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1 Statistical inference

1.1 Estimators

Estimator
An estimator is a statistic that es-
timates parameters of probability
distributions.

• Estimators for parameters of
normal distribution, Poisson
distribution and binomial dis-
tribution.

• µ, σ, λ andp.

• The outcome of the estimators
are called estimates

• They are denoted with ˆµ, σ̂, λ̂
and p̂.

1.2 Estimator for the mean of a random variable

Metill á meðaltal slem-
bistærðar
The estimator used for the mean
of a random variable is

X̄ =
n
∑
i=1

Xi
n

where n is the total number of
measurements.

It is believed that the number of children that break a leg every day in Iceland follows a Poisson distri-
bution. A doctor at the emergency room wants to estimate how many children, on average, break a leg
per day. He has some data describing the number of breaks the past ten days: 2, 0, 1, 7, 3, 3, 6, 4, 4, 1.
What is the doctors estimate of the average number of leg breaks per day?

The λ parameter in the Poisson distribution represents the average number of breaks per day. The
estimator isX, which is simply the mean of the measurements:

λ̂ = x̄=
2+0+1+7+3+3+6+4+4+1

10
=

31
10

= 3.1.
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1.3 Estimator for the variance of a random variable

Estimator for the variance of a
random variable
The estimator used for the vari-
ance of a random variable is

S2 =
n
∑
i=1

(Xi − X̄)2

n−1

whereX̄ is the estimator for the
mean of the measurements andn
is the total number of measure-
ments. mælinga.

Helga believes that womens shoe sizes follow a normal distribution. She wants to open up a shoe shop
so she is interested in finding out what the variance of womensshoe size is to find out how many pairs
she needs to buy of each number. She measures the shoe size of eight women and gets: 40, 36, 37, 39,
38, 39, 40, 38. What is the estimated variance?

1. The mean is40+36+37+39+38+39+40+38
8 = 38.375.

2. The deviation from the mean is: 1.625, -2.375, -1.375, 0.625, -0.375, 0.625, 1.625, -0.375.

3. The numbers squared are: 2.641, 5.641, 1.891, 0.391, 0.141, 0.391, 2.641, 0.141.

4. The sum of the squared number is 13.878.

5. 13.878
8−1 = 13.878

7 = 1.983

So: σ̂2 = s2 = 1.983.

1.4 Estimator for the ratio of a random variable

Estimator for the ratio of a ran-
dom variable
The estimator used for the ratio
of a random variable is

P=
X
n

where X is the number of suc-
cessful confidence intervals andn
is the total number of confidence
intervals.

Let us assume that the numbers of rotten apples in a box of 20 follows a binomial distribution. Anna
wants to insure that she buys enough if good apples so she wants to estimate the proportion of rotten
apples per box. She buys a box of 20 apples and finds 2 rotten apples. What is the estimated ratio of
rotten apples?

We haven= 20 andx= 2 so the estimated proportion is:

p̂=
x
n
=

2
20

= 0.1.
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1.5 Confidence level

Usually there is no probability that our
estimate is exactly the true value of the
parameter.

Confidence intervals
1 - α confidence interval is a
numerical interval that contains
the true value with the confidence
level 1 -α.

Confidence level
Confidence levelis the ratio of
cases when the confidence inter-
val contains the true value of the
parameter, when the experiment
is repeated very often.

1.6 Confidence limits

Confidence limits
Confidence limits are the end-
points of the confidence inter-
val. The upper confidence limit is
the upper endpoint of the interval
(the highest value in the interval),
but the lower confidence limit is
the lower endpoint (the smallest
value in the interval).

Type I error
Type I error denotedα, is the ra-
tio of cases where the confidence
interval contains the true value of
the parameter, if the experiment
is repeated very often.
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1.7 The ideology behind hypothesis tests

The ideology behind hypothesis
tests

A hypothesis is found that
describes what we want to
demonstrate and another that
describes a neutral case.

A statistic is found that has a
known probability distribution in
the neutral case. This statistic is
our test statistic.

It is defined what values of the
test statistic are "improbable"
according to the probability
distribution in the neutral case.

If the retrieved estimate classifies
as "improbable" the hypothesis
for the neutral stage is rejected
and the hypothesis we want to
demonstrate is claimed.

If the estimate is not "improba-
ble" no claims are made.

1.8 Hypothesis

Null hypothesis
Null hypothesis is a hypothe-
sis that can be rejected with ob-
served data. It can never we be
claimed. It is usually denoted
with H0.

Alternative hypothesis
Alternative hypothesisis the hy-
pothesis we wish confirm with
the experiment. It can only be
claimed but not rejected. It is ei-
ther denoted withH1 or Ha.

9



1.9 Directions of hypothesis tests

Two-sided tests
If the data allows, atwo-sided
test claims that one or more
parameters of the population or
populations arenot equal to each
other or a certain value.

