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1 Simple linear regression

1.1 Scatter plot

Scatter plot
Scatter plots are used to inves-
tigate the relationship between
two numerical variables.

The value of one variable is on
the y-axis (vertical) and the other
on the x-axis (horizontal).

When one of the variable is an ex-
planatory variable and the other
one is a response variable, the re-
sponse variable is always on the
y-axis and the explanatory vari-
able on the x-axis.

Response variables and ex-
planatory variables
For every subject, the value of
anexplanatory variable will in-
fluence what value theresponse
variable receives.

1.2 Scatter plot - continuous variables
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1.3 The equation of a straight line

The equation of a straight line
The equation of a straight line de-
scribes a linear relationship be-
tween two variables,x andy. The
equation is written

y = β0+β1x

whereβ0 is the intercept of the
line on the y-axis andβ1 is the
slopeof the line.
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1.4 The equation of a straight line
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Figure 1: The equation of a straight line.

1.5 Linear relationship

Linear relationship
We say that the relationship be-
tween two variables islinear if
the equation of a straight line can
be used to predict which value the
response variable will take based
on the value of the explanatory
variable.

Notice that there can be all sorts of rela-
tionship between two variables. For exam-
ple, the relationship can be described with
a parabola, an exponential function and so
on. Those relationship are referred to as
nonlinear and are not covered in this lec-
ture.

1.6 Linear and nonlinear relationship

Linear relationship Linear relationship

Nonlinear relationship Nonlinear relationship

Figure 2: Scatter plot where the relationship between two variables is linear (above) and nonlinear (below).
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1.7 Sample coefficient of correlation

Sample coefficient of correla-
tion
Assume that we haven measure-
ments on two variablesx andy.

Denote the mean and the stan-
dard deviation of the variablex
with x̄ and sx and the mean and
the standard deviation of they
variable with ¯y andsy .

The sample coefficient of corre-
lation is

r =
1

n−1

n
∑

i=1

(

xi − x̄

sx

)(

yi − ȳ

sy

)

.

Be careful! We only use correlation to es-
timatelinear relationship!

1.8 The size and direction of a linear relationship

The direction of a linear rela-
tionship
The sign of the correlation coef-
ficients determines thedirection
of a linear relationship. It is ei-
ther positive or negative.

• If the correlation co-
efficient of two vari-
ables is positive, we
say that their corre-
lation ispositive.

• If the correlation co-
efficient of two vari-
ables is negative, we
say that their corre-
lation isnegative.

The size of a linear relationship
The absolute value of a correla-
tion coefficient describes thesize
of the linear relationship between
the variables.
It tells us how well we can predict
the value of the response variable
from the value of the explanatory
variable.
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Figure 3: Scatter plot for various values ofr.

1.9 The size and direction of a linear relationship

1.10 Correlation and causation

• Causationis when changes in
one variablecausechanges in
the other variable.

• There is often strong correla-
tion between two variables al-
though there is no causal rela-
tionship.

• In many cases, the variables
are both influenced by the
third variable which is then a
lurking variable .

• Therefore, high correlation on
its own is never enough to
claim that there is a causal re-
lationship between two vari-
ables.

1.11 The linear regression model

The linear regression model
The simple linear regression
model is written

Y = β0+β1x+ ε

when β0 and β1 are unknown
parameters andε is a normally
distributed random variable with
mean 0.

The aim of the simple linear regression is
first and foremost to estimate the parame-
tersβ0 andβ1 with the measurements of
the two variables,x andY .

The method we use is called the least
squares method.
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1.12 The least squares method
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Figure 4: Many lines, but which one is the best?

1.13 The least squares method
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Figure 5: The least squares method.

7



1.14 The least squares regression line

The least squares regression
line
Denote the mean and standard
deviation of thex variable with
x̄ and sx and they variable with
ȳ and sy and their correlation
coefficient withr.

Let b0 denote the estimate ofβ0
andb1 denote the estimate ofβ1.
Then b0 and b1 are given with
the equation

β̂1 = b1 = r
sy
sx

and

β̂0 = b0 = ȳ−β1x̄.

