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1 Vectors and Matrix Operations

1.1 Numbers, vectors, matrices

Recall that the set of real numbersRsand that a vectory € R" is just an n-tuple of
numbers.

Similarly, annxmmatrix is just a table of numbers, with n rows and m columnswed
can write

Ampn€ R™

Note that a vector is normally considered equivalentmoxal matrix i.e. we view these
as column vectors.
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1.1.1 Examples

Example 1.1. In R, a vector can be generated with:

X<- 3:6
X
[1] 3456

A matrix can be generated in R as follows,

matrix(X)
[,1]
[1,1 3
[2,] 4
[3,1 5
4,1 6

Note 1.1.We note that R distinguishes between vector and matrices.

1.2 Elementary Operations

We can define multiplication of a real numbeand a vectow = (v,...,Vy) by k-v=

(kv ...,kvw,). The sum of two vectors iR", v= (vi,...,Vy) andu= (u,...,un) as the
vectorv+u = (v1+U,...,Vh+Un). We can define multiplication of a number and a
matrix and the sum of two matrices (of the same sizes) silyilar

1.2.1 Examples

Example 1.2. A <- matrix(c(1,2,3,4), nr=2, nc=2)
A

[,11 [,2]
(1,1 13
2,1 24




B <- matrix(c(1,0,2,1), nr=2, nc=2)

[,11 [,2]

1.3 The tranpose of a matrix

In R, matrices may be constructed using the "matrix"funrcéind the transpose 6§ A/,
may be obtained in R by using the "t"function:

A<-matrix(1:6, nrow=3)

t(A)

1.3.1 Details

If Ais annx mmatrix with elemeng;;j in row i and columnj, thenA’ or AT is themx n
matrix with elementyj in row j and column.

1.3.2 Examples

Example 1.3. Consider a vector in R

x<-1:4
X
[11 12 3 4
t(x)
[,11 [,2]1 [,3] [,4]
[1,] 1 234
matrix(x)
[,1]
[1,1 1
[2,]1 2
[3,1 3
(4,1 4
t(matrix(x))
[,11 [,2]1 [,3] [,4]
[1,] 1 234

Note 1.2.Note that the first solution gives a<in matrix and the second solution giveg a
nx 1 matrix.




1.4 Matrix multiplication

Matrices A and B can be multiplied together if A is
annx pmatrix and B is arp x mmatrix. The general g, .
element; j of n x m; C = ABis found by pairing the { : ?M_l;],

32 - 3
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ith row of C with thej'h column of B, and computing
the sum of products of the paired terms.

1.4.1 Details

Matrices A and B can be multiplied together if A i;m& p matrix and B is g x m matrix.
Given the general elemeqf of nxmmatrix, C = AB s found by pairing thé'h row of C
with the jth column of B, and computing the sum of products of the pairezse

1.4.2 Examples

Example 1.4. Matrices in R

A<-matrix(c(1,3,5,2,4,6),3,2)
A

[,11 [,2]
[1,] 12
[2,] 34
[3,] 566
B<-matrix(1,1,2,3)2,2)

B<-matrix(c(1,1,2,3),2,2)




1.5 More on matrix multiplication

Let A B, andC bemxn, nx |, andl x p matrices, respectively. Then we have
(AB)C =A(BC).

In general, matrix multiplication is not commutative, ti@AB # BA.

We also have
(AB) =B'A.

In particular,(Av)’'(Av) = VA'Av, whenv is an x 1 column vector.
More obvious are the rules

1. A+ (B+C)=(A+B)+C

2. k(A+B)=kA+kB

3. A(B+C)=AB+AC,

wherek € R and when the dimensions of the matrices fit.

1.6 Linear equations

1.6.1 Details

Detalil:

General linear equations can be written in the féxr= b.

1.6.2 Examples

Example 1.5. The set of equations

2X+3y=4
X+y=2

can be written in matrix formulation as

2 3| x| |4
3 1 ly] |2
i.e. Ax= b for an appropriate choice of &f x andb




1.7 The unit matrix

Then x n matrix

10 0
_|0 1 0
0 . 0

0 01

is the identity matrix. This is because if a matAxs n x nthenAl = A andlA =A

1.8 The inverse of a matrix

If Ais annx n matrix andB is a matrix such that

BA=AB=|

ThenB is said to be the inverse & written

B=A1

Note that ifA is ann x n matrix for which an inverse exists, then the equatton= b
can be solved and the solutiondis= A~b.