One-sided tests
There are two types ofone-sided
tests:
Those who claim that one param-
eter of the probabilitydistribution
is larger then another parameter
or a certain value, if the measure-
ments allow.
Those who claim that one param-
eter of the probabilitydistribution
is smaler then another parameter
or a certain value, if the measure-
ments allow.

1.10 Test statistics

Test statistic
A test statistic is a statistic that
can be used to reject a null hy-
pothesis if the measurements al-
low.

Null hypothesis rejected
A null hypothesis isrejected if
the test statistic receives a im-
probable value compared to the
probability distribution it should
have if the null hypothesis would
be true.

10



1.11 Rejection areas andα-levels

α-level
Theα levelof a hypothesis test is
the highest acceptable probabil-
ity that we receive an improbable
value when the null hypothesis is
true.

Rejection areas of hypothesis
tests
Rejection areas of hypothesis
tests are the intervals that contain
all of the improbable values and
only those values.
If the test statistics falls within
the rejection interval of the hy-
pothesis test, we reject the null
hypothesis.
If it does not fall within the re-
jection interval of the hypothesis
test, we make no claims

1.12 Rejection areas andα-levels

α 2α 2

Rejection area of a two sided test

Figure 1: Rejection areas of two-sided tests

1.13 Rejection areas andα-levels

α

Rejection area of a < test

α

Rejection area of a > test
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1.14 Rejection areas andα-levels

The probability that a test statistic falls
within the rejection are when the null
hypothesis is true is exactly theα-level of
the hypothesis test.

In order to define rejection ares one needs
to decide:

• What is the direction of the
test? (one- or two-sided test)

• What is an acceptableα-level
for the test.

1.15 p-values

p-values
A p-value is the probability of
receiving as improbable value or
an value even more improbable
as the one received with the mea-
surements if the null hypothesis
is true. TheH0 shall be rejected
if the p-value is less thenα. If the
p-value is greater thenα the null
hypothesis cannot be rejected.

Power
Thepower of a hypothesis test is
the probability of rejecting a null
hypothesis that is not true. It is
denoted with 1−β.

1.16 Errors of type I and II

Type I error
Type I error is the error of re-
jecting a null hypothesis that was
true. The probability of a type I
error is theα-level of the hypoth-
esis test.

Type II error
Type II error is the error of not
rejecting a null hypothesis that
was not true. The probability of
a type II error isβ, where 1−β is
the power of the hypothesis test.

H0 is true H0 is false
RejectH0 Type I error Right decision

Probability:α Probability: 1−β
Not rejectH0 Right decision Type II error

Probability: 1-α Probability:β

12



1.17 Not rejecting a null hypothesis

There can be various reasons behind one
not rejecting a null hypothesis:

• The number of measurements
was to small and therefore
the hypothesis test had little
power.

• The null hypothesis is true.

• Our model does not fit the
measurements - the assump-
tions we made about the mea-
surements do not hold.

We may never claim which one of the
following cases was the reason!

But we may make arguments for one rea-
son being the most plausible.

1.18 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theα-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.
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1.19 The relationship between confidence intervals and hypothesis tests

If the α-level is the same for both the con-
fidence interval and the hypothesis test, the
following are equivalent:

• We reject the null hypothesis
that a particular statistic has a
certain value.

• The confidence interval cal-
culated doesnot contain that
value.

If we conduct an hypothesis test with the
α-level 5% and calculate a 95% confidence
interval:

• We reject the null hypothesis
that the statistic is equal to the
number 1 if the number 1 is
not within the confidence in-
terval.

• The number 1 is not within
the confidence interval if we
reject the null hypothesis that
the statistic is equal to the
number 1.

2 Inference on the mean of a population

2.1 Hypothesis tests forµ

• In this lecture we will dis-
cuss hypothesis tests and con-
fidence intervals that apply
when making inference on the
mean of a population,µ.

• We will use them for exam-
ple to test the hypothesis that
mean precipitation in Reyk-
javik in june is less then 50
mm, that the average heart
rate of men over fifty years
old is greater then 99 beats
p/minute, that the average
number of nights slept in ho-
tels and hostels in june differs
from 100000 and so and so
forth.

• All hypothesis test that will be
discussed have the same null
hypothesis, that the mean of
the population is equal to a
certain value that is calledµ0.
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2.2 Hypothesis tests forµ

The null hypothesis is written:

H0 : µ= µ0

.

• It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

• If the hypothesis test is two
sided, we can conclude that
the mean of the population,µ,
differs fromµ0.

• If it is one sided we can only
conclude that it is greater in
one case or less in the other
case thenµ0 depending on the
case.

2.3 Hypothesis tests forµ

• Circumstances can be very
different when we make infer-
ence on the mean of a popu-
lation and we categorize them
into four different cases, but
each case is treated differ-
ently.

