math612.4 612.4 Linear algebra, multivariate calculus and multivariate statistics

Gunnar Stefansson

19. desember 2016

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Acknowledgements

MareFrame is a EC-funded RTD project which seeks to remove the barriers preventing more widespread use of the ecosystem-based approach to fisheries management.

http://mareframe-fp7.org

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no.613571.

http://mareframe-fp7.org

Háskóli Íslands

http://www.hi.is/

Efnisyfirlit

1	Vectors and Matrix Operations 4				
	1.1	Numbers, vectors, matrices			
		1.1.1 Examples			
	1.2	Elementary Operations			
		1.2.1 Examples			
	1.3	The tranpose of a matrix			
		1.3.1 Details			
		1.3.2 Examples			
	1.4	Matrix multiplication			
		1.4.1 Details			
		1.4.2 Examples			
	1.5	More on matrix multiplication			
	1.6	Linear equations			
	1.0	1.6.1 Details			
		1.6.2 Examples			
	1.7	The unit matrix			
	1.8	The inverse of a matrix			
	1.0	1.8.1 Examples			
		1.6.1 Examples			
2	Som	e notes on matrices and linear operators			
	2.1	The matrix as a linear operator			
		2.1.1 Examples			
	2.2	Inner products and norms			
		2.2.1 Details			
		2.2.2 Examples			
	2.3	Orthogonal vectors			
	2.0	2.3.1 Details			
	2.4	Linear combinations of i.i.d. random variables			
	2	2.4.1 Examples			
	2.5	Covariance between linear combinations of i.i.d random variables			
	2.3	2.5.1 Details			
		2.5.2 Examples			
	2.6	Random vectors			
	2.0	2.6.1 Details			
		2.6.2 Examples			
	2.7	Transforming random vectors			
	2.1	2.7.1 Details			
		2.7.1 Details			
3	Ran	ks and determinants			
	3.1	The rank of a matrix			
		3.1.1 Details			
		3.1.2 Examples			
	3.2	The determinant			
		3.2.1 Details			
		3.2.2 Examples			
	3.3	Ranks, inverses and determinants			
	5	3.3.1 Details			

4	Multivariate calculus		
	4.1	Vector functions of several variables	17
		4.1.1 Examples	17
	4.2	The gradient	18
		4.2.1 Details	19
		4.2.2 Examples	19
	4.3	The Jacobian	19
		4.3.1 Details	19
		4.3.2 Examples	19
	4.4	Univariate integration by substitution	20
		4.4.1 Details	20
	4.5	Multivariate integration by substitution	20
		4.5.1 Details	21
		4.5.2 Examples	21
5	The	multivariate normal distribution and related topics	22
	5.1	Transformations of random variables	22
		5.1.1 Details	22
	5.2	The multivariate normal distribution	22
		5.2.1 Details	22
	5.3	Univariate normal transforms	23
		5.3.1 Details	23
	5.4	Transforms to lower dimensions	23
		5.4.1 Details	23
	5.5	The OLS estimator	24
		5.5.1 Details	24

1 Vectors and Matrix Operations

1.1 Numbers, vectors, matrices

Recall that the set of real numbers is \mathbb{R} and that a vector, $v \in \mathbb{R}^n$ is just an n-tuple of numbers.

Similarly, an *nxm* matrix is just a table of numbers, with n rows and m columns and we can write

$$A_{mn} \in \mathbb{R}^{mn}$$

Note that a vector is normally considered equivalent to a $n \times 1$ matrix i.e. we view these as column vectors.

1.1.1 Examples

```
Example 1.1. In R, a vector can be generated with:
```

```
X<- 3:6
```

Х

[1] 3 4 5 6

A matrix can be generated in R as follows,

matrix(X)

[,1]

[1,] 3

[2,] 4

[3,] 5

[4,]6

Note 1.1. We note that R distinguishes between vector and matrices.

1.2 Elementary Operations

We can define multiplication of a real number k and a vector $v = (v_1, ..., v_n)$ by $k \cdot v = (kv_1, ..., kv_n)$. The sum of two vectors in \mathbb{R}^n , $v = (v_1, ..., v_n)$ and $u = (u_1, ..., u_n)$ as the vector $v + u = (v_1 + u_1, ..., v_n + u_n)$. We can define multiplication of a number and a matrix and the sum of two matrices (of the same sizes) similarly.