We use the parameters topredict
the value ofy for a given value
of x with the least squares regres-
sion line

ŷ = b0+b1x

Þorgerður and Birna like beer a lot. They decided to make an experiment to investigate the relationship
between the alcohol level in blood and the number of consumedbeers. 16 students took part in the
experiment, the data can be seen below.

2*Nemi Fjöldi Alkóhólmagn 2*Nemi Fjöldi Alkóhólmagn
bjóra í blóði bjóra í blóði

1 5 0.100 9 8 0.120
2 2 0.030 10 3 0.040
3 9 0.190 11 5 0.060
4 7 0.095 12 5 0.050
5 3 0.070 13 6 0.100
6 3 0.020 14 7 0.090
7 4 0.070 15 1 0.010
8 5 0.085 16 4 0.050

Use the method of least squares to fir fit a regression line to the data. From the data we can calculate:

x̄ = 4.813, sx = 2.198, ȳ = 0.074, sy = 0.044, r = 0.894.

The slope is

b1 = r
sy

sx
= 0.894· 0.044

2.198
= 0.018

and the intercept is:
b0 = ȳ−β1x̄ = 0.074− (0.018·4.813)=−0.013.

so the regression line is
ŷ =−0.013+0.018x.
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1.15 Residuals

Residuals
The vertical distance from our
measurements to the regression
line are called theresiduals and
are denoted withe. The size of
the residuals can be calculated
with

ei = yi − ŷi

Points above the regression line
have a positive residue but points
below it have a negative.

1.16 Residual plot
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Figure 6: Scatter plot of the data and a residual plot.

1.17 Interpolation

Interpolation
If the regression model is used
to predict a value ofY for some
value ofx which is similar to the
x-values that were used to esti-
mate the model is referred to as
interpolating .

Let us continue with the beer example. Predict the alcohol level in the blood of a person that has drunken
6.5 beers.

The regression equation is:
ŷ =−0.013+0.018x.

We used data from people drinking from one to nine beers so we are interpolating here. We insert 6.5 in
the equation and get:

ŷ =−0.013+(0.018·6.5)= 0.104.
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1.18 Extrapolation

Extrapolation
Extrapolating is using the re-
gression model to predict a value
of Y for some value ofx which
is far from thex-values that were
used to estimate the model.
It can be very questionable to ex-
trapolate!

1.19 Coefficient of determination

r2 in linear regression
If the coefficient of correlation is
raised to the second power,r2,
we calculate the coefficient of
determination.

r2 is the proportional variability
in Y that can be explained with
the variability inx.

We continue to work with the beer data. How much of the variability in the alcohol level can be ex-
plained by the number of consumed beers.

We saw earlier thatr = 0.894. So we get thatr2 = 0.8942 = 0.799. Around 80% of the variability in
alcohol level can be explained by the number of beers consumed.

1.20 Outliers and influential measurements
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Figure 7: Outliers and their residuals.
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Figure 8: Influential measurements?

1.21 Outliers and influential measurements

1.22 Treatment of outliers and influential measurements

• Outliers and influential mea-
surements shall always be
viewed carefully.

• If a mistake has been made,
the measurement shall be
eliminated.

• If it cannot be shown that a
mistake has been made it is
often good to show estimates
with and without these mea-
surements.

• In some cases it is more ap-
propriate to use the estimates
without the outliers/influential
measurements.

• In these cases, it shall be
pointed out that the model
does not it data outside the
range of the measurements
used for estimating the model.

1.23 The linear regression model

If we have n paired measurements
(x1,y1), . . ., (xn,yn), the regression
model can be written as

Yi = β0+β1xi + εi .

• β0 is the true intercept (popu-
lation intercept) that we do not
know the value of.

• β1 is the true slope (popula-
tion slope)

• εi are the errors.

β0 andβ1 are therefore statistics, that we
both want to estimate and make inference
on.