• The decision tree on slide??
shows which case corresponds
to which circumstance , but in
order to select the appropriate
case we need to answer three
questions that are shown on
slide??.

• The question are about the
probability distribution of the
population, whether it’s vari-

ance,σ2 is known and the size
of the population,n. Each
case is discussed separately in
the following slides

2.4 Decision tree

Normally distributed population?

σ2 known? σ2 known?

Is n large?Is n large?

yes no

yes no yes no

yes no yes no

31

1 4 2/3 4

Figure 2: Decision tree forµ
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2.5 Decision tree

These three questions are answered in cor-
rect order and the answers decide how we
trace us down the decision tree.

1. Is the population normally
distributed
This need to be based on prior
experience or by looking at
the distribution of the sample
and conclude from that. It can
though be douptful if the sam-
ple is small.

2. Is the variance of thepopula-

tion, σ2, known?
Notice that this is rarely the
case, although it may happen
that such detailed prior inves-
tigations have been made that
we can assume that the vari-
ance is known.

3. Is the sample large?
We use the rule of thumb that
n is large ifn> 30. This is not
a universal rule though.

2.6 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theα-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.
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2.7 Case 1

Case 1 corresponds to:

• When one can assume that
the population follows a nor-
mal distribution and the vari-
ance (σ2) of the distribution is
known.

• when n is large andσ2 is
known, although the popu-
lation is not normally dis-
tributed.

2.8 Confidence interval forµ - case 1

2.9 Hypothesis test forµ - case 1

John is producing fish to export. The packages he exports follow a normal distribution with known
variance,σ2 = 0.8 kg. He wants to make a 95% confidence interval forµ and test the hypothesis thatµ is
different from 50 kg. He therefore takes a random sample ofn= 12 and calculates the sample average
to be 50.84 kg. Useα = 0.05.

We have: ¯x = 50.84, n= 12, σ2 = 0.8. We use the normal table to findz1−α/2. z1−α/2 = z1−0.05/2 =
z0.975= 1.96. The lower limit is:

x̄− z1−α/2 ·
σ√
n
= 50.84−1.96·

√
0.8√
12

= 50.84−0.506= 50.33

and the upper limit:

x̄+ z1−α/2 ·
σ√
n
= 50.84+0.506= 51.35.

The confidence interval is:
50.33< µ< 51.35

We test the hypothesis using six steps:

1. We are testing a hypothesis concerningµ and the variance of the distribution is known.

2. Við fengum uppgefið að notaα = 0.05.

3. The hypotheses are

H0 : µ= 50

H1 : µ 6= 50

4. We have: ¯x= 50.84, n= 12, σ2 = 0.8. The value of the test statistic is

z=
x−µ0

σ/
√

n
=

50.84−50√
0.8/

√
12

= 3.25.

5. z1−α/2 = z0.975 = 1.96. We reject the null hypothesis ifz<−1.96 orz> 1.96. We see thatz> 1.96.

6. We reject the null hypothesis and conclude that the boxes are heavier than 50 kg.
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2.10 µ - case 2

Case 2 corresponds to:

• when the sample is large and
we do not know the variance
of the population. We do not
need to assume that the popu-
lation is normally distributed.

Be careful! One can always calculate the
variance of thesamplebut the variance of
thepopulation is rarely known!

2.11 µ - case 2

As the variance of the population is not
known, we use the variance of the sample
to estimate the variance of the population
with

s2 =
∑n

i=1(xi − x̄)2

n−1
.

In order to find the standard deviation of
the sample, we take the square root of the
variance

s=
√

s2.

2.12 Confidence interval forµ - case 2

2.13 Hypothesis test forµ - case 2

Hypothesis test forµ - case 2
The null hypothesis is:

H0 : µ= µ0

The test statistic is:

Z =
X−µ0
S/

√
n

If the null hypothesis is true,
the test statistic follows the stan-
dardized normal distribution, or
Z ∼ N(0,1).
The rejection areas are:

Alternative hypothesis RejectH0 if:
H1 : µ< µ0 Z <−z1−α
H1 : µ> µ0 Z > z1−α
H1 : µ 6= µ0 Z <−z1−α/2 or Z > z1−α/2

Gugu is the CEO in a car company. She claims that the cars the company produces can drive 20 km. pr.
liter. Ingibjorg is working for a consumer board and she has had many complains that the cars cannot
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drive 20 km. pr. liter. Therefore she decided to conduct an experiment where she wanted to test the
hypothesis that the average number of kilometers is fewer than 20. A random sample of 40 cars was
taken and the average number of kilometers calculated to be 19.2 and standard deviation of 1.7. Test the
hypothesis. Useα = 0.05.

1. We want to test a hypothesis regardingµ. We do not know the probability distribution not the
variance of that distribution but the sample is large.

2. α = 0.05.