1.2.1 Examples

1.3 The tranpose of a matrix

```
In R, matrices may be constructed using the "matrix" function and the transpose of A, A', may be obtained in R by using the "t" function:

A<-matrix(1:6, nrow=3)

t(A)
```

1.3.1 Details

If *A* is an $n \times m$ matrix with element a_{ij} in row *i* and column *j*, then A' or A^T is the $m \times n$ matrix with element a_{ij} in row *j* and column *i*.

1.3.2 Examples

 $n \times 1$ matrix.

```
Example 1.3. Consider a vector in R

x<-1:4

x

[1] 1 2 3 4

t(x)

        [,1] [,2] [,3] [,4]

[1,] 1 2 3 4

matrix(x)

        [,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

t(matrix(x))

        [,1] [,2] [,3] [,4]

[1,] 1 2 3 4
```

Note 1.2. Note that the first solution gives a $1 \times n$ matrix and the second solution gives a

1.4 Matrix multiplication

Matrices A and B can be multiplied together if A is an $n \times p$ matrix and B is an $p \times m$ matrix. The general element $c_i j$ of $n \times m$; C = AB is found by pairing the $i^t h$ row of C with the $j^t h$ column of B, and computing the sum of products of the paired terms.

1.4.1 Details

Matrices A and B can be multiplied together if A is a $n \times p$ matrix and B is a $p \times m$ matrix. Given the general element c_{ij} of nxm matrix, C = AB is found by pairing the i^th row of C with the j^th column of B, and computing the sum of products of the paired terms.

1.4.2 Examples

```
Example 1.4. Matrices in R
A < -matrix(c(1,3,5,2,4,6),3,2)
     [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
B<-matrix(1,1,2,3)2,2)
B < -matrix(c(1,1,2,3),2,2)
В
     [,1] [,2]
[1,] 1 2
[2,] 1 3
A%*%B
    [,1] [,2]
[1,] 3 8
[2,] 7 18
[3,] 11 28
```

1.5 More on matrix multiplication

Let A, B, and C be $m \times n$, $n \times l$, and $l \times p$ matrices, respectively. Then we have

$$(AB)C = A(BC)$$
.

In general, matrix multiplication is not commutative, that is $AB \neq BA$.

We also have

$$(AB)' = B'A'.$$

In particular, (Av)'(Av) = v'A'Av, when v is a $n \times 1$ column vector.

More obvious are the rules

- 1. A + (B+C) = (A+B) + C
- 2. k(A+B)=kA+kB
- 3. A(B+C)=AB+AC,

where $k \in \mathbb{R}$ and when the dimensions of the matrices fit.

1.6 Linear equations

1.6.1 Details

Detail:

General linear equations can be written in the form Ax = b.

1.6.2 Examples

Example 1.5. The set of equations

$$2x + 3y = 4$$

$$3x + y = 2$$

can be written in matrix formulation as

$$\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

7

i.e. $A\underline{x} = \underline{b}$ for an appropriate choice of of A, \underline{x} and \underline{b}

1.7 The unit matrix

The $n \times n$ matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

is the identity matrix. This is because if a matrix A is $n \times n$ then AI = A and IA = A

1.8 The inverse of a matrix

If A is an $n \times n$ matrix and B is a matrix such that

$$BA = AB = I$$

Then *B* is said to be the inverse of *A*, written

$$B = A^{-1}$$

Note that if A is an $n \times n$ matrix for which an inverse exists, then the equation Ax = b can be solved and the solution is $x = A^{-1}b$.

1.8.1 Examples

Example 1.6. If matrix A is:

$$\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$$

then A^{-1} is: $\begin{bmatrix} \frac{-1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{1}{2} \end{bmatrix}$

2 Some notes on matrices and linear operators

2.1 The matrix as a linear operator

Let *A* be an $m \times n$ matrix, the function

$$T_A: \mathbb{R}^n \to \mathbb{R}^m, T_A(\underline{x}) = A\underline{x},$$

is linear, that is

$$T_A(a\underline{x} + by) = aT_A(\underline{x}) + bT_A(y)$$

8

if $\underline{x}, \underline{y} \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$.

