=
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1(xi−µ)2

and if we assumeσ2 is known then the likelihood function is

L(µ) =
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1(xi−µ)2
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Maximizing this is done by maximizing the log, i.e. finding theµ for which:

d
dµ

lnL(µ) = 0,

which again results in the estimate
µ̂= x

3.2.2 Detail

Definition 3.1. If (Y1, . . . ,Yn)
′ is a random vector from a densityfθ where θ is an

unknown parameter, andy is a vector of observations then we define thelikelihood
function to be

Ly(θ) = fθ(y).

3.3 Ordinary least squares

Consider the regression problem where we fit a line
through (xi ,yi) pairs with x1, . . . ,xn fixed numbers
but whereyi is measured with error.

0 10 20 30 40

−
1

0
1

2

x

y

Regression line through data pairs.

3.3.1 Details

The ordinary least squares (OLS) estimates of the parameters α andβ in the modelyi =
α+βxi + εi are obtained by minimizing the sum of squares

∑

i

(yi − (α+βxi))
2

a= y−bx

b=

n∑

i=1

(xi −x)(yi −y)

n∑

i=1
(xi −x)2

17



3.4 Random variables and outcomes

3.4.1 Details

Recall thatX1, . . . ,Xn are random varibles (reflecting the population distribution) andx1, . . . ,xn

are numerical outcomes of these distributions. We use uppercase letters to denote random
variables and lower case letters to denote outcome or data.

3.4.2 Examples

Example 3.3. Let the mean of a population be zero and theσ = 4. Then draw three
samples from this population with size, n, either 4, 16 or 64.The sample mean̄X will
have a distribution with mean zero and standard deviation ofσ√

n where n= 4, 16 or 64.

3.5 Estimators and estimates

In OLS regression, note that the values ofa andb

a= y−bx

b=

∑n
i=1(xi −x)(yi −y)
∑n

i=1(xi −x)2

are outcomes of random variables e.g.b is the
outcome of

β̂ =

∑n
i=1(xi −x)(Yi −Y)
∑n

i=1(xi −x)2

the estimator which has some distribution.

0.25 0.30 0.35 0.40 0.45 0.50

0
2

4
6

8
10

betahat

Shows an example of the distribution of the
estimatorβ̂

3.5.1 Details

The following R commands can be used to generate a distribution for the estimator̂β

library(MASS)

nsim <- 1000 # repli
ates

betahat <- NULL

for (i in 1:nsim){

n <- 20

x <- seq(1:n) # Fixed x ve
tor

y <- 2 + 0.4*x + rnorm(n, 0, 1)

xbar <- mean(x)

ybar <- mean(y)

b <- sum((x-xbar)*(y-ybar))/sum((x-xbar)^2)

a <- ybar - b* xbar

betahat <- 
(betahat, b)

}

truehist(betahat)
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4 Test of hypothesis, P values and related concepts

4.1 The principle of the hypothesis test

The principle is to formulate a hypothesis and an alternative hypothesis,H0 and Ha

respectively, and then select a statistic with a given distribution whenH0 is true and
select a rejection region which has a specified probability(α) whenH0 is true.
The rejection region is chosen to reflectHa, i.e to ensure a high probability of rejection
whenHa is true.

4.1.1 Examples

Example 4.1. Suppose we want to evaluate whether a coin is biased. We can plan an
experiment for this. Suppose we toss the coin 5 times and count the number of heads.
We can test the following hypothesis simply.

H0 : p= 1
2 whereH0 is the null hypothesis

Ha; p> 1
2 whereHa is an alternative hypothesis

andp is probability of having a head.

We rejectH0 if we get all heads. (Assuming the only interest is in a tendency towards
larger probabilities). So the probability of rejecting thenull hypothesisH0 is:
P[rejectH0]= P [ all heads in 5 trials]≡ p5

If H0 is true, then P [rejectH0] = 1
2

Need to choose 5 trials to ensure1
25 =

1
32 <

1
32 < 0.05

i.e. The probability of incorrectly rejectingH0 is less thanα = 0.05

Example 4.2. Flip a coin to test
H0 : P= 1

2 vs Ha : P 6= 1
2

Reject, if no heads or all heads are obtained in 6 trials, where the error rate is
P [rejectH0 when true] = P [all heads or all tails]
= P[all heads] + P [all tails]
= 1