3. The hypotheses are

H0 : µ= 20

H1 : µ< 20

4. We have ¯x= 19.2, s= 1.7, n= 40. The test statistic is:

z=
x−µ0

s/
√

n
=

19.2−20

1.7/
√

40
=−2.98.

5. −z1−α =−z0.95 =−1.64. We reject the null hypothesis ifz<−1.64. We see thatz<−1.64.

6. We reject the null hypothesis and conclude that the average consumption of gas is greater than 20
km per liter.

2.14 µ - case 3

Case 3 corresponds to two cases:

In both cases, the variance (σ2) of thepop-
ulation, to which the sample belongs, un-
known. On the other hand, we either need
to assume that:

• the population is normally dis-
tributed

• or that we have many mea-
surements in our sample (then
the population does not have
to be normally distributed).
This is the same as case 2.

When calculating confidence intervals and
conducting hypothesis test in this case, one
uses the t-distribution.
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2.15 Of the overlap of case 2 and 3

• Notice that when case 2
(which usesz-test) is valid,
one can successfully use case
3 instead (which usest-test).
This is because when the
number of degrees of freedom
is large, thet-distribution is
similar to the normal distribu-
tion.

• T-test, unlike z-tests, are built
in most statistical software
and therefore more used.

• If we are doing calculations by
hand it is often better to usez-
tests because then we can eas-
ily calculatep-values.

2.16 Confidence interval forµ - case 3

2.17 Hypothesis test forµ - case 3

A cigarette producer states that the a certain types of cigarettes has on average 14 mg of nicotine per
cigarette. Health authorities wanted to investigate if is was in fact higher. Therefore they made an
experiment to test the hypothesis that the average nicotinelevel is higher than 14 gr./cigarette. A random
sample of size 12 was taken and the average level found to be 14.3 and the standard deviation of 0.9.
Test the hypothesis usingα = 0.05. We can assume that the nicotine level follows a normal distribution.

1. We want to test an hypothesis regardingµ we can assume that the population follows a normal
distribution,σ2 is unknown.

2. α = 0.05.

3. The hypothesis are:

H0 : µ= 14

H1 : µ> 14

4. We get:n= 12, x̄= 14.3, s= 0.9. The value of the test statistic is:

t =
x−µ0

s/
√

n
=

14.3−14

0.9/
√

12
= 1.15.

5. We haven−1= 11 degrees of freedom:t1−α,(n−1) = t0.95,(11) = 1.796. We reject the null hypoth-
esis ift > 1.796. We see thatt < 1.796.

6. We cannot reject the null hypothesis so we cannot concludethat the average level is higher than
14 mg/cigarette.
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2.18 µ - case 4

In case 4 one can neither use z-test nor
t-test unless further approximations are
used. In these cases one can do one of the
following:

• Transform the data

• Use nonparametric tests

• Check whether the population
follows some other known
distribution and use tests that
are applicable for them.

3 Inference on the means of two populations

3.1 Inference on the mean of two populations

• In this lecture we will dis-
cuss hypothesis tests and con-
fidence intervals that apply
when making inference on the
mean of two populations.

• The means are namedµ1 and
µ2 and we wish to make infer-
ence on their difference,µ1−
µ2.

• The tests applied can broadly
be divided into two groups:

– Tests for inde-
pendent measure-
ments.

– Tests for paired
measurements.
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3.2 Independent or paired?

The first question we need to ask is if the
measurements are independent or paired.
Examples of tests for independent mea-
surements:

• Height of 50 men and 50
women used to test the hy-
pothesis that men are on aver-
age taller then women.

• The heart rate of 30 women in
the age 41-50 and 30 women
in the age 51-60 measured to
test the hypothesis that there
is a difference in the heart rate
of women in these two age
groups.

Examples of tests for paired measure-
ments:

• The weight of 30 men be-
fore they undergo an inten-
sive workout program. The
weight is measure again after
the program to test the hypoth-
esis that the workout is suc-
cessful for loosing weight.

• The age of 40 men and their
wives is noted to test the
hypothesis that in marriages
of men and women are the
men on average older then the
women.

3.3 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theα-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.
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3.4 Independent measurements

• All hypothesis tests in this lec-
ture test the same null hypoth-
esis, whether the difference of
the two means is equal to a
certain value that we callδ.

• The null hypothesis isH0 :
µ1−µ2 = δ.

• It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

• If the hypothesis test is two
sided, we can conclude that
the difference of the means,
µ1−µ2, differs fromδ.

• If it is one sided we can only
conclude that the difference is
greater in one case or less in
the other case thenδ depend-
ing on the case.

3.5 Independent measurements

• As with one mean, we use dif-
ferent tests for different cir-
cumstances.

• The circumstances are catego-
rized into five cases:

• The decision tree shows which
case corresponds to which cir-
cumstance , but in order to se-
lect the appropriate case we
need to answer four questions
that are shown on an upcom-
ing slide.