2.1.1 Examples

Example 2.1. If
$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}$$
 then $T_A(\underline{x}) = x + 2y$ where $\underline{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$

Example 2.2. If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 then $T_A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$

Example 2.3. If
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$
 then $T_A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 2y + 3z \\ x + z \end{bmatrix}$

Example 2.4. If
$$T {x \choose y} = {x+y \choose 2x-3y}$$
 then $T(\underline{x}) = A\underline{x}$ if we set $A = \begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix}$

2.2 Inner products and norms

Assuming x and y are vectors, then we define their inner product by

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

where
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

2.2.1 Details

If $x, y \in \mathbb{R}^n$ are arbitrary (column) vectors, then we define their inner product by

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

where
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Note 2.1. Note that we can also view x and y as $n \times 1$ matrices and we see that $x \cdot y = x'y$.

Definition 2.1. The normal length of a vector is defined by $||x||^2 = x \cdot x$. It may also be expressed as $||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

It is easy to see that for vectors a, b and c we have $(a+b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot b = b \cdot a$.

9

2.2.2 Examples

Two vectors x and y are said to be orthogonal if $x \cdot y = 0$

Example 2.5. If
$$x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 and $y = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, then

$$x \cdot y = 3 \cdot 2 + 4 \cdot 1 = 10$$
,

and

$$||x||^2 = 3^2 + 4^2 = 25,$$

SO

$$||x|| = 5$$

2.3 Orthogonal vectors

Two vectors x and y are said to be orthogonal if $x \cdot y = 0$ denoted $x \perp y$

2.3.1 Details

Definition 2.2. Two vectors x and y are said to be **orthogonal** if $x \cdot y = 0$ denoted $x \perp y$

If $a, b \in \mathbb{R}^n$ then

$$||a+b||^2 = a \cdot a + 2a \cdot b + b \cdot b$$

SO

$$||a+b||^2 = ||a||^2 + ||b||^2 + 2\underline{ab}.$$

Note 2.2. Note that if $a \perp b$ then $||a+b||^2 = ||a||^2 + ||b||^2$, which is Pythagoras' theorem in n dimensions.

2.4 Linear combinations of i.i.d. random variables

Suppose $X_1, ..., X_n$ are i.i.d. random variables and have mean $\mu_1, ..., \mu_n$ and variance σ^2 then the expected value of Y of the linear combination is

$$Y = \sum a_i X_i$$

and if $a_1, ..., a_n$ are real constants then the mean is:

$$\mu_Y = \sum a_i \mu_i$$

and the variance is:

$$\sigma^2 = \sum a_i^2 \sigma_i^2$$

2.4.1 Examples

Example 2.6. Consider two i.i.d. random variables, Y_1, Y_2 and a specific linear combination of the two, $W = Y_1 + 3Y_2$.

We first obtain

$$E[W] = E[Y_1 + 3Y_2] = E[Y_1] + 3E[Y_2] = 2 + 3 \cdot 2 = 2 + 6 = 8.$$

Similarly, we can first use independence to obtain

$$V[W] = V[Y_1 + 3Y_2] = V[Y_1] + V[3Y_2]$$

and then (recall that $V[aY] = a^2V[Y]$)

$$V[Y_1] + V[3Y_2] = V[Y_1] + 3^2V[Y_2] = 1^2 + 3^2 = 1(4) + 9(4) = 40$$

Normally, we just write this up in a simple sequence

$$V[W] = V[Y_1 + 3Y_2] = V[Y_1] + 3^2V[Y_2] = 1^2 + 3^2 = 1(4) + 9(4) = 40$$

2.5 Covariance between linear combinations of i.i.d random variables

Suppose Y_1, \ldots, Y_n are i.i.d., each with mean μ and variance σ^2 and $a, b \in \mathbb{R}^n$. Writing $Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$, consider the linear combination a'Y and b'Y.