26 +
1
26 = 2 1

64 =
1
32 < 0.05

A variation of this test is called the sign test, which is usedto test hypothesis of the form,
H0: true median = 0 using a count of the number of positive values.
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4.2 The one sided z test for normal mean

Consider testing

H0 : µ= µ0

vs

Ha : µ> µ0

Where datax1 . . .xn are collected as independent observations ofX1 . . .Xn ∼ n(µ,σ2) and
σ2 is known. IfH0 is true, then

x̄∼ n(µ0,
σ2

n
)

So,

Z =
x̄−µ0

σ√
n

∼ n(0,1)

It follows that,

P[Z > z∗] = α

Where

z∗= z1−α

So if the datax1 . . .xn are such that,

z=
x̄−µ0

σ√
n

> z∗

ThenH0 is rejected.

4.2.1 Examples

Example 4.3. Consider the following data set:47, 42, 41, 45, 46.
Suppose we want to test the following hypothesis

H0 : µ= 42

vs

Ha : µ> 42

σ = 2 is given
The mean of the given data set can be calculated as

x̄= 44.2

we can calculatezby using following equation

z=
x̄−µ

σ√
n

=
44.2−42

2√
5
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z=
2.2

0.8944
= 2.459

z∗= 1.645

Here
z> z∗
SoH0 is rejected withα = 0.05

4.3 The two-sided z test for a normal mean

z :=
x−µ0

s
√

n
∼ n(0,1)

4.3.1 Details

Consider testingH0 : µ = µ0 versusHa : µ 6= µ0 based on observation fromX1, ...,X ∼
n(µ,σ2) i.i.d. whereσ2 is known. IfH0 is true, then

Z :=
x−µ0

σ
√

n
∼ n(0,1)

and
P[|z|> z⋆] = α

with
z⋆ = z1

We rejectH0 if |z|> z⋆. If |z|> z⋆ is not true, then we "Cannot reject theH0".

4.3.2 Examples

Example 4.4. In R, you may generate values to calculate thezvalue. The command that
is generally used is:quantile
To illustrate:

z<-rnorm(1000,0,1)

quantile(z,
(0.025,0.975))

2.5% 97.5%

-1.995806 2.009849

So, thez value for a two-sided normal mean is|−1.99|.

4.4 The one-sided t-test for a single normal mean

Recall that ifX1, ...,Xn ∼ N(µ,σ2) i.i.d. then

X−µ
S/

√
n
∼ tn−1
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4.4.1 Details

Recall that ifX1, . . . ,Xn ∼ N(µ,σ2) i.i.d. then

X−µ
S/

√
n
∼ tn−1

To test the hypothesisH0 : µ= µ0 vsH1 : µ> µ0 first note that ifH0 is true, then

T =
X−µ0

S/
√

n
∼ tn−1

so
P[T > t∗] = α

if
t∗= tn−1,1−α

Hence, we rejectH0 if the datax1, ...,xn results in a a value oft := x−µ0
S/

√
n such that t>t*,

otherwiseH0 can not be rejected.

4.4.2 Examples

Example 4.5. Suppose the following data set (12,19,17,23,15,27) comes independently
from a normal distribution and we need to testH0 : µ= µ0 vs Ha : µ> µ0. Here we have
n= 6,x= 18.83,s= 5.46,µ0 = 18 so we obtain

t =
x−µ0

s/
√

n
= 0.37

soH0 cannot be rejected.

In R, t* is found using qt(n-1,0.95) but the entire hypothesis can be tested using

t.test(x,alternative="greater",mu=<$\mu_0$>)

4.5 Comparing means from normal populations

Suppose data are gathered independently from two normal populations resulting in
x1, ....,xn andy1, ...ym

4.5.1 Details

We know that if

X1, ....,Xn ∼ n(µ1,σ)

Y1, ....,Ym∼ n(µ2,σ)

are all independent then

X̄−Ȳ ∼ n(µ1−µ2,
σ2

n
+

σ2

m
)
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Further,
n∑

i=1

(Xi − X̄)2

σ2 ∼ X2
n−1

and
m∑

j=1

(Yj −Ȳ)2

σ2 ∼ X2
m−1

so
∑n

i=1(Xi − X̄)2+
∑m

j=1(Yj −Ȳ)2

σ2 ∼ X2
n+m−2

and it follows that
X̄−Ȳ− (µ1−µ2)

S
√

(1
n +

1
m)