• We note the mean, variance
and sample size of one popu-

lation withµ1, σ2
1 andn1 but

the other withµ2, σ2
2 andn2.
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Normally distributed population?

σ1
2 , σ2

2 known? σ1
2 , σ2

2 known?

Large ns?Large ns?

yes no

yes no yes no

σ1
2 = σ2

2 ?

yes no yes no yes no

1

3 4 1 5 2/4 5

Figure 3: Decision tree forµ1−µ2

3.6 Decision tree - independent measurements

3.7 Decision tree - independent measurements

1. Are the populations normally

distributed?

This need to be
based on prior
experience or
by looking at
the distributions
of the samples
and conclude
from that. It
can though be
douptful if the
samples are
small.

2. Is the variance
of the popula-
tions, σ2

1,σ2
2,

known?
Notice that this
is rarely the
case, although it
may happen that
such detailed
prior investiga-
tions have been
made that we
can assume that
the variance is
known.

3. Are the sam-
ples large?
We use the rule
of thumb that
the samples are
large if n1 > 30
and n2 > 30.
This is not a
universal rule
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3.8 µ1−µ2 - case 1

Case one applies when:

• it can be assumed that the
populations are normally dis-
tributed and the variances of
the populations, (σ2

1 andσ2
2)

are known.

• whenn1 andn2 are large and

σ2
1 and σ2

2 are known, al-
though the populations are not
normally distributed.

3.9 Confidence interval for the difference of two means - case1

Confidence interval for the dif-
ference of two means - case 1
Lower bound of 1−α confidence
interval is:

x̄1− x̄2−z1−α/2 ·

√√√√ σ2
1

n1
+

σ2
2

n2

Upper bound of 1−α confidence
interval is:

x̄1− x̄2+z1−α/2 ·

√√√√ σ2
1

n1
+

σ2
2

n2

3.10 Confidence interval for the difference of two means - case 1

Confidence interval for the dif-
ference of two means - case 1
The confidence interval is:

x̄1−x̄2−z1−α/2 ·

√√√√ σ2
1

n1
+

σ2
2

n2
<µ1−µ2 < x̄1−x̄2+z1−α/2 ·

√√√√ σ2
1

n1
+

σ2
2

n2

where x̄1, x̄2 are the sample

means andσ2
1, σ2

2 are the popula-
tion variances.z1−α/2 is found

in the standardized normal distri-
bution table.
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3.11 Hypothesis test for the difference of two means - case 1

Hypothesis test for the differ-
ence of two means - case 1
The null hypothesis is:

H0 : µ1−µ2 = δ

The test statistic is:

Z =
X1−X2−δ√

σ2
1

n1
+

σ2
2

n2

If the null hypothesis is true,
the test statistic follows the stan-
dardized normal distribution, or
Z ∼ N(0,1).

Alternative hypothesis RejectH0 if:
H1 : µ1−µ2 < δ Z <−z1−α
H1 : µ1−µ2 > δ Z > z1−α
H1 : µ1−µ2 6= δ Z <−z1−α/2 or Z > z1−α/2

Notice thatδ can be any number
at all, but in most casesδ = 0.

3.12 µ1−µ2 - case 2

Case 2 applies when:

• we do not know the popula-

tion variances (σ2
1 andσ2

2) but
the samples are large. We do
not need to assume that the
populations are normally dis-
tributed.

• In this case one can success-
fully use case 4, but that is
built in most statistical soft-
ware (such as R). When calcu-
lating in hands case 2 is easier
though.

As the variance of the population is not
known, we use the variance of the sample
to estimate the variance of the population
with

s2 =
∑n

i=1(xi − x̄)2

n−1
.

In order to find the standard deviation of
the sample, we take the square root of the
variance

s=
√

s2.

These values are calculated for each sam-
ple separately and nameds1 ands2 as ap-
propriate.
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3.13 Confidence interval for the difference of the mean of twopopulations - case
2

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 2
Lower bound of 1−α confidence
interval is:

x̄1− x̄2−z1−α/2 ·

√√√√ s21
n1

+
s22
n2

Upper bound of 1−α confidence
interval is:

x̄1− x̄2+z1−α/2 ·

√√√√ s21
n1

+
s22
n2

3.14 Confidence interval for the difference of the mean of twopopulations - case
2

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 2
The confidence interval is:

x̄1−x̄2−z1−α/2 ·

√√√√ s21
n1

+
s22
n2

<µ1−µ2 < x̄1−x̄2+z1−α/2 ·

√√√√ s21
n1

+
s22
n2

where x̄1, x̄2 are the sample

means ands21, s22 are the sam-
ple variances.z1−α/2 is found

in the standardized normal distri-
bution table.
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3.15 Hypothesis test for the difference of the means of two populations - case 2

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 2
The null hypothesis is:

H0 : µ1−µ2 = δ

The test statistic is:

Z =
X1−X2−δ√

S2
1

n1
+

S2
2

n2

If the null hypothesis is true, the
test statistic follows the standard-
ized normal distribution, orZ ∼
N(0,1).