2.5.1 Details

The covarience between random variables U and W is defined by

$$Cov(U, W) = E[(U - \mu_u)(W - \mu_w)]$$

where

$$\mu_u = E[U], \mu_w = E[W]$$

Now, let $U = a'Y = \sum Y_i a_i$ and $W = b'Y = \sum Y_i b_i$, where Y_1, \dots, Y_n are i.i.d. with mean μ and variance σ^2 , then we get

$$Cov(U, W) = E[(\underline{a}'Y - \Sigma a_{\mu})(\underline{b}'Y - \Sigma b_{\mu})]$$

= $E[(\Sigma a_{i}Y_{i} - \Sigma a_{i}\mu)(\Sigma b_{i}Y_{i} - \Sigma b_{i}\mu)]$

and after some tedious (but basic) calculations we obtain

$$Cov(U,W) = \sigma^2 a \cdot b$$

2.5.2 Examples

Example 2.7. If Y_1 and Y_2 are i.i.d., then

$$Cov(Y_1 + Y_2, Y_1 - Y_2) = Cov((1, 1) \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}, (1, -1) \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix})$$

$$= (1, 1) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \sigma^2$$

$$= 0$$

and in general, $Cov(\underline{a'Y},\underline{b'Y}) = 0$ if $\underline{a} \perp \underline{b}$ and Y_1, \dots, Y_n are independent.

2.6 Random vectors

 $Y = (Y_1, \dots, Y_n)$ is a random vector if Y_1, \dots, Y_n are random variables.

2.6.1 Details

Definition 2.3. If $EY_i = \mu_i$ then we typically write

$$E(Y) = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \mu$$

If $Cov(Y_i, Y_j) = \sigma i j$ and $V[Y_i] = \sigma_{ii} = \sigma_i^2$, then we define the matrix

$$\Sigma = (\sigma_{ij})$$

containing the variances and covariances. We call this matrix the **covariance matrix** of Y, typically denoted $V[Y] = \Sigma$ or $Cov[Y] = \Sigma$.

2.6.2 Examples

Example 2.8. If Y_i, \ldots, Y_n are i.i.d., $EY_i = \mu$, $VY_i = \sigma^2$, $a, b \in \mathbb{R}^n$ and U = a'Y, W = b'Y,

and
$$T = \begin{bmatrix} U \\ W \end{bmatrix}$$

then

$$ET = \begin{bmatrix} \sum a_i \mu \\ \sum b_i \mu \end{bmatrix}$$

$$VT = \Sigma = \sigma^2 \begin{bmatrix} \Sigma a_i^2 & \Sigma a_i b_i \\ \Sigma a_i b_i & \Sigma b_i^2 \end{bmatrix}$$

Example 2.9. If \underline{Y} is a random vector with mean μ and variance-covariance matrix Σ , then

$$E[a'Y] = a'\mu$$

 $\quad \text{and} \quad$

$$V[a'Y] = a'\Sigma a.$$

2.7 Transforming random vectors

Suppose

$$\mathbf{Y} = \left(\begin{array}{c} Y_1 \\ \vdots \\ Y_n \end{array}\right)$$

is a random vector with $E\mathbf{Y} = \mu$ and $V\mathbf{Y} = \Sigma$ where the variance-covariance matrix

$$\boldsymbol{\Sigma} = \boldsymbol{\sigma}^2 \boldsymbol{I}$$

2.7.1 Details

Note that if Y_1, \ldots, Y_n are independent with common variance σ^2 then

$$= \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \ddots & 0 & \vdots \\ \vdots & \ddots & \sigma_3^2 & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \sigma_n^2 \end{bmatrix}$$

$$= \sigma^2 \begin{bmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & \ddots & 0 & \vdots \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix} = \sigma^2 \mathbf{I}$$

If A is an $m \times n$ matrix, then

$$E[A\mathbf{Y}] = A\mu$$

and

$$V[A\mathbf{Y}] = A\Sigma A'$$

3 Ranks and determinants

3.1 The rank of a matrix

The rank of an nxp matrix, A, is the largest number of columns of A, which are not linearly dependent (i.e. the number of linearly independent columns).

3.1.1 Details

Vectors $a_1, a_2, ..., a_n$ are said to be linearly dependent if the constant $k_1, ..., k_n$ exists and are not all zero, such that

$$k_1\mathbf{a}_1 + k_2\mathbf{a}_2 + \ldots + k_n\mathbf{a}_n = 0$$

Note that if such constants exist, then we can write one of the a's as a linear combination of the rest, e.g. if $k_1 \neq 0$ then

$$a_1 = \mathbf{c_1} = -\frac{k_2}{k_1} a_2 - \dots - \frac{k_2}{k_1} a_n$$

It can be shown that the rank of A is the same as the rank of A' i.e. the maximum number of linearly independent rows of A.