∼ tn+m−2

where

S=

Ã

∑n
i=1(X1− X̄)2+

∑m
j=1(Yj −Ȳ)2

n+m−2

consider testingH0 : µ1 = µ2 vs H1 = mu1 > µ2. Hence, ifH0 is true then the observed
value

t =
x̄− ȳ

S
√

1
n +

1
m

comes from a t-test withn+m−2 df and we rejectH0 if |t|> t∗. Here,

S=

√
∑

i(xi − x̄)2+
∑

j(y j − ȳ)2

n+m−2

andt∗ = tn+m−2,1−α

4.6 Comparing means from large samples <Ól.B.M.>

If X1, ....Xn andY1, .....Ym, are all independent (with finite variance) with expected values
of µ1 andµ2 respectively, and variances ofσ2

1,andσ2
2 respectively, then

X−Y− (µ1−µ2)
…

σ2
1

n +
σ2

2
m

∼̇n(0,1)

if the sample sizes are large enough.

This is the central limit theorem.

4.6.1 Details

Another theorem (Slutzky) stakes that replacingσ2
1 andσ2

2 with S2
1 andS2

2 will result in the
same (limiting) distribution.

It follows that for large samples we can test

H0 : µ1 = µ2 vs. Ha : µ1 > µ2

by computing

z=
x−y
…

s2
1
n +

s2
2

m

and rejectH0 if z> z1−α.

23



4.7 The P-value

The p-value of a test is an evaluation of the probability of obtaining results which are as
extreme as those observed in the context of the hypothesis.

4.7.1 Examples

Example 4.6. Consider a dataset and the following hypotheses

H0 : µ= 42

vs.
Ha : µ> 42

and suppose we obtain

z= 2.3

We rejectH0 since
2.3> 1.645+z0.95

The p-value is
P[Z > 2.3] = 1−Φ(2.3)

obtained in R using

1-pnorm(2.3)

[1℄ 0.01072411

If this had been a two tailed test, then

P= P[|Z|> 2.3]

= P[Z <−2.3]+P[Z > 2.3]

= 2 ·P[Z > 2.3]

4.8 The concept of significance

4.8.1 Details

Two sample means are statisticallysigni f icantlydi f f erent if their null hypothesis (µ1 =
µ2)can bere jected. In this case, one can make the following statements:

• The population means are different.

• The sample means are significantly different.

• µ1 6= µ2

• x̄ is significantly different from ¯y.

But one does not say:

• The sample means are different.

• The population means are different with probability 0.95.
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Similarly, if the hypothesisH0 : µ1 = µ2 can not be rejected, we can say:

• There is no significant difference between the sample means.

• We can not reject the equality of population means.

• We can not rule out...

But we can not say:

• The sample means are equal.

• The population means are equal.

• The population means are equal with probability 0.95.

5 Power and sample sizes

5.1 The power of a test

Suppose we have a method to test a null hypothesis against an alternative hypothesis.
The test would be "controlled"at some levelα, i.e. P[re ject H0]≤α wheneverH0 is true.

On the other hand, whenH0 is false one wantsP[re ject H0] to be as high as possible.

If the parameter to be tested isθ andθ0 is a value withinH0 andθa is in Ha then we
wantPθ0[re ject H0]≤ α andPθa[re ject H0] as large as possible.

For a generalθ we write
β(θ) = Pθ[re ject H0]

for the power of the test

5.1.1 Details

Do not use the phrase "accept".

5.2 The power of tests for proportions
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5.2.1 Examples
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Example 5.1. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 1: A student records a 0 if they toss an even number(2,4,6), and
records a 1 if they toss an odd number (1,3,5). After tossing the dice 9 times and
recording a 0 or 1 the student tabulates the number of 1s. Thisprocess is repeated 6
more times.

Data and outcomes: x = number of successes in n trials =
∑n

i=1. Thus, x = num-
ber of odd numbers

Question:Test whetherp= P[oddnumber] = 1
2 that is

H0 : p= 1
2 vs. Ha : p 6= 1

2

Solution: Now, x is an outcome ofX ∼ Bin(n, p). We know from the CLT that

X−np
»

np(1− p)
∼ Ṅ(0,1)

write p0 =
1
2 so if H0 : p= p0 is true then

Z :=
X−np0

»

np0(1− p0)
∼ Ṅ(0,1)

so we rejectH0 if the observed value

z=
x−np0

»

np0(1− p0)

is such that|z|> z1−α
2

Outcomes from 21 trials
7 4 4
3 4 6
5 3 4
5 5 3
6 4 5
4 3 5
3 6 7

z=
7−9 · 1

2
√

9 · 1
2 · 1

2

=
7−4.5

3 · 1
2

=
14−9

3
=

5
3
< 1.96

So we do not reject the null hypothesis!