Alternative hypothesis RejectH0 if:
H1 : µ1−µ2 < δ Z <−z1−α
H1 : µ1−µ2 > δ Z > z1−α
H1 : µ1−µ2 6= δ Z <−z1−α/2 or Z > z1−α/2

Notice thatδ can be any number
at all, but in most casesδ = 0.

3.16 µ1−µ2 - case 3

Case 3 applies when:

• One can assume that the
populations are normally dis-

tributed, the variances (σ2
1 and

σ2
2) of the populations are un-

known, but we assume that
σ2

1 = σ2
2.

Later on we will see how to test this hy-
pothesis formally, but until then we will
use the rule of thumb that if one sample
variance is more then four times greater
then the other, we cannot assume that the
variances of the populations are equal.
The t-distribution is used for calculating
confidence intervals and hypothesis testing
in this case.

3.17 µ1−µ2 - case 3

Before we can calculate confidence inter-
vals and conduct hypothesis tests we need
to calculate thepooled variance of the

samples, which is denoteds2p.

s2p =
(n1−1)s21+(n2−1)s22

n1+n2−2
.

wheres21 ands22 are calculated in the same
way as earlier.
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3.18 Confidence interval for the difference of the mean of twopopulations - case
3

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 3
Lower bound of 1−α confidence
interval is:

x̄1−x̄2−t1−α/2,(n1+n2−2) ·sp

√
1

n1
+

1
n2

Upper bound of 1−α confidence
interval is:

x̄1−x̄2+t1−α/2,(n1+n2−2) ·sp

√
1

n1
+

1
n2

where x̄1, x̄2 are the sample

means ands21, s22 are the sample
variances .t1−α/2,(n1+n2−2)
is found in the t-distribution ta-
ble.

3.19 Hypothesis test for the difference of the means of two populations - case 3

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 3
The null hypothesis is:

H0 : µ1−µ2 = δ

The test statistic is:

T =
X1−X2−δ

sp

√
1

n1
+ 1

n2

If the null hypothesis is true,T ∼
t(n1+n2−2) .

Alternative hypothesis RejectH0 if:
H1 : µ1−µ2 < δ T <−t1−α,(n1+n2−2)
H1 : µ1−µ2 > δ T > t1−α,(n1+n2−2)
H1 : µ1−µ2 6= δ T < −t1−α/2,(n1+n2−2) or T > t1−α/2,(n1+n2−2)

Notice thatδ can be any number
at all, but in most casesδ = 0.

Ingunn og Arni are interested in investigating if there is a difference in mean salaries of males and
females working in fisheries in Iceland. Random samples weretaken, 20 males and 20 females. Mean
and standard deviation of male salaries were 245163 kr and 22814. Mean and standard deviation in the
female sample were 218634 and 18312. Test the hypothesis that there is a difference in average salaries
between males and females. Useα = 0.05. We can assume that the salaries follow a normal distribution.

1. We want to compare the means of two populations. The samples are independent. We can assume
that the salaries follow a normal distribution, we dont knowthe variances but we can assume that
they are the same.
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2. α = 0.05.

3. The hypotheses are:

H0 : µ1−µ2 = 0

H1 : µ1−µ2 6= 0.

4. The value of the test statistic is:

t =
x1− x2− δ

sp

√
1
n1
+ 1

n2

where

s2
p =

(n1−1)s2
1+(n2−1)s2

2

n1+n2−2

We have thatn1 = 20,n2 = 20, x̄1 = 245163,s1 = 22814,
x̄2 = 218634,s2 = 18312 ogδ = 0.

sp =

√
(20−1) ·228142+(20−1) ·183122

20+20−2
= 20685.84

and

t =
245163−218634−0

20685.84
√

1
20+

1
20

= 4.06.

5. We look up after:n1+n2−2= 38. t1−α/2,(n1+n2−2) = t0.975,(38) = 2.024, so we reject the null-
hypothesis ift > 2.024 ort <−2.024. We see thatt > 2.024.

6. We reject the null hypothesis and conclude that there is a difference between males and females
in the average salaries in fisheries in Iceland. jöfn.

3.20 µ1−µ2 - case 4

Case 4 applies when:

• it can be assumed that the
populations are normally dis-

tributed, the variances (σ2
1 and

σ2
2) are unknown and we can-

not assume that the variances
are equal, orσ2

1 6= σ2
2.

• when the variances (σ2
1 and

σ2
2) are unknown but the sam-

ples are large. Then we don’t
have to assume that the sam-
ples are normally distributed.
Then one can also use case 2,
which is normally used when
calculating by hands, but case
4 is used in most statistical
software.