1.8.1 Examples

Example 1.6. If matrix A is:
2 3

5o

thenA1is:
-1 3

i

2 Some notes on matrices and linear operators

2.1 The matrix as a linear operator

Let A be anm x n matrix, the function

Ta:R" — R Ta(x) = AX,

is linear, that is

Ta(ax-+by) = aTa(x) + bTa(y)

if x,y € R"anda,b € R.




2.1.1 Examples

Example 2.1. If A= [1 2] thenTa(x) = x+ 2y wherex = (;) € R?

Example 2.2. If A=

01
10

thenTA(i) = m

023 X
Example 2.3. If A= { thenTa [ vy | =
z

2y + 32}

2
1 01 X+2z

X+Yy

Example 2.4. If T(§) = < ox— 3y

> thenT (x) = Axif we set A = {1 ! }

2 -3

2.2 Inner products and norms

Assumingx andy are vectors, then we define their inner product by

XY =X1y1 +Xo¥Y2+ -+ + XnYn

X1 Y1
wherex= | : | andy=

Xn Yn
2.2.1 Detalls

If X, y € R" are arbitrary (column) vectors, then we define their innedpct by

XY =X1y1+X2Y2+ -+ + XnYn

X1 Y1
wherex= | : | andy=

Xn Yn
Note 2.1.Note that we can also viewandy asn x 1 matrices and we see thaty = X'y.

Definition 2.1. The normal length of a vector is defined HJ)5/||2 = X-X. It may also bg
expressed ax|| = /%3 +X5 + -+ X2.

It is easy to see that for vectoasb andc we have(a+b)-c=a-c+b-canda-b=Db-a.
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2.2.2 Examples

Two vectorsx andy are said to be orthogonabif y =0

Example 2.5.If x= (i) andy = (i) then
X-y=3-2+4-1=10,
and

I1X||? = 3%+ 4% = 25,

SO

Xl =5

2.3 Orthogonal vectors

Two vectorsx andy are said to be orthogonabif y = 0 denotedk L y

2.3.1 Detalils

Definition 2.2. Two vectorsx andy are said to b@rthogonal if x-y =0 denotedk | y

If a,b € R"then

la+b||?=a-a+2a-b+b-b
SO

la+b][? = ||a]|*+||bj]* +2ab.

Note 2.2.Note that ifa L bthen||a-+b||*> = ||a||?+ ||b||?, which is Pythagoras’ theorem in

n dimensions.

2.4 Linear combinations of i.i.d. random variables

Supposey, ...., X, are i.i.d. random variables and have mean..., 1, and variances?
then the expected value ¥fof the linear combination is

Y=> aX

and ifay, ...., an are real constants then the mean is:

by = ail
and the variance is:

o’ =Y a’c?

10




2.4.1 Examples

Example 2.6. Consider two i.i.d. random variable¥;,Y>» and a specific linear coml)-
ination of the twoW = Y; + 3Y.

We first obtain
EW] =E[Y1+3Y2] =E[Y1] +3E[Yz] =2+3-2=2+6=38.
Similarly, we can first use independence to obtain
VW] =V[Y1+3Yz] = V[Y1] +V[3Y)]
and then (recall that [aY] = a2V[Y])
VY1 +V[3Ys] = V[Y1] + 3V [Yo] = 12+ 3% = 1(4) + 9(4) = 40
Normally, we just write this up in a simple sequence

VW] =V Y1 +3Y] = V[Y1] + 3V [Yo] = 12+ 32 = 1(4) + 9(4) = 40

2.5 Covariance between linear combinations of i.i.d randorwariables

Supposérs, ..., Y, are i.i.d., each with meap and variances? anda,b € R". Writing
Y1
Y= : , consider the linear combinati@y andb'Y.
Yn
2.5.1 Details

The covarience between random variatieandW is defined by

Cov(U,W) =E[(U — pu) (W — )]
where
Hu=E[U], pw = E[W]

Now, letU = &Y = Y Yia andW = b'Y = S Yib;j, whereYs,. ... Y, are i.i.d. with mean
and variance?, then we get

Co\U,W) = E[(@Y — Zay)(b'Y — by
= E[(ZaYi — Zajp) (Zb;Yj — Zbj)]

and after some tedious (but basic) calculations we obtain

CovU,W) =c%a-b

2.5.2 Examples
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Example 2.7. If Y1 andY; are i.i.d., then

CoMY1+Y2,Y1 —Y2) =CoV(1,1) ( \2 ) ,(1,-1) ( % >)

:(1,1)< _11 )02
=0

and in generalCov@Y,bY) =0if albandyi,...,Y, are independent.

2.6 Random vectors

Y = (Y1,...,Yy) is arandom vector i¥y,...,Y, are random variables.