Note 5.1.Note that we can rewrite the test statistics slightly

z=
x− n

2
√

n · 1
2 · 1

2

=
x− 9

2

3 · 1
2

=
2x−9

3

Note 5.2.Note that we reject if2x−9
3 > 1.96 i.e. if 2x> 9+3 ·1.96≈ 9+6= 15

x> 7.5 [for x=8 or 9] or 2x< 9−3 ·1.96,x< 1.5 [for x=0 or 1].
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Example 5.2. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 2: The procedure is the same as in experiment 1, but now the student records
0 for a 1 or 2 and a 1 for a 3,4,5,or 6.

Data and outcomes:
x = number of successes in n trials =

∑n
i=1 Thus, x = number of ’b’s

Solution: Outcomes from 21 experiments
5 4 3
8 5 7
5 7 3
7 6 5
7 8 8
5 6 4
2 5 7
This time our test isH0 : p = 2

3 vs Ha : p = 2
3. Note that we rejectH0 if 6x−4n

9 > 1,96
[for x=9] or if 6x−4n

9 <−1,96 [for x=0,1,2,3].

We rejectH0 in 3 out of 21 trials.

Example 5.3. Suppose 7 students are involved in an experiment which is comprised of
7 trails and each trial consists of rolling a dice 9 times.

Experiment 3: Same as experiment 1 except 0 is recorded for 1,2,3,4,5 and a 1 is
recorded for 6.

Data and outcomes:
x = number of successes in n trials =

∑n
i=1 Thus, x = number of ’1’s

Solution: Outcomes from 21 experiments
0 1 2
1 2 1
1 4 2
1 1 1
1 3 1
1 1 2
0 2 0
With the same kind of calculations as above, we find that we reject the null hypothesis
H0 : p= 1

6 in 14 out of 21 trials.
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5.3 The Power of the one sided z test for the mean

The one sided z-test for the mean(µ) is based on a random sample where
X1 . . .Xn ∼ n(µ,σ2) are independent andσ2 is known.

The power of the test for an arbitraryµ can be computed as:

β(µ) = 1−Φ

Ñ

µ0−µ
σ√
n

+z1−α

é

5.3.1 Details

The one sided z-test for the mean(µ) is based on a random sample whereX1 . . .Xn ∼
n(µ,σ2) are independent andσ2 is known.

If the hypotheses are:
H0 : µ= µ0 vs
Ha : µ> µ0

Then we know that, ifH0 is true

Z =
X̄−µ0

σ√
n

∼ n(0,1)

Given datax1, . . .xn, the z-value is

z=
x̄−µ0

σ√
n

We rejectH0 if z> z1−α
The level of this test is

Pµ0[Re jectH0] = Pµ0[
X̄−µ0

σ√
n

> z1−α]

= P[z> z1−α] = α

sinceZ ∼ n(0,1) whenµ0 is the true value.

The power of the test for an arbitraryµ can be computed as follows.

β(µ) = Pµ[re jectH0]

= Pµ[
X̄−µ0

σ√
n

> z1−α]

= Pµ[X̄ > µ0+z1−α
σ√
n
]

= Pµ[
X̄−µ

σ√
n

>
µ0−µ

σ√
n

+z1−α]
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= P[Z >
µ0−µ

σ√
n

+z1−α]

We obtain

β(µ) = 1−Φ

Ñ

µ0−µ
σ√
n

+z1−α

é

5.3.2 Examples

Example 5.4. Suppose we knowσ = 2 and we will take a sample fromn
Ä

µ,σ2
ä

intending to test the hypothesisµ = 3 at levelα = 0.05. We want to know the power
against a one-tailed alternative when the true mean is actually µ = 4 when the sample
size isn= 25.

We can set this up in R with:

alpha<-0.05

n<-25

sigma<-2

mu0<-3

mu<-4

z
rit<-qnorm(1-alpha)

Sticking the formula into R gives

1-pnorm((mu0-mu)/(sigma/sqrt(n))+z
rit)

[1℄ 0.803765

On the other hand, one can also use a simple simulation approach. First, decide how many
samples are to be simulated (Nsim). Then, generate all of these samples, arrange them in
a matrix and compute the mean of each sample. The z-value of each of these Nsim tests
are then computed and a check is made whether it exceeds the critical point (1) or not (0).