Later on we will see how to test this hy-
pothesis formally, but until then we will
use the rule of thumb that if one sample
variance is more then four times greater
then the other, we cannot assume that the
variances of the populations are equal.
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3.21 µ1−µ2 - case 4

In this case the confidence interval and the
test statistic resembles the one in case 2
but here it follows the t-distribution. The
number of degrees of freedom in this t-
distribution is denoted withν and calcu-
lated by

ν =

( s21
n1

+
s22
n2

)2

(s21/n1)
2

n1−1 +
(s22/n2)

2

n2−1

where s21 and s22 are calculated by same
methods as earlier. This hypothesis test is
rarely done by hands but a statistical soft-
ware used for the calculations.

3.22 Confidence interval for the difference of the mean of twopopulations - case
4

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 4
Lower bound of 1−α confidence
interval is:

x̄1−x̄2−t1−α/2,(ν) ·

√√√√ s21
n1

+
s22
n2

Upper bound of 1−α confidence
interval is:

x̄1−x̄2+t1−α/2,(ν) ·

√√√√ s21
n1

+
s22
n2

3.23 Confidence interval for the difference of the mean of twopopulations - case
4

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 4
The confidence interval is:

x̄1−x̄2−t1−α/2,(ν) ·

√√√√ s21
n1

+
s22
n2

<µ1−µ2 < x̄1−x̄2+t1−α/2,(ν) ·

√√√√ s21
n1

+
s22
n2

where x̄1, x̄2 are the sample

means ands21, s22 are the sample
variances .t1−α/2,(ν) is found

in the t-table.ν is the number of
degrees of freedom.
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3.24 Hypothesis test for the difference of the means of two populations - case 4

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 4
The null hypothesis is:

H0 : µ1−µ2 = δ

The test statistic is:

T =
X1−X2−δ√

s21
n1

+
s22
n2

If the null hypothesis is true, the
test statistic t-dreifingu meðν frí-
gráðum orT ∼ t(ν) where ν is
calculated as shown in slide??

Alternative hypothesis RejectH0 if:
H1 : µ1−µ2 < δ T < −t1−α,(ν)
H1 : µ1−µ2 > δ T > t1−α,(ν)
H1 : µ1−µ2 6= δ T < −t1−α/2,(ν) or T > t1−α/2,(ν)

Notice thatδ can be any number
at all, but in most casesδ = 0.

3.25 µ1−µ2 - case 5

In case 5 one can neither use z-test nor
t-test unless further approximations are
made. In these cases one of the following
can be done:

• Transform the data

• Use resampling methods

• Use nonparametric tests

• Test whether the measure-
ments follow any known dis-
tributions and look at tests that
apply to them.
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3.26 Paired measurements

• Assume that we haven pair
of measurements(Xi ,Yi), i =
1,2,3...n.

• We need to find the differ-
ences of these pairs:

Di = Xi −Yi .

Di is a random variable of size
n from a populationwith mean
µD .

• The hypothesis tests make in-
ference onµD .

3.27 Paired measurements

Before conducting hypothesis tests, the
following statistics need to be calculated:

D =
∑n

i=1 Di
n

which is the mean of the differences and

SD
2 =

∑n
i=1(Di −D)2

n−1

is the standard deviation of the differences.

3.28 Paired measurements

• We test the null hypothesis
that the mean of the differ-
ences is equal to a certain
value that is denotedµD,0.

• The null hypothesis isH0 :
µD = µD,0.

• It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

• If the hypothesis test is two
sided, we can conclude that
the difference of the means,
µD , differs fromµD,0.

• If it is one sided we can only
conclude that the difference is
greater in one case or less in
the other case thenµD,0 de-
pending on the case.
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3.29 Paired measurements

• We test the null hypothesis
that the mean of the differ-
ences is equal to a certain
value that is denotedµD,0.

• The null hypothesis isH0 :
µD = µD,0.

• It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

• If the hypothesis test is two
sided, we can conclude that
the difference of the means,
µD , differs fromµD,0.

• If it is one sided we can only
conclude that the difference is
greater in one case or less in
the other case thenµD,0 de-
pending on the case.

3.30 Paired measurements

• It depends on how many pairs
of measurements we have en
whether it can be assumed that
the difference of the measure-
ments is normally distributed
if we use a z-test or a t-test to
make inference onµD .

• If n is large, which here de-
notes the number of pairs, we
can always use the z-test.

• The t-test can be used ifµD
is normally distributed and/or
the sample is large.

• When we use a statistical soft-
ware the t-test is preferred to
the z-test when both tests are
valid (whenn is large).
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3.31 Inference on paired measurements,n large

Inference on paired measure-
ments,n large
The null hypothesis is:

H0 : µD = µD,0

The test statistic is:

Z =
D−µD,0
SD/

√
n

If the null hypothesis is true,
the test statistic follows the stan-
dardized normal distribution, or
Z ∼ N(0,1).

