Probability theory

Anna Helga Jónsdóttir Sigrún Helga Lund

Prepared at the University of Iceland

July 2020

Randomness

- Descriptive statistics describe the sample that we have obtained
- Statistical inference uses the sample to draw conclusions about the whole population.
- The variables that we measure are influenced by some randomness.
- We therefore look at every measurement as a random phenomena.
- In this lecture we look closer at random phenomena.

Events, outcomes and outcome space.

Outcome and outcome space
Every random phenomena has certain possible outcomes. The set of all possible outcomes is the outcome space an is denoted with Ω.

Event
An Event is a particular outcome or a set of particular outcomes of a random phenomena.

Disjoint events

Disjoint events

We say that events A and B are disjoint if they contain no common outcome.

Mynd: Disjoint and joint events.

Union and intersection of events

Union of events
The union of events A and B is denoted $A \cup B$. It is the set of all outcomes that are in either A or B or both of them.

Intersection of events
The Intersection of events A and B is denoted $A \cap B$. It is the set of al outcomes that are in both A and B. If A and B are disjoint, then their intersection is empty.

$A \cup B$

$A \cap B$

The complement of an event

Complement of an event
The Complement of an event A is denoted A^{C}. It s the set of all outcomes in Ω that are not it A.

Mynd: Complement.

Probability

Probability

The probability of a certain outcome of a certain outcome of a random phenomena is the proportion of the cases when that the random phenomena gets that outcome when the phenomena is repeated often enough. This ratio can be at minimum zero and at maximum one.

Probability of an event
The probability of an event A, denoted $P(A)$, is the probability that the observed outcome will be in A.

Equally likely outcomes

Equally likely outcomes
Equally likely outcomes are only defined for random phenomena with finite Ω. Then the probability of every outcome in Ω is the same.

Probability of events when all outcomes are equally likely If all of the outcomes of a random phenomena are equally likely, then the probability of an event A are:

$$
P(A)=\frac{\text { number of outcomes in } A}{\text { number of outcomes in } \Omega}
$$

Formulas

Formulas
(1) $P(\Omega)=1$
(2) $P\left(A^{C}\right)=1-P(A)$
(3) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(4) If A and B are disjoint, $P(A \cup B)=P(A)+P(B)$

Conditional probability

Conditional probability
With $P(A \mid B)$ we denote the probability that event A occurs, given that event B has occurred. The probability of $P(A \mid B)$ can be calculated with

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Probability of intersection of events

$$
P(A \cap B)=P(A \mid B) P(B), \quad \text { if } P(B)>0
$$

Independent events

Independent events
We say that events A and B are independent if the probability that an event A occurs does not change even though the event B has occurred and vice versa.

Probability of independent events
If A and B are independent, then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Random variable

Random variable
Random variable describes the outcome of a variable before it is measured

Syntax for random variables
Random variables are denoted with capital letters, often X Values that a random variable has received are denoted with lower-case letters, often x
The same letter is always used for a random variable and the value it has received.

Discrete and continuous random variables

Discrete random variables
Discrete random variables describe discrete variables. They have a finite set of possible outcomes on every limited interval.

Continuous random variables
Continuous random variables describe continuous variables. They can obtain any outcome on some interval.

Syntax for the probability of random variables

Syntax for the probability of random variables
$P(X \leq a)$: Denotes the probability that the outcome of a random variable X will be less or equal then the value a.
$P(X \geq a)$: Denotes the probability that the outcome of a random variable X will be greater or equal then the value a.
$P(a \leq X \leq b)$: Denotes the probability that the outcome of a random variable X will be between a and b, both values included
$P(X=a)$: Denotes the probability that the outcome of a random variable X will be exactly the value a.

Probability distribution of random variables

Probability distribution random variables
The Probability distribution of a random variable is a rule that tells us which values a random variable can receive and furthermore:
$P(X=a)$ for all values a it can receive if the probability distribution is discrete.
$P(a \leq X \leq b)$ for all values a and b if the probability distribution is continuous.

The probability distribution of a random variable gives us all available information possible of the random variable!
Why do you think that we define the probability distribution in a different manner depending on whether the random variable is discrete or continuous?

Types of probability distributions

Types of probability distributions
The randomness of many of the variables that we investigate are similar by nature.
Then the random variables that they describe behave similarly. As a consequence, they will have similar probability distributions. Then we say that the probability distributions of the random variables are of the same type.

Parameter

Parameter

Every type of probability distribution is described with numbers that are called the parameters of the probability distribution. Different parameters describe different probability distributions .
Normally the parameters are only one or two.
If we know the type of the probability distribution of a random variable, the values of its parameters give all information available about the random variables.

Short summary

- One can talk about the probability that a random variable receives certain values.
- That probability is described by the probability distribution of the random variables, that give all information available about the random variables.
- Many random variables have probability distributions of a known type.
- Every type of probability distribution is described with numbers that are called parameters.
- To every type of probability distributions belong certain parameters and they are normally one or two.
- If we know the type of the probability distribution of a random variable, the values of its parameters give all information available about the random variables.

Independent random variables

Independent random variables
We say that two random variables are independent if the outcome of one random variable does not affect the outcome of the other random variable.

Dependent random variables

We say that two random variables are dependent if they are not independent, that is, if the outcome of one random variable does not affect the outcome of the other random variable or vice versa.

Independent and identically distributed random variables
We say that random variables X_{1}, \ldots, X_{n} are independent if each of them is independent to all of the others and identically distributed if they all have the same probability distribution.

Expected value of a random variable

Expected value of a random variables
Expected value of a random variable is the true mean of the random variable. It is either denoted with μ or $E[X]$. It is also called population mean when appropriate.

Law of large numbers
As the number of measurements of a random variable X grows, the mean of the measurements, denoted \bar{x}, gets closer to the expected value of the random variable, denoted μ or $E[X]$.

Expected value of a discrete random variable

Expected value of a discrete random variable
If a random variable is discrete its expected value is the weighted mean of all of its possible outcomes, where the weight of each outcome is the probability that the random variable receives that outcome.

Formula for the expected value of a discrete random variable If a random variable X is discrete, then its expected value is

$$
\mu=\sum x_{i} \cdot P\left(X=x_{i}\right)
$$

where we sum over all possible outcomes of the random variable.

Variance of random variables

Variance of random variables, $\operatorname{Var}[X]$
As random variables have true means, they also have a true variance. It is either denoted with σ^{2}, or $\operatorname{Var}[X]$. It is also called the population variance when appropriate.

Formula for the variance of a discrete random variable The variance of a discrete random variable is

$$
\sigma^{2}=\sum\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)
$$

where we sum over all possible outcomes of the random variable.