Nsim<-10000

m<-matrix(rnorm(Nsim*n,mu,sigma),n
ol=n)

mn<-apply(m,1,mean)

z<-(mn-mu0)/(sigma/sqrt(n))

i<-ifelse(z>z
rit,1,0)

sum(i/Nsim)

[1℄ 0.8081
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5.4 The non central t - distribution

Recall that ifZ ∼ n(0,1) andU ∼ χ2
v are independent then

Z
√

U
v

∼ tv

and it follows for a random sampleX1 . . .Xn ∼ n(µ,σ2) independent; that

X̄−µ
s√
n

=

X̄−µ
σ√
n

 ∑
(Xi−X̄)2

σ2
n−1

∼ tn−1

5.4.1 Details

On the other hand, ifW ∼ n(∆,1) andU ∼ χ2
v are independent, thenW»

U
v

has a non central

t-distribution withv degrees of freedom and non centrality parameter∆. This distribution
arises, ifX1 . . .Xn ∼ n(µ,σ2) independent and we want to consider the distribution of:

X̄−µ
S√
n

=

X̄−µ
σ√
n
+ µ−µ0

σ√
n

S√
n

=
Z+ µ−µ0

σ√
n

√
U
v

Whereµ 6= µ0 which is a non central t with non centrality parameters

∆ =
µ−µ0

σ√
n

with n−1 df. Herev= n−1d f sinceZ ∼ n(0,1) andU ∼ χ2
n−1 in this equation

5.5 The power of t-test for a normal mean

5.5.1 Details

ConsiderX1, . . . ,Xn ∼ n(µ,σ2) i.i.d. whereσ2 is unknown and we want to testH0 : µ= µ0

vs. Ha : µ> µ0. We know that

T :=
X−µ
s/
√

n
∼tn−1

and we will rejectH0 if the computed value

t :=
x−µ0

s/
√

n

is such that
t > t⋆ = tn−1,1−α.

The power of this test is:

B(µ) = Pµ[re ject H0] = Pµ[
x−µ0

s/
√

n
> t⋆]

= Pµ[x−µ0 > t⋆ ·s/
√

n]

= Pµ[
x−µ
s/
√

n
> t⋆+

µ0−µ
s/
√

n
].
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Which is the probability that atn−1,1−α-variable exceedt⋆+ µ0−µ
s/
√

n.

5.6 Power and sample size for the one-sided z-test for a single normal
mean

Suppose we want to testH0 : µ= µ0 vs Ha : µ> µ0. We will rejectH0 if the observed
value

z=
x−µ0

σ/
√

n

is such thatz> z1−α.

5.6.1 Details

Suppose we want to testH0 : µ= µ0 vs Ha : µ> µ0. So based onX1, ...,Xn ∼ n(µ,σ2) i.i.d.
with σ2 known we will rejectH0 if the observed value

z=
x−µ0

σ/
√

n

is such thatz> z1−α. The power is given by:

β(µ) = 1−Φ(
µ−µ0

σ/
√

n
+z1−α)

and describes the probability of rejectingH0 whenµ is the correct value of the parameter.
Suppose we want to rejectH0 with a prespecified probabilityβ1, whenµ1 is the true value
of µ. For this, we need to select the sample size so that

β(µ1)≥ β1

i.e. find n which satisfies
1−Φ(

µ1−µ0

σ/
√

n
+z1−α)≥ β1

5.6.2 Examples

Example 5.5. mu0<-10
sigma<-2

mu1<-11

n<-50

d<-(mu1-mu0)

power.t.test(n=n,delta=d,sd=sigma,sig.level=0.05,type="one.sample",

alternative="one.sided",stri
t

+ = TRUE)

One-sample t test power 
al
ulation

n = 50

delta = 1

sd = 2
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sig.level = 0.05

power = 0.9672067

alternative = one.sided

5.7 Power and sample size for the one sided t-test for a mean

Suppose we want to calculate the power of a one sided t-test for a single mean (one
sample), this can easily be done in R with thepower.t.test command.

5.7.1 Details

△= µ1−µ2

δ = µ1−µ2
σ/

√
n

5.7.2 Examples

Example 5.6. For a one sided power analysis we wish to test the following hypotheses:

For a one sample test:
H0 : µ= µ0 vs. Ha : µ> µ0

For a two sample test:
H0 : µ1 = µ2 vs. Ha : µ1 > µ2

In R, thepower.t.test command is useful to calculate how many samples one needs
to obtain a certain power of a test, but also to calculate the power when we have a given
number of samples.

