Simple linear regression

Anna Helga Jónsdóttir Sigrún Helga Lund

Prepared at University of Iceland

July 2020

Main topics:

(1) Scatter plot
(2) The equation of a straight line
(3) Correlation and causation
(4) Simple linear regression
(5) Inference in linear regression.

Scatter plot

Scatter plot

Scatter plots are used to investigate the relationship between two numerical variables.
The value of one variable is on the y-axis (vertical) and the other on the x-axis (horizontal).
When one of the variable is an explanatory variable and the other one is a response variable, the response variable is always on the y-axis and the explanatory variable on the x-axis.

Response variables and explanatory variables

For every subject, the value of an explanatory variable will influence what value the response variable receives.

Scatter plot - continuous variables

Scatter plot with a categorical variable

Heimsmetstími í 1500m hlaupi

The equation of a straight line

The equation of a straight line
The equation of a straight line describes a linear relationship between two variables, x and y. The equation is written

$$
y=\beta_{0}+\beta_{1} x
$$

where β_{0} is the intercept of the line on the y-axis and β_{1} is the slope of the line.

The equation of a straight line

Mynd: The equation of a straight line.

Linear relationship

Linear relationship

We say that the relationship between two variables is linear if the equation of a straight line can be used to predict which value the response variable will take based on the value of the explanatory variable.

Notice that there can be all sorts of relationship between two variables. For example, the relationship can be described with a parabola, an exponential function and so on. Those relationship are referred to as nonlinear and are not covered in this lecture.

Linear and nonlinear relationship

Mynd: Scatter plot where the relationship between two variables is linear (above) and nonlinear (below).

Sample coefficient of correlation

Sample coefficient of correlation
Assume that we have n measurements on two variables x and y. Denote the mean and the standard deviation of the variable x with \bar{x} and s_{x} and the mean and the standard deviation of the y variable with \bar{y} and s_{y}. The sample coefficient of correlation is

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

Be careful! We only use correlation to estimate linear relationship!

The size and direction of a linear relationship

The direction of a linear relationship
The sign of the correlation coefficients determines the direction of a linear relationship. It is either positive or negative.

- If the correlation coefficient of two variables is positive, we say that their correlation is positive.
- If the correlation coefficient of two variables is negative, we say that their correlation is negative.

The size of a linear relationship
The absolute value of a correlation coefficient describes the size of the linear relationship between the variables.
It tells us how well we can predict the value of the response variable from the value of the explanatory variable.

The size and direction of a linear relationship

$$
r=1
$$

$r=0$

$$
r=0.65
$$

Mynd: Scatter plot for various values of r.

Correlation and causation

- Causation is when changes in one variable cause changes in the other variable.
- There is often strong correlation between two variables although there is no causal relationship.
- In many cases, the variables are both influenced by the third variable which is then a lurking variable.
- Therefore, high correlation on its own is never enough to claim that there is a causal relationship between two variables.

The linear regression model

The linear regression model
The simple linear regression model is written

$$
Y=\beta_{0}+\beta_{1} x+\varepsilon
$$

when β_{0} and β_{1} are unknown parameters and ε is a normally distributed random variable with mean 0 .

The aim of the simple linear regression is first and foremost to estimate the parameters β_{0} and β_{1} with the measurements of the two variables, x and Y.
The method we use is called the least squares method.

The least squares method

Mynd: Many lines, but which one is the best?

The least squares method

Mynd: The least squares method.

The least squares regression line

The least squares regression line
Denote the mean and standard deviation of the x variable with \bar{x} and s_{x} and the y variable with \bar{y} and s_{y} and their correlation coefficient with r. Let b_{0} denote the estimate of β_{0} and b_{1} denote the estimate of β_{1}. Then b_{0} and b_{1} are given with the equation

$$
\hat{\beta}_{1}=b_{1}=r \frac{s_{y}}{s_{x}}
$$

and

$$
\hat{\beta}_{0}=b_{0}=\bar{y}-\beta_{1} \bar{x} .
$$

We use the parameters to predict the value of y for a given value of x with the least squares regression line

$$
\hat{y}=b_{0}+b_{1} x
$$

Residuals

Residuals

The vertical distance from our measurements to the regression line are called the residuals and are denoted with e. The size of the residuals can be calculated with

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

Points above the regression line have a positive residue but points below it have a negative.

Residual plot

The residual plot shows the residuals on the y-axis and the explanatory variable on the x-axis.

Mynd: Scatter plot of the data and a residual plot.

Residual plot

Mynd: Residual plot

Interpolation

Interpolation
If the regression model is used to predict a value of Y for some value of x which is similar to the x-values that were used to estimate the model is referred to as interpolating.

Extrapolation

Extrapolation

Extrapolating is using the regression model to predict a value of Y for some value of x which is far from the x-values that were used to estimate the model.
It can be very questionable to extrapolate!