Note 3.1. Note that if rank (A) = p, then the columns are linearly independent.

3.1.2 Examples

Example 3.1. If

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

the rank of A = 2, since

$$k_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

if and only if

$$\left(\begin{array}{c} k_1 \\ k_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

so the columns are linearly independent.

Example 3.2. If

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

the rank of A = 2.

Example 3.3. If

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

the rank of A = 2, since

$$1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$$

(and hence the rank can not be more than 2) but

$$k_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

if and only if $k_1 = k_2 = 0$ (and hence the rank must be at least 2).

3.2 The determinant

Recall that for a 2x2 matrix,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 the inverse of A is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$$

3.2.1 Details

Definition 3.1. The number ad - bc is called the **determinant** of the 2x2 matrix A.

Definition 3.2. Now suppose A is an nxn matrix. An elementary product from the matrix is a product of *n* terms based on taking exactly one term from each column of row x. Each such term can be written in the form $a_{1j_1} \cdot a_{2j_2} \cdot a_{3j_3} \cdot \ldots \cdot a_{nj_n}$ where j_1, \ldots, j_n is a permutation of the integers 1, 2, ..., n. Each permutation σ of the integers 1, 2, ..., n can be performed by repeatedly interchanging two numbers.

Definition 3.3. A signed elementary product is an elementary product with a positive sign if the number of interchanges in the permutation is even but negative otherwise.

15

The determinant of A, det(A) or |A| is the sum of all signed elementary products.

3.2.2 Examples

Example 3.4.
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 then $|A| = a_{1\underline{1}}a_{2\underline{2}} - a_{1\underline{2}}a_{2\underline{1}}$.

Example 3.5.
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

|A|

= $a_{11}a_{22}a_{33}$ This is the identity permutation and has positive sign

 $-a_{11}a_{23}a_{32}$ This is the permutation that only interchanges 2 and 3

 $-a_{12}a_{21}a_{33}$ Only one interchange

 $+a_{12}a_{23}a_{31}$ Two interchanges

 $+a_{13}a_{21}a_{32}$ Two interchanges

 $-a_{13}a_{22}a_{31}$ Three interchanges

Example 3.6.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 $|A| = -1$

Example 3.7.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

 $|A| = 1 \cdot 2 \cdot 3 = 6$

Example 3.8.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$
 $|A| = 0$

Example 3.9.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 0 \end{bmatrix}$$
 $|A| = -6$

Example 3.10.
$$A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$
 $|A| = 0$

Example 3.11.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 $|A| = 0$

3.3 Ranks, inverses and determinants

The following statements are true for an $n \times n$ matrix A:

- rank(A) = n
- $det(A) \neq 0$
- A has an inverse

3.3.1 Details

Suppose *A* is an $n \times n$ matrix. Then the following are truths:

- rank(A) = n
- $det(A) \neq 0$
- A has an inverse

4 Multivariate calculus

4.1 Vector functions of several variables

A vector-valued function of several variables is a function

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

i.e. a function of m dimensional vectors, which returns n dimensional vectors.

4.1.1 Examples

Example 4.1. A real valued function of many variables: $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x_1, x_2, x_3) = 2x_1 + 3x_2 + 4x_3$.

17

Note 4.1. Note that f is linear and f(x) = Ax where $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $A = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$.

Example 4.2. Let

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

where:

$$f(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$$

Note 4.2. Note that f(x) = Ax, where $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

Example 4.3. Let

$$f: \mathbb{R}^3 \to \mathbb{R}^4$$

be defined by

$$f(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_3 \\ y - z \\ x_1 + x_2 + x_3 \end{pmatrix}$$

Note 4.3. Note that:

$$f(x) = Ax$$

where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

Example 4.4. These multi-dimensional functions do not have to be linear, for example the function $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x) = \left(\begin{array}{c} x_1 x_2 \\ x_1^2 + x_2^2 \end{array}\right),$$

is obviously not linear.

