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S
atter plot

S
atter plot

S
atter plots are used to investigate the relationship between two

numeri
al variables.

The value of one variable is on the y-axis (verti
al) and the other on the

x-axis (horizontal).

When one of the variable is an explanatory variable and the other one is

a response variable, the response variable is always on the y-axis and the

explanatory variable on the x-axis.

Response variables and explanatory variables

For every subje
t, the value of an explanatory variable will in�uen
e

what value the response variable re
eives.
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S
atter plot - 
ontinuous variables
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The equation of a straight line

The equation of a straight line

The equation of a straight line des
ribes a linear relationship between

two variables, x and y . The equation is written

y = β
0

+ β
1

x

where β
0

is the inter
ept of the line on the y-axis and β
1

is the slope of

the line.
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The equation of a straight line

x

y

0 2 4 6 8

0
4

8
12

16
20

β1: slope

β0: intercept

Figure: The equation of a straight line.
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Linear relationship

Linear relationship

We say that the relationship between two variables is linear if the

equation of a straight line 
an be used to predi
t whi
h value the

response variable will take based on the value of the explanatory variable.

Noti
e that there 
an be all sorts of relationship between two variables. For

example, the relationship 
an be des
ribed with a parabola, an exponential

fun
tion and so on. Those relationship are referred to as nonlinear and are

not 
overed in this le
ture.
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Linear and nonlinear relationship

Linear relationship Linear relationship

Nonlinear relationship Nonlinear relationship

Figure: S
atter plot where the relationship between two variables is linear (above) and

nonlinear (below).
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Sample 
oe�
ient of 
orrelation

Sample 
oe�
ient of 
orrelation

Assume that we have n measurements on two variables x and y .

Denote the mean and the standard deviation of the variable x with x̄ and

s

x

and the mean and the standard deviation of the y variable with ȳ and

s

y

.

The sample 
oe�
ient of 
orrelation is

r =
1

n − 1

n

∑

i=1

(

x

i

− x̄

s

x

)(

y

i

− ȳ

s

y

)

.

Be 
areful! We only use 
orrelation to estimate linear relationship!
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The size and dire
tion of a linear relationship

The dire
tion of a linear relationship

The sign of the 
orrelation 
oe�
ients determines the dire
tion of a

linear relationship. It is either positive or negative.

If the 
orrelation 
oe�
ient of two variables is positive, we say that

their 
orrelation is positive.

If the 
orrelation 
oe�
ient of two variables is negative, we say that

their 
orrelation is negative.

The size of a linear relationship

The absolute value of a 
orrelation 
oe�
ient des
ribes the size of the

linear relationship between the variables.

It tells us how well we 
an predi
t the value of the response variable from

the value of the explanatory variable.
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The size and dire
tion of a linear relationship

Perfect 
 positive relationship

Perfect 
 negative relationship

No relationship No relationship

Strong 
 positive relationship

Weaker 
 positive relationship

strong 
 negative relationship

Weaker 
 negative relationship

Figure: S
atter plot for various values of r .
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Correlation and 
ausation

Causation is when 
hanges in one variable 
ause 
hanges in the

other variable.

There is often strong 
orrelation between two variables although

there is no 
ausal relationship.

In many 
ases, the variables are both in�uen
ed by the third variable

whi
h is then a lurking variable.

Therefore, high 
orrelation on its own is never enough to 
laim that

there is a 
ausal relationship between two variables.
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The linear regression model

The linear regression model

The simple linear regression model is written

Y = β
0

+ β
1

x + ε

when β
0

and β
1

are unknown parameters and ε is a normally distributed

random variable with mean 0.

The aim of the simple linear regression is �rst and foremost to estimate

the parameters β
0

and β
1

with the measurements of the two variables, x

and Y .

The method we use is 
alled the least squares method.
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The least squares method
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Figure: Many lines, but whi
h one is the best?
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The least squares method
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Figure: The least squares method.
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The least squares regression line

The least squares regression line

Denote the mean and standard deviation of the x variable with x̄ and s

x

and the y variable with ȳ and s

y

and their 
orrelation 
oe�
ient with r .

Let b

0

denote the estimate of β
0

and b

1

denote the estimate of β
1

.

Then b

0

and b

1

are given with the equation

β̂
1

= b

1

= r

s

y

s

x

and

β̂
0

= b

0

= ȳ − β
1

x̄ .

We use the parameters to predi
t the value of y for a given value of x

with the least squares regression line

ŷ = b

0

+ b

1

x
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Residuals

Residuals

The verti
al distan
e from our measurements to the regression line are


alled the residuals and are denoted with e. The size of the residuals


an be 
al
ulated with

e

i

= y

i

− ŷ

i

Points above the regression line have a positive residue but points below

it have a negative.
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Residual plot
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Figure: S
atter plot of the data and a residual plot.
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Interpolation

Interpolation

If the regression model is used to predi
t a value of Y for some value of

x whi
h is similar to the x-values that were used to estimate the model is

referred to as interpolating.
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Extrapolation

Extrapolation

Extrapolating is using the regression model to predi
t a value of Y for

some value of x whi
h is far from the x-values that were used to

estimate the model.