Example 5.7. How many samples do I need to get a power of .9?

power.t.test(power = .95, delta=1.5,sd=2, type="one.sample",

alternative = "one.sided")

One-sample t test power 
al
ulation

n = 20.67702

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.95

alternative = one.sided

32



We would thus need a sample size of n = 31.15 or≈ 32 samples to obtain a power of 0.9
for our analysis.

Example 5.8. With a sample size of n = 45, what will the power of my test be?

power.t.test(n=45,delta=1.5,sd=2,sig.level=0.05,type="one.sample",

alternative="one.sided")

One-sample t test power 
al
ulation

n = 45

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.9995287

alternative = one.sided

This is done the same way for two samples only by changing the alternative to
"two.sample". For two sided power analysis, one only needs to change the alternative to
"two.sided".

Example 5.9. If one is interested in doing a power analysis for an ANOVA test, this is
done in a fairly similar way.

With a given sample size of n=20:

power.anova.test(groups=4, n=20, between.var=1, within.var=3)

Balanced one-way analysis of variance power calculation

groups = 4

n = 20

between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9679022

To calculate the sample size needed to obtain a power of 0.90 for a test:

power.anova.test(groups=4, between.var=1, within.var=3, power=.9)

Balanced one-way analysis of variance power calculation

groups = 4

n = 15.18834
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between.var = 1

within.var = 3

sig.level = 0.05

power = 0.9

5.8 The power of the 2-sided t-test

A power analysis on a two-sided t-test can be done in R using the power.t.testcommand.

5.8.1 Details

For a one sample test:
H0 : µ= µ0 vs. Ha : µ 6= µ0

The power.t.test command is useful to provide information for determining the minim-
um sample size one needs to obtain a certain power of a test:

power.t.test(n= ,delta= ,sd= ,sig.level= ,power= ,type=
("two.sample"

,"one.sample","paired"),alternative=
("two.sided"))

where:
n=sample size
d=effect size
sd=standard deviation
sig.level=significance level
power= normally 0.8, 0.9 or 0.95
type= two sample, one sample or paired (the type selected depends on the research)
alternative= either one sided or two sided

5.8.2 Examples

Example 5.10. How many samples do I need in my research to obtain a power of 0.8?

power.t.test(delta=1.5,sd=2,sig.level=0.05,power=0.8,type=
("two.

sample"),alternative=
("two.sided"))

Two-sample t test power 
al
ulation

n = 28.89962

delta = 1.5

sd = 2

sig.level = 0.05

power = 0.8

alternative = two.sided

So, one needs 29 samples (n=29) to obtain a power level of 0.8 for this analysis.
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5.9 The power of the 2-sample one and two-sided t-tests

The power of a two sample, one-sided t-test can be computed asfollows:

β(µ1µ2) = Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2





and the power of a two sample, two-sided t-test is give by:

β(µ1µ2)=Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2



+Pµ1µ2




Z+∆

»

U/(n+m−2)
<−t∗1−α,n+m−2





where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE.

5.9.1 Details

Two Sample, One-sided t-Test:
Suppose data are gathered independently from two normal populations resulting in

X1, . . . ,Xn ∼ n(µ1,σ2)

Y1, . . . ,Ym ∼ n(µ2,σ2)

where all data are independent then

X−Y ∼ n(µ1−µ2,
σ2

n
+

σ2

m
)

The null hypothesis in question isHo : µ1 = µ2 versus alternativeHa : µ1 > µ2. If Ho is true
then the observed value

t =
x−y

s
√

1
n +

1
m

comes from a t-distribution withn+m− 2 degrees of freedom and we rejectHo if |t| >
t∗1−α,n+m−2

The power of the test can be computed as follows:

β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2




X−Y

S
√

1
n +

1
m

> t∗1−α,n+m−2





= Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/σ
> t∗1−α,n+m−2








= Pµ1µ2








Z+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
> t∗1−α,n+m−2








= Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2




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where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE of the samples which is divided by the appropriate

degrees of freedom to give aχ2 distribution.

This is the probability that a non-centralt-variable exceedst∗.

Two Sample, Two-sided t-Test:
In this case the null hypothesis is defined asHo : µ1 = µ2 versus alternativeHa : µ1 6= µ2.