Coefficient of determination

r^{2} in linear regression
If the coefficient of correlation is raised to the second power, r^{2}, we calculate the coefficient of determination.
r^{2} is the proportional variability in Y that can be explained with the variability in x.

Outliers and influential measurements

Mynd: Outliers and their residuals.

Outliers and influential measurements

Mynd: An influential measurements.

Treatment of outliers and influential measurements

- Outliers and influential measurements shall always be viewed carefully.
- If a mistake has been made, the measurement shall be eliminated.
- If it cannot be shown that a mistake has been made it is often good to show estimates with and without these measurements.
- In some cases it is more appropriate to use the estimates without the outliers/influential measurements.
- In these cases, it shall be pointed out that the model does not it data outside the range of the measurements used for estimating the model.

The linear regression model

If we have n paired measurements $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, the regression model can be written as

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i} .
$$

- β_{0} is the true intercept (population intercept) that we do not know the value of.
- β_{1} is the true slope (population slope)
- ϵ_{i} are the errors.
β_{0} and β_{1} are therefore statistics, that we both want to estimate and make inference on.
We do that by applying the least squares method to our data.

The random variable ε

ε describes the uncertainty in our measurements of Y.
We assume that ε_{i} are independent and identically distributed random variables that follow a normal distribution with mean 0 and variance σ^{2}.

Estimating σ^{2} in simple linear regression
The estimate of σ^{2} in simple linear regression is denoted with s_{e}^{2} and calculated with

$$
s_{e}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2} .
$$

This is the same equation as for the "normal"standard deviation, but now we divide with $n-2$ but not $n-1$.

Confidence interval for β_{0}

Confidence interval for β_{0}
The lower bound of a $1-\alpha$ confidence interval for β_{0} is:

$$
b_{0}-t_{1-\alpha / 2,(n-2)} \cdot s_{e} \sqrt{\frac{1}{n}+\frac{(\bar{x})^{2}}{s_{x}^{2} \cdot(n-1)}}
$$

The upper bound of $1-\alpha$ confidence interval is:

$$
b_{0}+t_{1-\alpha / 2,(n-2)} \cdot s_{e} \sqrt{\frac{1}{n}+\frac{(\bar{x})^{2}}{s_{x}^{2} \cdot(n-1)}}
$$

where b_{0} is calculated the same way as usual, n is the number of paired measurements, \bar{x} is the mean of the explanatory variable, s_{x} is the standard deviation of the explanatory variable and $t_{1-\alpha / 2,(n-2)}$ is in the table for the t-distribution.

Confidence interval for β_{1}

Confidence interval for β_{1}

The lower bound of $1-\alpha$ confidence interval for β_{1} is:

$$
b_{1}-t_{1-\alpha / 2,(n-2)} \cdot s_{e} \frac{1}{\sqrt{s_{x}^{2} \cdot(n-1)}}
$$

The upper bound of $1-\alpha$ confidence interval is:

$$
b_{1}+t_{1-\alpha / 2,(n-2)} \cdot s_{e} \frac{1}{\sqrt{s_{x}^{2} \cdot(n-1)}}
$$

where b_{1} is calculated the same way as usual, n is the number of paired measurements, s_{x} is the standard deviation of the explanatory variable and $t_{1-\alpha / 2,(n-2)}$ is found in the t -distribution table.

Prediction interval

Prediction interval
The lower bound of1 $-\alpha$ prediction interval for Y is:

$$
\left(b_{0}+b_{1} x_{0}\right)-t_{1-\alpha / 2,(n-2)} \cdot s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x}^{2}(n-1)}}
$$

The upper bound of $1-\alpha$ prediction interval is:

$$
\left(b_{0}+b_{1} x_{0}\right)+t_{1-\alpha / 2,(n-2)} \cdot s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{s_{x}^{2}(n-1)}}
$$

where b_{0} and b_{1} are calculated the same way as usual, n is the number of paired measurements, s_{x} is the standard deviation of the explanatory variable and $t_{1-\alpha / 2,(n-2)}$ is found in the t -distribution table.

Hypothesis test for the correlation coefficient

Hypothesis test for ρ
The null hypothesis is:

$$
H_{0}: \rho=0
$$

The test statistic is:

$$
T=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

If the null hypothesis is true the test statistic follows the t distribution with n -2 degrees of freedom or $T \sim t(n-2)$.

Alternative hypothesis	Reject H_{0} if:
$\mathrm{H}_{1}: \rho<0$	$T<-t_{1-\alpha}$
$\mathrm{H}_{1}: \rho>0$	$T>t_{1-\alpha}$
$\mathrm{H}_{1}: \rho \neq 0$	$T<-t_{1-\alpha / 2}$ or $T>t_{\alpha / 2}$