2.6.1 Details

Definition 2.3. If EY, = | then we typically write
M1
E(V)=| : |=H

Hn
If CouY;,Yj) =aij andV[Y] = g = a?, then we define the matrix

z =(aij)

containing the variances and covariances. We call thisixnége covariance matrix of
Y, typically denoted/[Y] = X orCo\Y]| =Z.

2.6.2 Examples

Example 2.8.1f Y,,...,Yyare i.i.d. EY =, VY =02, abe R"andU =aY, W =b'Y,
and T= U
Y
then
_ [Za
ET= {zuu}
Ya?  Zaibj
— 5 — 2 i
Vi=e=o {Zabi 72 }

Example 2.9.1f Y is a random vector with megmand variance-covariance matrx
then
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E[@Y] =au

and

V[dY]=dza

2.7 Transforming random vectors

Suppose

Y1
v=1| :
Yh

is a random vector witkY = pandVY = X where the variance-covariance matrix

> = o4l

2.7.1 Details

Note that ifYs, ..., Y, are independent with common variar@ethen

[ 0"% O12 013 ... Gln_
021 03 O3 ... Onx
>=1 031 O3 O'% ... O3n
| Ot Oz Op3 ... 02 |
[0 0 ... ... 0]
0 o5 . 0
O . . 0
0 .. 0 a3
r1 O 07
0 1 0
— o 1 = o2l
O . . 0
1 0 .. 0 1]
If Ais anmx n matrix, then
E[AY] = Au
and
V[AY]:AZA’
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3 Ranks and determinants

3.1 The rank of a matrix

The rank of annxp matrix, A, is the largest number of columns Af which are not
linearly dependent (i.e. the number of linearly indepemndetumns).

3.1.1 Details

Vectorsay, ay, ..., a, are said to be linearly dependent if the constant. ., k, exists and
are not all zero, such that
kiag +koag+... +knan =0

Note that if such constants exist, then we can write one of'thas a linear combination
of the rest, e.g. ik; # 0 then

a1:C]_:—k—1a2—...—k—1an

It can be shown that the rank éfis the same as the rank Afi.e. the maximum number
of linearly independent rows &.

Note 3.1.Note that if rank(A) = p, then the columns are linearly independent.

3.1.2 Examples

Example 3.1. If

the rank ofA = 2, since

o(0) k()= (0)

if and only if

so the columns are linearly independent.

Example 3.2. If

o
o+ O

Or P
| |

the rank ofA = 2.
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Example 3.3. If

the rank ofA = 2, since

(3)(3) ()

(and hence the rank can not be more than 2) but

(E)(0)

if and only if k; = ko = 0 (and hence the rank must be at least 2).

3.2 The determinant

Recall that for a 2x2 matrix,

a b
A= c d
the inverse oA is

2 3
-1__1
A “ad-bc |3 1

3.2.1 Detalils

Definition 3.1. The numbernd — bcis called thedeterminantof the 2x2 matrixA.

Definition 3.2. Now SupposeA is annxn matrix. An elementary product from the
matrix is a product oh terms based on taking exactly one term from each column o
x. Each such term can be written in the foaay, - azj, - agj; - - - .- anj, wherejy,..., jnisa
permutation of the integers 2, ...,n. Each permutation of the integers 12,...,n can
be performed by repeatedly interchanging two numbers.

sign if the number of interchanges in the permutation is éxemegative otherwise.

The determinant of A, det(A) dA\| is the sum of all signed elementary products.

15
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Definition 3.3. A signed elementary productis an elementary product with a positie



3.2.2 Examples

ail

Example 3.4. A=
a1

then
|A| = ajjdp2 — a12a21.

aio
ago

a1l
Example 3.5. A= |ay;

azi
Al

aip ai3
dpp  az3
az2 aszs

= ajjazrass This is the identity permutation and has positive sign
—ajjaz3azz This is the permutation that only interchanges 2 and 3
—azoaziasz Only one interchange
+ajoaz3a31 Two interchanges
+ai3azi1az2 Two interchanges
—aj3aprazy Three interchanges

11
Example3.6.A:{1 0}
Al=-1

100
Example 3.7.A= [0 2 0]

0 0 3
|A|=1-2-3=6

1 00
Example 3.8.A= [0 2 0]

0 30
|A|=0

1 00
Example 3.9.A= |0 O 2]

0 30
|A| = —6
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Example 3.10.A= {
|A|=0

21
21

101
Example 3.11.A= (0 1 1
112

Al =0

3.3 Ranks, inverses and determinants

The following statements are true for arx n matrix A:

e rank(A)=n
e det(A)#0

e A has an inverse

3.3.1 Detalils

Suppos& is ann x n matrix. Then the following are truths:
e rank(A)=n

e det(A) #0
e Ahas an inverse

4 Multivariate calculus

4.1 \ector functions of several variables

A vector-valued function of several variables is a function
f:RM - RN

i.e. a function oim dimensional vectors, which returnglimensional vectors.

