Random variables (STATS201.stats 201 20: Probability and probability distributions)

> Anna Helga Jónsdóttir Sigrún Helga Lund

December 15, 2012

Anna Helga Jónsdóttir Sigrún Helga Lun

Random variables

December 15, 2012 1 / 1

э

Random variable

Random variable describes the outcome of a variable before it is measured

Syntax for random variables

Random variables are denoted with **capital** letters, often XValues that a random variable **has received** are denoted with **lower-case** letters, often x

The same letter is always used for a random variable and the value it has received.

Discrete and continuous random variables

Discrete random variables

Discrete random variables describe discrete variables. They have a finite set of possible outcomes on every limited interval.

Continuous random variables

Continuous random variables describe continuous variables. They can obtain any outcome on some interval.

Syntax for the probability of random variables

Syntax for the probability of random variables

 $P(X \le a)$: Denotes the probability that the outcome of a random variable X will be **less or equal** then the value a.

 $P(X \ge a)$: Denotes the probability that the outcome of a random variable X will be greater or equal then the value a.

 $P(a \le X \le b)$: Denotes the probability that the outcome of a random variable X will be **between** aand b, both values included

P(X = a): Denotes the probability that the outcome of a random variable X will be **exactly** the value a.

- A TE N - A TE N

Probability distribution of random variables

Probability distribution random variables

The **Probability distribution** of a random variable is a rule that tells us which values a random variable can receive and furthermore:

P(X = a) for all values a it can receive if the probability distribution is **discrete**.

 $P(a \le X \le b)$ for all values *a* and *b* if the probability distribution is **continuous**.

The probability distribution of a random variable gives us all available information possible of the random variable! Why do you think that we define the probability distribution in a different manner depending on whether the random variable is discrete or continu-

ous?

- 3

< 日 > (一) > (二) > ((二) > ((二) > ((L) > ((

Types of probability distributions

The randomness of many of the variables that we investigate are similar by nature.

Then the random variables that they describe behave similarly. As a consequence, they will have similar probability distributions. Then we say that the probability distributions of the random variables are of the same type.

Parameter

Every type of probability distribution is described with numbers that are called the **parameters** of the probability distribution.

Different parameters describe different probability distributions .

Normally the parameters are only one or two.

If we know the type of the probability distribution of a random variable, the values of its parameters give all information available about the random variables.

Short summary

- One can talk about the probability that a random variable receives certain values.
- That probability is described by the probability distribution of the random variables, that give all information available about the random variables.
- Many random variables have probability distributions of a known type.
- Every type of probability distribution is described with numbers that are called parameters.
- To every type of probability distributions belong certain parameters and they are normally one or two.
- If we know the type of the probability distribution of a random variable, the values of its parameters give all information available about the random variables.

(日) (周) (日) (日)

Independent random variables

Independent random variables

We say that two random variables are **independent** if the outcome of one random variable does not affect the outcome of the other random variable.

Dependent random variables

We say that two random variables are **dependent** if they are not independent, that is, if the outcome of one random variable does not affect the outcome of the other random variable or vice versa.

Independent and identically distributed random variables

We say that random variables X_1, \ldots, X_n are **independent** if each of them is independent to all of the others and **identically distributed** if they all have the same probability distribution.

Expected value of a random variables

Expected value of a random variable is the **true** mean of the random variable. It is either denoted with μ or E[X]. It is also called **population** mean when appropriate.

Law of large numbers

As the number of measurements of a random variable X grows, the mean of the measurements, denoted \bar{x} , gets closer to the **expected** value of the random variable, denoted μ or E[X].

10 / 1

Expected value of a discrete random variable

If a random variable is **discrete** its expected value is the weighted mean of all of its possible outcomes, where the weight of each outcome is the probability that the random variable receives that outcome.

Formula for the expected value of a discrete random variable

If a random variable X is discrete, then its expected value is

$$\mu = \sum x_i \cdot P(X = x_i)$$

where we sum over all possible outcomes of the random variable.

Variance of random variables, Var[X]

As random variables have true means, they also have a **true variance**. It is either denoted with σ^2 , or Var[X]. It is also called the **population variance** when appropriate.

Formula for the variance of a discrete random variable

The variance of a discrete random variable is

$$\sigma^2 = \sum (x_i - \mu)^2 \cdot P(X = x_i)$$

where we sum over all possible outcomes of the random variable.