We do that by applying the least squares
method to our data.
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1.24 The random variableε

ε describes the uncertainty in our measure-
ments ofY .

We assume thatεi are independent and
identically distributed random variables
that follow a normal distributionwith mean
0 and varianceσ2.

Estimating σ2 in simple linear
regression

The estimate ofσ2 in simple lin-

ear regression is denoted withs2e
and calculated with

s2e =
∑n

i=1(yi − ŷi)
2

n−2
.

This is the same equation as for the "nor-
mal" standard deviation, but now we divide
with n−2 but notn−1.

1.25 Confidence interval forβ0

Confidence interval for β0
The lower bound of a 1−α con-
fidence interval forβ0 is:

b0−t1−α/2,(n−2) ·se

√

1
n
+

(x̄)2

s2x · (n−1)

The upper bound of 1−α confi-
dence interval is:

b0+t1−α/2,(n−2) ·se

√

1
n
+

(x̄)2

s2x · (n−1)

whereb0 is calculated the same
way as usual,n is the number
of paired measurements, ¯x is the
mean of the explanatory vari-
able,sx is the standard deviation
of the explanatory variable and
t1−α/2,(n−2) is in the table for

the t-distribution.
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1.26 Confidence interval forβ1

Confidence interval for β1
The lower bound of1−α confi-
dence interval forβ1 is:

b1−t1−α/2,(n−2) ·se
1

√

s2x · (n−1)

The upper bound of 1−α confi-
dence interval is:

b1+t1−α/2,(n−2) ·se
1

√

s2x · (n−1)

whereb1 is calculated the same
way as usual,n is the number
of paired measurements,sx
is the standard deviation of
the explanatory variable and
t1−α/2,(n−2) is found in the

t-distribution table.

1.27 Prediction interval

Prediction interval
The lower bound of1−α predic-
tion interval forY is:

(b0+b1x0)−t1−α/2,(n−2) ·se

√

√

√

√1+
1
n
+

(x0− x̄)2

s2x (n−1)

The upper bound of 1−α predic-
tion interval is:

(b0+b1x0)+t1−α/2,(n−2) ·se

√

√

√

√1+
1
n
+

(x0− x̄)2

s2x (n−1)

whereb0 and b1 are calculated
the same way as usual,n is
the number of paired measure-
ments,sx is the standard devia-
tion of the explanatory variable
and t1−α/2,(n−2) is found in

the t-distribution table.
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1.28 Hypothesis test for the correlation coefficient

Hypothesis test forρ
The null hypothesis is:

H0 : ρ = 0

The test statistic is:

T =
r
√

n−2
√

1− r2

If the null hypothesis is true the
test statistic follows the t distribu-
tion with n-2 degrees of freedom
or T ∼ t(n−2).

Alternative hypothesis RejectH0 if:
H1 : ρ < 0 T < −t1−α
H1 : ρ > 0 T > t1−α
H1 : ρ 6= 0 T < −t1−α/2 or T > tα/2

Atli is making an experiment to investigate whether there isa relationship between the icecream sales
in a certain shop and the temperature outside. He looks at sales numbers and temperature data on 38
days he chose randomly. He calculated the correlation to be 0.5. Can Atli conclude that the variables
temperature and icecream sales. Useα = 0.05.

1. We would like to make a hypothesis test for a correlation.

2. α = 0.05.

3. The hypotheses are:

H0 : ρ = 0

H1 : ρ 6= 0.

4. The test statistic is:

t =
r
√

n−2√
1− r2

.

We haven = 38 andr = 0.5.

t =
0.5

√
38−2√

1−0.52
=

0.5
√

36√
1−0.25

=
0.5 ·6√

0.75
=

3√
0.75

= 3.46.

5. We haven− 2= 36 degrees of freedom.t1−α/2,(n−2) = t0.975,(36) = 2.028, so we reject the null
hypothesis ift > 2.028 or if t <−2.028.

We see thatt = 3.46> 2.028.

6. We reject the null hypothesis and conclude that temperature and icecream sales are correlated.
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