4.1.1 Examples

Example 4.1. A real valued function of many variables: : R — R, f(X1,%2,X3) =
2X1 + 3Xo + 4Xs.

X1
Note 4.1.Note thatf is linear andf (x) = Axwherex = <X2> andA=2 3 4.
X3

17



Example 4.2. Let

f:R% 5 R?
where:
[ X1tX
f(Xl,Xz) = ( X1 — Xo )

Note 4.2.Note thatf (x) = Ax, whereA = E _11} :

Example 4.3. Let

f: RS R*
be defined by
X1+ X2
i X1 —X3
f(x) = y—z
X1+ X2+ X3
Note 4.3.Note that:
f(X) = AX
where
11 O
1 0 -1
A= 01 -1
11 1

Example 4.4. These multi-dimensional functions do not have to be linfarexample
the functionf : R? — R?
X1 X2
f(x) =
=45 )

is obviously not linear.

4.2 The gradient

Suppose the real valued functién R™ — R is differentiable in each coordinate. Th¢
the gradient off, denotedf is given by

Of() = (55, ... .5).

01 ) 0%

18



4.2.1 Details

Definition 4.1. Suppose the real valued functidn R™ — R is differentiable in eacl\
coordinate. Then thgradient of f, denoted1f is given by

Df(x):(g—xfl, g—xfl)

where each patrtial derivativg;g Is computed by differentiating f with respect to tiat
variable, regarding the others as fixed.

4.2.2 Examples

Example 4.5.

f(X) = X2+ y?+2xy; o :2x+2y,% =2y+2%0f = (x+2y, 2y+2x)

Example 4.6.
f(x) =x1—%;0f = (1, —1)

4.3 The Jacobian

Now consider a functiorf : R™ — R". Write f; for theit" coordinate off, so we can

write f(x) = (f1(x), f2(x),..., fn(x)), wherex € R™. If each coordinate functioff; is
differentiable in each variable we can form thacobian matriof f:

Ofq

Ofn

4.3.1 Details

Now consider a functiori : R™ — R". Write f; for theit" coordinate off, so we can write

f(x) = (f1(x), f2(%),..., fn(x)), wherex e R™. If each coordinate functiofj is differentia-
ble in each variable we can form tacobian matriof f:

Of1
Ofq

In this matrix, the element in thiéh row andjth column is 2!

ox;

4.3.2 Examples
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Example 4.7. For the function

X2 +y fl(x7 y)
fxy)=( xy |=1{ faxy |,
X f3(X, y)
the Jacobian matrix of is the matrix

Of1 2xX 2y
J=|0Of2| =y Xx]|.
Ofs 1 O

4.4 Univariate integration by substitution

If fisa continuous function amglis strictly increasing and differentiable then,

[0 100ax= [ tgng et

4.4.1 Details

If fis a continuous function anglis strictly increasing and differentiable then,

[ tax= [ f(aw)d et
g

(@) a

It follows that if X is a continuous random variable with densityandY = h(X) is a
function of X that has the inversg= h~1, soX = g(Y) , then the density of is given by,

This is a consequence of

g(b
()f

PIY < b = Pig(Y) <g(b)] = PIX < a(b)] = [ f(ax= [ 1(aly))d/(y)dy

[ee]

4.5 Multivariate integration by substitution

Suppos¢ is a continuous functiofi : R" — R andg: R" — R" is a one-to-one function
with continuous partial derivatives. Therldf C R" is a subset,

| f(9dx= [ (gy))l3ldy
g(u) u
wherel is the Jacobian matrix and |J| is the absolute value of itsradenant.

o 0 ... 9%

dyr 0y; OYn Dgl
J=11: + . =]

9n 99 .. 9% 0

i oy % Gn

20



45.1 Details

Supposef is a continuous functiori : R" — R andg: R" — R" is a one-to-one function
with continuous partial derivatives. Therldf C R" is a subset,

.., 90— [ (@) ey

wherel is the Jacobian determinant and |J| is its absolute value.