4.2 The gradient

Suppose the real valued function $f: \mathbb{R}^m \to \mathbb{R}$ is differentiable in each coordinate. Then the gradient of f, denoted ∇f is given by

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_1}\right).$$

18

4.2.1 Details

Definition 4.1. Suppose the real valued function $f: \mathbb{R}^m \to \mathbb{R}$ is differentiable in each coordinate. Then the **gradient** of f, denoted ∇f is given by

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_1}\right),$$

where each partial derivative $\frac{\partial f}{\partial x_i}$ is computed by differentiating f with respect to that variable, regarding the others as fixed.

4.2.2 Examples

Example 4.5.

$$f(\underline{x}) = x^2 + y^2 + 2xy; \ \frac{\partial f}{\partial x} = 2x + 2y, \frac{\partial f}{\partial y} = 2y + 2x, \nabla f = (2x + 2y, 2y + 2x)$$

Example 4.6.

$$f(\underline{x}) = x_1 - x_2; \nabla f = \begin{pmatrix} 1, & -1 \end{pmatrix}$$

4.3 The Jacobian

Now consider a function $f: \mathbb{R}^m \to \mathbb{R}^n$. Write f_i for the i^{th} coordinate of f, so we can write $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$, where $x \in \mathbb{R}^m$. If each coordinate function f_i is differentiable in each variable we can form the *Jacobian matrix* of f:

$$\begin{pmatrix} \nabla f_1 \\ \vdots \\ \nabla f_n \end{pmatrix}$$

4.3.1 Details

Now consider a function $f: \mathbb{R}^m \to \mathbb{R}^n$. Write f_i for the i^{th} coordinate of f, so we can write $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$, where $x \in \mathbb{R}^m$. If each coordinate function f_i is differentiable in each variable we can form the *Jacobian matrix* of f:

$$\begin{pmatrix} \nabla f_1 \\ \vdots \\ \nabla f_n \end{pmatrix}$$

19

In this matrix, the element in the $i^t h$ row and $j^t h$ column is $\frac{\partial f_i}{\partial x_i}$.

4.3.2 Examples

Example 4.7. For the function

$$f(x,y) = \begin{pmatrix} x^2 + y \\ xy \\ x \end{pmatrix} = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \\ f_3(x,y) \end{pmatrix},$$

the Jacobian matrix of f is the matrix

$$J = \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ \nabla f_3 \end{bmatrix} = \begin{bmatrix} 2x & 2y \\ y & x \\ 1 & 0 \end{bmatrix}.$$

4.4 Univariate integration by substitution

If f is a continuous function and g is strictly increasing and differentiable then,

$$\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(t))g'(t)dt$$

4.4.1 Details

If f is a continuous function and g is strictly increasing and differentiable then,

$$\int_{g(a)}^{g(b)} f(x)dx = \int_{a}^{b} f(g(t))g'(t)dt$$

It follows that if X is a continuous random variable with density f and Y = h(X) is a function of X that has the inverse $g = h^{-1}$, so X = g(Y), then the density of Y is given by,

$$f_Y(y) = f(g(y))g'(y)$$

This is a consequence of

$$P[Y \le b] = P[g(Y) \le g(b)] = P[X \le g(b)] = \int_{-\infty}^{g(b)} f(x)dx = \int_{-\infty}^{b} f(g(y))g'(y)dy.$$

4.5 Multivariate integration by substitution

Suppose f is a continuous function $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one function with continuous partial derivatives. Then if $U \subset \mathbb{R}^n$ is a subset,

$$\int_{g(u)} f(\underline{x}) d\underline{x} = \int_{u} (\underline{g}(\underline{y})) |J| d\underline{y}$$

where J is the Jacobian matrix and |J| is the absolute value of it's determinant.

$$J = \begin{vmatrix} \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \cdots & \frac{\partial g_1}{\partial y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_n}{\partial y_1} & \frac{\partial g_n}{\partial y_2} & \cdots & \frac{\partial g_n}{\partial y_n} \end{vmatrix} \end{vmatrix} = \begin{vmatrix} \nabla g_1 \\ \vdots \\ \nabla g_n \end{vmatrix} \begin{vmatrix} \nabla g_n \\ \vdots \\ \nabla g_n \end{vmatrix}$$