The power of the test can be computed as follows:

β(µ1µ2) = Pµ1µ2 [re ject Ho]

= Pµ1µ2






∣
∣
∣
∣
∣
∣
∣

X−Y

S
√

1
n +

1
m

∣
∣
∣
∣
∣
∣
∣

> t∗1−α,n+m−2






= Pµ1µ2




X−Y

S
√

1
n +

1
m

> t∗1−α,n+m−2





+Pµ1µ2




X−Y

S
√

1
n +

1
m

<−t∗1−α,n+m−2





= Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
> t∗1−α,n+m−2








+Pµ1µ2








X−Y−(µ1−µ2)

σ
»

1
n+

1
m

+ (µ1−µ2)

σ
»

1
n+

1
m

S/
»

(n+m−2)
<−t∗1−α,n+m−2








= Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2





+Pµ1µ2




Z+∆

»

U/(n+m−2)
<−t∗1−α,n+m−2





where∆ = (µ1−µ2)

σ
»

1
n+

1
m

andU is the SSE of the samples which is divided by the appropriate

degrees of freedom to give aχ2 distribution.

Note 5.3.Note that the power of a test can be obtained using thepower.t.test function in
R.

5.10 Sample sizes for two-sample one and two-sided t-tests

The sample size should always satisfy the desired power.
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5.10.1 Details

Suppose we want to reject theHo with a pre-specified probabilityβ1 whenµ1 andµ2 are
true values ofµ. For this, we need to select the sample sizen andm so thatβ(µ1µ2) ≥ β1

i.e. findn andm which satisfies

Pµ1µ2




Z+∆

»

U/(n+m−2)
> t∗1−α,n+m−2





for a two sample, one-sided t-test.

Similarly for a two sample, two-sided t-test we need to findn andm that satisfies

Pµ1µ2

ñ

Z+∆√
U/(n+m−2)

> t∗1−α,n+m−2

ô

+ Pµ1µ2

ñ

Z+∆√
U/(n+m−2)

<−t∗1−α,n+m−2

ô

5.11 A case study in power

Want to compute power in analysis of covariance:

yi j = µi +βxi j + εi j , i = 1,2, j = 1, . . .J,

whereεi j ∼ n(0,σ2) are i.i.d.?

This can be done by simulation and can easily be expanded to other cases.

5.11.1 Handout

Example 5.11. If you want to compute a power analysis in analysis of covariance:

yi j = µi +βxi j + εi j , i = 1,2, j = 1, . . .J,

whereεi j ∼ n(0,σ2) are i.i.d. then use simulation.

To do this one needs to first define the task in more detail, along with what exactly is
known and what the assumptions are.

Note 5.4.Note that there are only two groups, with interceptsµ1 andµ2. The "power"will
refer to the power of a test forµ1 = µ2, i.e. we want to test whether the group means are
equal, correcting for the effect of the continuous variablex.

In principle, thex-values will be either fixed a priori or they may be a random part of the
experiment. Here we will assume that thex-values are randomly selected in the range
20-30 (could e.g. be the ages of patients).

Since this is in the planning stage of the experiment, we alsohave a choice of the sample
size within each group. For convenience, the sample sizes are taken to be the same in
each group,J so the total number of measurements will ben = 2J. We also need to
decide at which levels ofµ1 andµ2 the power is to be computed (but it is really only a
function of the difference,µ1−µ2).

The following pieces of R code can be saved into a file, "ancovapow.r"and then command
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sour
e("an
ovapow.r")

can be used to run the whole thing.

The beginning of the command sequence merely consists of comments and definitions of
parameter values. These need to be changed for each case separately.

#

# an
ovapow.r - power 
omputations for analysis of 
ovararian
e

# - one fa
tor, two levels mu0, mu1

# - one 
ovariate x, x0 stores possible values from whi
h a random

set is 
hosen

#

# first set values of parameters

#

alpha<-0.05

sigma<-7.5 # the 
ommon standard deviation

x0<-20:30 # the set of x values

delta<-10 # the differen
e in the means

mu0<-0 # the first mean

mu1<-mu0+delta # the se
ond mean

slope<-2.5 # the slope in the an
ova

J<-10 # the 
ommon sample size per fa
tor level

n<-2*J # the total sample size

Nsim<- 40000 # the number of simulations for power 
omputations

Rather than head straight for the ancova, start with a simpler case, namely ignoring the
covariate (x) and merely doing a regular two-sample, two-tailed t-test.This should be
reasonably similar to the ancova power computations anyway.

