Probability

(STATS201.stats 201 20: Probability and probability distributions)

Anna Helga Jónsdóttir
Sigrún Helga Lund

December 15, 2012

Randomness

- Descriptive statistics describe the sample that we have obtained
- Statistical inference uses the sample to draw conclusions about the whole population.
- The variables that we measure are influenced by some randomness.
- We therefore look at every measurement as a random phenomena.
- In this lecture we look closer at random phenomena.

Events, outcomes and outcome space.

Outcome and outcome space
Every random phenomena has certain possible outcomes. The set of all possible outcomes is the outcome space an is denoted with Ω.

Event

An Event is a particular outcome or a set of particular outcomes of a random phenomena.

Disjoint events

Disjoint events
We say that events A and B are disjoint if they contain no common outcome.

MYND /pictures/Sundurlaegir ${ }_{o}$ sundurlaegir Figure: Disjoint and joint events.

Union and intersection of events

Union of events
The union of events A and B is denoted $A \cup B$. It is the set of all outcomes that are in either A or B or both of them.

Intersection of events
The Intersection of events A and B is denoted $A \cap B$. It is the set of al outcomes that are in both A and B. If A and B are disjoint, then their intersection is empty.

MYND /pictures/Sam ${ }_{s}$ nid
Figure: Union and intersection.

The complement of an event

Complement of an event
The Complement of an event A is denoted A^{C}. It s the set of all outcomes in Ω that are not it A.

MYND /pictures/Fylliatburdur Figure: Complement.

Probability

Probability

The probability of a certain outcome of a certain outcome of a random phenomena is the proportion of the cases when that the random phenomena gets that outcome when the phenomena is repeated often enough. This ratio can be at minimum zero and at maximum one.

Probability of an event
The probability of an event A, denoted $P(A)$, is the probability that the observed outcome will be in A.

Equally likely outcomes

Equally likely outcomes
Equally likely outcomes are only defined for random phenomena with finite Ω. Then the probability of every outcome in Ω is the same.

Probability of events when all outcomes are equally likely
If all of the outcomes of a random phenomena are equally likely, then the probability of an event A are:

$$
P(A)=\frac{\text { number of outcomes in } A}{\text { number of outcomes in } \Omega}
$$

Formulas

Formulas
(1) $P(\Omega)=1$
(2) $P\left(A^{C}\right)=1-P(A)$
(3) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(1) If A and B are disjoint, $P(A \cup B)=P(A)+P(B)$

Conditional probability

Conditional probability
With $P(A \mid B)$ we denote the probability that event A occurs, given that event B has occurred. The probability of $P(A \mid B)$ can be calculated with

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } P(B)>0
$$

Probability of intersection of events

$$
P(A \cap B)=P(A \mid B) P(B), \quad \text { if } P(B)>0
$$

Independent events

Independent events
We say that events A and B are independent if the probability that an event A occurs does not change even though the event B has occurred and vice versa.

Probability of independent events
If A and B are independent, then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