20

4.5.1 Details

Suppose f is a continuous function $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one function with continuous partial derivatives. Then if $U \subseteq \mathbb{R}^n$ is a subset,

$$\int_{g(u)} f(\underline{x}) d\underline{x} = \int_{u} (\underline{g}(\underline{y})) |J| d\underline{y}$$

where J is the Jacobian determinant and |J| is its absolute value.

$$J = ig|egin{bmatrix} rac{\partial g_1}{\partial y_1} & rac{\partial g_1}{\partial y_2} & \cdots & rac{\partial g_1}{\partial y_n} \ dots & dots & \ddots & dots \ rac{\partial g_n}{\partial y_1} & rac{\partial g_n}{\partial y_2} & \cdots & rac{\partial g_n}{\partial y_n} \end{bmatrix}ig| = ig|ig|ig
abla g_1 \ dots \
abla g_1 \ \dots \
a$$

Similar calculations as in 4.5 give us that if X is a continuous multivariate random variable, $X = (X_1, ..., X_n)'$ with density f and $\underline{Y} = \underline{h}(\underline{X})$, where \underline{h} is 1-1 with inverse $g = h^{-1}$. So, $\underline{X} = g(\underline{Y})$, then the density of \underline{Y} is given by;

$$f_Y(\underline{y}) = f(g(y))|J|$$

4.5.2 Examples

Example 4.8. If $\underline{Y} = A\underline{X}$ where A is an $n \times n$ matrix with $det(A) \neq 0$ and $X = (X_1, \dots, X_n)'$ are i.i.d. random variables, then we have the following results:

The joint density of $X_1 \cdots X_n$ is the product of the individual (marginal) densities,

$$f_X(\underline{x}) = f(x_1)f(x_2)\cdots f(x_n)$$

The matrix of partial derivatives corresponds to $\frac{\partial g}{\partial y}$ where $X = g(\underline{Y})$, i.e. these are the derivatives of the transformation: $\underline{X} = \underline{g}(\underline{Y}) = A^{-1}\underline{Y}$, or $\underline{X} = B\underline{Y}$ where $B = A^{-1}$.

But if $X = B\underline{Y}$, then

$$X_i = b_{i1}y_1 + b_{i2}y_2 + \cdots + b_{ij}y_i \cdots b_{in}y_n$$

So, $\frac{\partial x_i}{\partial y_i} = b_{ij}$ and thus,

$$J = \left| \frac{\partial d\underline{x}}{\partial dy} \right| = |B| = |A^{-1}| = \frac{1}{|A|}$$

The density of \underline{Y} is therefore;

$$f_Y(\underline{y}) = f_X(g(y))|J| = f_X(A^{-1}\underline{y}) = |A^{-1}|$$

5 The multivariate normal distribution and related topics

5.1 Transformations of random variables

Recall that if X is a vector of continuous random variables with a joint probability density function and if Y = h(X) such that h is a 1-1 function and continuously differentiable with inverse g so X = g(Y), then the density of Y is given by

$$f_Y(y) = f(g(y))|J|$$

5.1.1 Details

J is the Jacobian determinant of g. In particular if Y = AX then

$$f_Y(y) = f(A^{-1}y)|det(A^{-1})|$$

if A has an inverse.

5.2 The multivariate normal distribution

5.2.1 Details

Consider i.i.d. random variables, $Z_1, \ldots, Z_n \sim (0,1)$, written $\underline{Z} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix}$ and let $\underline{Y} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix}$

 $A\underline{Z} + \underline{\mu}$ where A is an invertible nxn matrix and $\underline{\mu} \in \mathbb{R}^n$ is a vector, so $X = A^{-1}(Y - \underline{\mu})$

Then the p.d.f. of Y is given by

$$f_{\underline{Y}}(\underline{y}) = f_{\underline{Z}}(A^{-1}(\underline{y} - \underline{\mu}))|det(A^{-1})|$$

But the joint p.d.f. of \underline{Z} is the product of the p.d.f.'s of Z_1, \ldots, Z_n , so $f_{\underline{Z}}(\underline{z}) = f(z_1) \cdot f(z_2) \cdot \ldots \cdot f(z_n)$ where

$$f(z_i) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

and hence

$$f_{\underline{Z}}(\underline{z}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{\frac{-z^2}{2}}$$
$$= (\frac{1}{\sqrt{2\pi}})^n e^{-\frac{1}{2} \sum_{i=1}^{n} z_i^2}$$
$$= \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \underline{z}' \underline{z}}$$

since

$$\sum_{i=1}^{n} z_i^2 = \|\underline{z}\|^2 = \underline{z} \cdot \underline{z} = \underline{z}' \underline{z}$$