#

# Next do the power 
omputations just for a regular two-sided, two-

sample t-test

# and use simulation

#

Y1<-matrix(rnorm(J*Nsim,mu0,sigma),n
ol=J) # Simulate Nsim samples

of size J, ea n(mu1,sigma^2)

Y2<-matrix(rnorm(J*Nsim,mu1,sigma),n
ol=J) # Simulate Nsim samples

of size J, ea n(mu2,sigma^2)

y1mn<-apply(Y1,1,mean) # 
ompute all the simulated y1-means

y2mn<-apply(Y2,1,mean) # 
ompute all the simulated y2-means

sy1<-apply(Y1,1,sd) # 
ompute all the simulated y1-std.devs

sy2<-apply(Y2,1,sd) # 
ompute all the simulated y2-std.devs

s<-sqrt(((J-1)*sy1^2+(J-1)*sy2^2)/(n-2)) # 
ompute all the pooled

std.devs

t<-(y1mn-y2mn)/(s*sqrt(1/J+1/J)) # 
ompute all the Nsim t-statisti
s

i<-ifelse(abs(t)>qt(1-alpha/2,n-2),1,0) # for ea t, 
ompute 1=reje
t

, 0=do not reje
t

powsim2<-sum(i)/Nsim # the simulated power


at("The simulated power is ",powsim2,"\n")

The above gave the simulated power. In R there is a function todo the same computations
and it is worth while to verify the code (and approach) by checking whether these give
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the same thing:

#

# Then 
ompute the exa
t power for the t-test

#

pow2<-power.t.test(delta=delta,sd=sigma,sig.level=alpha,n=J ,type=
(

"two.sample"),alternative=
("two.sided"))


at("The exa
t power:\n")

print(pow2)

Finally, start setting up the code to do the ancova simulations. Note that for this we need
to generate the x-values. In this example it is assumed that the x-values are not under the
control of the experimenter but arrive randomly, in the range from 20 to 30 (could e.g. be
the age of participants in an experiment).

#

# Finally 
ompute the power in the an
ova - note we already have

simulated Y1, Y2-values but have not added the x-part yet

#

x1<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) # simulate x-values

for y1

x2<-matrix(sample(x0,Nsim*J,repla
e=T),n
ol=J) # simulate x-values

for y2

Y1<-Y1+slope*x1

Y2<-Y2+slope*x2

fulldat<-
bind(Y1,Y2,x1,x2) # a row now 
ontains all y1, then all y2

, then all x1, then all x2; Nsim rows

Rather than try to write code to do an ancova, it is natural to use the R function lm to do
this. The “trick” below is to extract the P-value from the summary command. By defining
a “wrapper” function which takes a single line as an argument, it will subsequently be
possible to use the “apply” function to extract the P-valuesusing a one-line R command.

an
ova.pval<-fun
tion(onerow){ # extra
t the an
ova p-value for diff

in means

J<-length(onerow)/4

n<-2*J

y<-onerow[1:n℄ # get the y-data from the row

x<-onerow[(n+1):(2*n)℄ # get the x-data from the row

grps<-fa
tor(
(rep(1,J),rep(2,J))) # define the groups

sm<-summary(lm(y~x+grps)) # fit the an
ova model

pval<-sm$
oeffi
ients[3,4℄ # extra
t exa
tly the right thing from

the summary 
ommand-the P-value for H0:mu1=mu2

return(pval)

}

Everything has now been defined so it is possible to compute all the P-values in a single
command line:

pve
<-apply(fulldat,1,an
ova.pval)

i2<-ifelse(pve
<alpha,1,0) # for ea test, 
ompute 1=reje
t, 0=do not

reje
t

an
ovapow<-sum(i2)/Nsim # the simulated power


at("The simulated an
ova power is ",an
ovapow,"\n")
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When run, this script returns:

The simulated power is 0.803025

The exa
t power:

Two-sample t test power 
al
ulation

n = 10

delta = 10

sd = 7.5

sig.level = 0.05

power = 0.8049123

alternative = two.sided

NOTE: n is number in *ea
h* group

The simulated an
ova power is 0.775175

It is seen that when thex-values are not included in any way (in particular,β = 0), the
power is 80.5%. However, this is not the correct model in the present situation. Using the
above value ofβ and taking this into account, the power is actually a bit lower or 77.5%.
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