oyp Oy, Oyn H[s}]
J=1: + o =]
9gn 99 ., 9% 0

dy1  dy2 dYn Gn

Similar calculations as in 4.5 give us thakfis a continuous multivariate random variable,
X = (Xg,...,X%y)" with density f andY = h(X), where_his 1-1 with inverseg = h~%. So,
X =g(Y), then the density of Ys given by;

fv(y) = f(a(y))J|

4.5.2 Examples

Example 4.8.1f Y = AX where A is an n x n matrix with det(A) # 0 andI
X = (Xg,...,X%,)" are i.i.d. random variables, then we have the followingltesu

The joint density oiX; - - - X, is the product of the individual (marginal) densities,

fx(x) = T(x) f(x2) -~ T (xn)

The matrix of partial derivatives correspondsgg)wherex =g(Y), i.e. these are the
derivatives of the transformatiox = g(Y) = A-1Y, or X = BY whereB = A1,

But if X = BY, then

Xi = bizy1 +bizyz + - - - bijy; - - - binyn

So,g—;‘: — byj and thus,

gdx, . g 1
I=I5ayl = IBI= A =15

The density of Yis therefore;

fr(y) = fx(9(y) 9l = fx(A™ly) = |A™]

21



5 The multivariate normal distribution and related topics

5.1 Transformations of random variables

Recall that ifX is a vector of continuous random variables with a joint plolitg density
function and ifY = h(X) such thath is a 1-1 function and continuously differential
with inverseg soX = g(Y), then the density of is given by

fy(y) = f(a(y))|J|

e

5.1.1 Details

J is the Jacobian determinant@fIn particular ifY = AX then
fr(y) = f(A™ly)|det(A™)]

if Ahas an inverse.

5.2 The multivariate normal distribution

5.2.1 Details
Z;
Consider i.i.d. random variableZy,...,Z, ~ (0,1), written Z = : and letY =
Zn
AZ -+ pwhereAis an invertiblenxnmatrix andu € R" is a vector, s& = A—l(Y —W.

Then the p.d.f. o¥ is given by

fr(y) = fz(A~H(y— 1)) [det(A™)]

But the joint p.d.f. ofZ is the product of the p.d.f.'s dfy,...,Zn, SOfz(2) = f(z1) - f(2) -
.- f(z,) where

1 2
f(z) = —€e 2
(@) 211
and hence
n 1 2
fz2(2) = || —=€72
2(2) il;[l o
1 15
= (——)"'e 221:1
(75)
(2m)2
since
n
N7 =|zZf=z2z=2z



Nl

I 1 T T
(2m)? |det(A)|

We can writedet(AX) = det(A)? so|det(A)| = /det(AA) and if we writeZ = AA/, then
det(A) = |2|2

Also, note that

We can now write

fy (y) = %e—%(z—_)zfl(z—ﬁ)
(2mz2|z|z
This is the density of the multivariate normal distribution
Note that
EY]=u

VY] =VIAZ = AV[ZIA = AIA =%
Notation:Y ~ n(W, X)

5.3 Univariate normal transforms

The general univariate normal distribution with density

(y-w?

e 202

fy(y) = \/zim

is a special case of the multivariate version.

5.3.1 Details
Further, ifZ ~ n(0,1), then clearlyX = aZ+ u~ n(y, 0) whereg? = a?

5.4 Transforms to lower dimensions

If Y ~n(WZ) is a random vector of lengthandA is anm x n matrix of rankm < n,
thenAY ~ n(Ap, AZA).

5.4.1 Details

If Y ~n(W Z) is a random vector of lengthandA is anm x n matrix of rankm < n, then
AY ~ n(ApL AZA).

To prove this, set up aftn —m) x n matrix, B, so that then x n matrix, C, formed from
combining the rows oA andB is of full rankn. Then it is easy to derive the density@Y

which also factors nicely into a product, only one of whiclmt@nsAY, which gives the
density forAY.
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5.5 The OLS estimator

Supposer ~ n(XB),c?l). The ordinary least squares estimator, whenrtlxep matrix
is of full rank, p, wherep < n, is:

B=(X'X)"X'Y
The random variable which describes the process givingdteahd estimate is:
b= (X'X)"XY

It follows that

B~n(B,a*(X'X)™")

5.5.1 Details

Suppos& ~ n(XB,a?l). The ordinary least squares estimator, whermtkep matrix is of
full rank, p, is: A
B= (X'X)"IXY.

The equation below is the random variable which describeptbcess giving the data and
estimate:
b= (X'X)"IX'Y

If B= (X'X)~1X’, then we know that
BY ~ n(BXB,B(c?%)B)
Note that
BXB = (X'X)"IX'XB=p

and
B(0?1)B = o(X'X) IX/[(X'X)"IX")

= o?(X'X)"IX'X(X'X) 7L
— 0.2()(/)()71

It follows that A
B~ n(B,a* (X))
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