The joint p.d.f. of \underline{Y} is therefore

$$f_{\underline{Y}}(y) = f_{\underline{Z}}(A^{-1}(y-\mu))|det(A^{-1})|$$

$$=\frac{1}{(2\pi)^{\frac{n}{2}}}e^{-\frac{1}{2}(A^{-1}(\underline{y}-\underline{\mu}))'(A^{-1}(\underline{y}-\underline{\mu}))}\frac{1}{|det(A)|}$$

We can write $det(AA') = det(A)^2$ so $|det(A)| = \sqrt{det(AA')}$ and if we write $\Sigma = AA'$, then

$$|det(A)| = |\Sigma|^{\frac{1}{2}}$$

Also, note that

$$(A^{-1}(\underline{y} - \underline{\mu}))'(A^{-1}(\underline{y} - \underline{\mu})) = (\underline{y} - \underline{\mu})'(A^{-1})'A^{-1}(\underline{y} - \underline{\mu}) = (\underline{y} - \underline{\mu})'\Sigma^{-1}(\underline{y} - \underline{\mu})$$

We can now write

$$f_{\underline{Y}}(\underline{y}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\underline{y} - \underline{\mu})\Sigma^{-1}(\underline{y} - \underline{\mu})}$$

This is the density of the multivariate normal distribution.

Note that

$$E[\underline{Y}] = \mu$$

$$V[\underline{Y}] = V[A\underline{Z}] = AV[\underline{Z}]A' = AIA' = \Sigma$$

Notation: $\underline{Y} \sim n(\mu, \Sigma)$

5.3 Univariate normal transforms

The general univariate normal distribution with density

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

is a special case of the multivariate version.

5.3.1 Details

Further, if $Z \sim n(0,1)$, then clearly $X = aZ + \mu \sim n(\mu, \sigma^2)$ where $\sigma^2 = a^2$

5.4 Transforms to lower dimensions

If $Y \sim n(\mu, \Sigma)$ is a random vector of length n and A is an $m \times n$ matrix of rank $m \le n$, then $AY \sim n(A\mu, A\Sigma A')$.

5.4.1 Details

If $Y \sim n(\mu, \Sigma)$ is a random vector of length n and A is an $m \times n$ matrix of rank $m \le n$, then $AY \sim n(A\mu, A\Sigma A')$.

To prove this, set up an $(n-m) \times n$ matrix, B, so that the $n \times n$ matrix, C, formed from combining the rows of A and B is of full rank n. Then it is easy to derive the density of CY which also factors nicely into a product, only one of which contains AY, which gives the density for AY.

5.5 The OLS estimator

Suppose $Y \sim n(X\beta), \sigma^2 I$). The ordinary least squares estimator, when the $n \times p$ matrix is of full rank, p, where $p \le n$, is:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

The random variable which describes the process giving the data and estimate is:

$$b = (X'X)^{-1}X'Y$$

It follows that

$$\hat{\beta} \sim n(\beta, \sigma^2(X'X)^{-1})$$

5.5.1 Details

Suppose $Y \sim n(X\beta, \sigma^2 I)$. The ordinary least squares estimator, when the $n \times p$ matrix is of full rank, p, is:

$$\hat{\beta} = (X'X)^{-1}X'Y.$$

The equation below is the random variable which describes the process giving the data and estimate:

$$b = (X'X)^{-1}X'Y$$

If $B = (X'X)^{-1}X'$, then we know that

$$BY \sim n(BX\beta, B(\sigma^2 I)B')$$

Note that

$$BX\beta = (X'X)^{-1}X'X\beta = \beta$$

and

$$B(\sigma^{2}I)B' = \sigma(X'X)^{-1}X'[(X'X)^{-1}X']'$$
$$= \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1}$$
$$= \sigma^{2}(X'X)^{-1}$$

It follows that

$$\hat{\boldsymbol{\beta}} \sim n(\boldsymbol{\beta}, \boldsymbol{\sigma}^2(X'X)^{-1})$$