It 
an be very questionable to extrapolate!
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Coe�
ient of determination

r

2

in linear regression

If the 
oe�
ient of 
orrelation is raised to the se
ond power, r

2

, we


al
ulate the 
oe�
ient of determination.

r

2

is the proportional variability in Y that 
an be explained with the

variability in x .
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Outliers and in�uential measurements

Outlier with a high residual

x

y

Outlier with a low residual

x

y

Figure: Outliers and their residuals.
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Outliers and in�uential measurements
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Figure: In�uential measurements?
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Treatment of outliers and in�uential measurements

Outliers and in�uential measurements shall always be viewed


arefully.

If a mistake has been made, the measurement shall be eliminated.

If it 
annot be shown that a mistake has been made it is often good

to show estimates with and without these measurements.

In some 
ases it is more appropriate to use the estimates without

the outliers/in�uential measurements.

In these 
ases, it shall be pointed out that the model does not it

data outside the range of the measurements used for estimating the

model.
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The linear regression model

If we have n paired measurements (x
1

, y
1

), . . . , (x
n

, y
n

), the regression

model 
an be written as

Y

i

= β
0

+ β
1

x

i

+ ε
i

.

β
0

is the true inter
ept (population inter
ept) that we do not know

the value of.

β
1

is the true slope (population slope)

ǫ
i

are the errors.

β
0

and β
1

are therefore statisti
s, that we both want to estimate and

make inferen
e on.

We do that by applying the least squares method to our data.
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The random variable ε

ε des
ribes the un
ertainty in our measurements of Y .

We assume that ε
i

are independent and identi
ally distributed random

variables that follow a normal distribution with mean 0 and varian
e σ2

.

Estimating σ2

in simple linear regression

The estimate of σ2

in simple linear regression is denoted with s

2

e

and


al
ulated with

s

2

e

=

∑

n

i=1

(y
i

− ŷ

i

)2

n − 2

.

This is the same equation as for the "normal" standard deviation, but now

we divide with n − 2 but not n − 1.
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Con�den
e interval for β
0

Con�den
e interval for β
0

The lower bound of a 1− α 
on�den
e interval for β
0

is:

b

0

− t

1−α/2,(n−2) · se

√

1

n

+
(x̄)2

s

2

x

· (n − 1)

The upper bound of 1− α 
on�den
e interval is:

b

0

+ t

1−α/2,(n−2) · se

√

1

n

+
(x̄)2

s

2

x

· (n − 1)

where b

0

is 
al
ulated the same way as usual, n is the number of paired

measurements, x̄ is the mean of the explanatory variable, s

x

is the

standard deviation of the explanatory variable and t

1−α/2,(n−2) is in the

table for the t-distribution.
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Con�den
e interval for β
1

Con�den
e interval for β
1

The lower bound of1− α 
on�den
e interval for β
1

is:

b

1

− t

1−α/2,(n−2) · se
1

√

s

2

x

· (n − 1)

The upper bound of 1− α 
on�den
e interval is:

b

1

+ t

1−α/2,(n−2) · se
1

√

s

2

x

· (n − 1)

where b

1

is 
al
ulated the same way as usual, n is the number of paired

measurements, s

x

is the standard deviation of the explanatory variable

and t

1−α/2,(n−2) is found in the t-distribution table.
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Predi
tion interval

Predi
tion interval

The lower bound of1− α predi
tion interval for Y is:

(b
0

+ b

1

x

0

)− t

1−α/2,(n−2) · se

√

1+
1

n

+
(x

0

− x̄)2

s

2

x

(n − 1)

The upper bound of 1− α predi
tion interval is:

(b
0

+ b

1

x

0

) + t

1−α/2,(n−2) · se

√

1+
1

n

+
(x

0

− x̄)2

s

2

x

(n − 1)

where b

0

and b

1

are 
al
ulated the same way as usual, n is the number

of paired measurements, s

x

is the standard deviation of the explanatory

variable and t

1−α/2,(n−2) is found in the t-distribution table.
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Hypothesis test for the 
orrelation 
oe�
ient

Hypothesis test forρ

The null hypothesis is:

H

0

: ρ = 0

The test statisti
 is:

T =
r

√
n − 2√
1− r

2

If the null hypothesis is true the test statisti
 follows the t distribution

with n-2 degrees of freedom or T ∼ t(n − 2).

Alternative hypothesis Reje
t H

0

if:

H

1

: ρ < 0 T < −t

1−α

H

1

: ρ > 0 T > t

1−α

H

1

: ρ 6= 0 T < −t

1−α/2 or T > tα/2
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