Alternative hypothesis RejectH0 if:
H1 : µD < µD,0 Z <−z1−α
H1 : µD > µD,0 Z > z1−α
H1 : µD 6= µD,0 Z <−z1−α/2 or Z > z1−α/2

z1−α/2 is found in the standard-

ized normal distribution table.

3.32 Inference on paired measurements, normally distributed differences and/or
large n

Whenn is small the difference of the mea-
surements need to be normally distributed.

Inference on paired measure-
ments, normally distributed
differences and/or largen
The null hypothesis is:

H0 : µD = µD,0

The test statistic is:

T =
D−µD,0
SD/

√
n

If the null hypothesis is true, the
test statistic is t-distributed with
(n− 1) degrees of freedom, or
T ∼ t(n−1) .
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3.33 Inference on paired measurements, normally distributed differences and/or
large n

Inference on paired measure-
ments, normally distributed
differences and/or largen

Alternative hypothesis RejectH0 if:
H1 : µD < µD,0 T < −t1−α,(n−1)
H1 : µD > µD,0 T > t1−α,(n−1)
H1 : µD 6= µD,0 T < −t1−α/2,(n−1) or T > t1−α/2,(n−1)

t1−α/2,(n−1) is found in t-table

An experiments has been performed to asses the hypothesis that over weighted males could lose weight
by exercising in 30 minutes per day for two months. A random sample of 6 over weighted males was
taken and the males weighted before and after the two months of exercise. The results can be seen
below. Test the hypothesis usingα = 0.05. It can be assumed that weight follows normal distribution.

Individual Befire [kg] After [kg]
1 123 120
2 112 108
3 107 106
4 101 99
5 112 112
6 116 114

We needDi , D andSD.

Individual Before (xi) After (yi) di = xi − yi

1 123 120 3
2 112 108 4
3 107 106 1
4 101 99 2
5 112 112 0
6 116 114 2

d =
∑n

i=1di

n
=

3+4+1+2+0+2
6

= 2

sd
2 =

∑n
i=1(di − d̄)2

n−1
=

(3−2)2+(4−2)2+ ...+(2−2)2

5
= 2.

1. We have paired measurements.

2. α = 0.05.

3. The hypotheses are:

H0 : µD = 0

H1 : µD > 0
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4. The value of the test statistic is:

t =
d−µD,0

sD/
√

n
=

2−0√
2/6

= 3.46.

5. We look up aftern− 1 = 5 degrees of freedom:t1−α = t0.95,(n−1) = 2.015, and we reject the
null-hypothesis ift > 2.015. We see thatt > 2.015.

6. We reject the null hypothesis and conclude that males loseweight on average after doing exercises
for 30 minutes/day for two months.

4 Analysis of variance (ANOVA)

4.1 Introduction

• In lecture 110 we discussed
inference on the mean of a
population (µ).

• In the former part of lecture
120 we discussed inference on
the difference of the mean of
two populations (µ1−µ2).

• In the latter part of lecture
120 we discussed inference on
paired measurements (µD).

• Now we will discuss a method
that we can apply to com-
pare the means of two or more
populations. The method is
called analysis of variance, or
ANOVA.
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4.2 Analysis of variance

• Analysis of variance is one of
the most commonly used sta-
tistical methods. There are
several variants of it that can
be used in a vast number of
various different cases.

• We will only look at one vari-
ant of the method that is called
one-sided ANOVA.

• It is applied to data that con-
tain samples from two or more
populations and it is common
to speak of groups when dis-
cussing the samples.

• The method compares the
variability of the measure-
ments within the groups on
one hand and between them
on the other hand.

• ANOVA assumes that the
samples are random samples,
that they are sampled from
populations with a normal dis-
tribution and that the variance
is the same in all populations.

4.3 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theα-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.
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4.4 One sided ANOVA - example of application

A pharmacutical company is testing new
blood pressure medicine and conducts a lit-
tle experiment. Eighteen individuals par-
ticipated in the experiment and they were
randomly allocated to three groups. Group
one got drug 1, group two drug 2 and group
three drug 3. The blood pressure was mea-
sured before and after the intake of the
drug. The variable of interest is the dif-
ference in blood pressure before and af-
ter the drug intake. The mean difference
blood pressure in the three groups was cal-
culated. In all cases the blood pressure had
decreased on average.

Average change group 1: ¯y1. = 8.14

Average change group 2: ¯y2. = 6.28

Average change group 3: ¯y3. = 13.01

The question is, do the drug decrease the
blood pressure equally or not?

4.5 The data
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average within group
total average

Figure 4: Data for ANOVA

4.6 Syntax
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4.7 Sums of squares

• We need to calculate three
sums of squares, and are they
denoted withSST , SSTr and
SSE .

• SST is the total sums of
squares and is a measure of
the total variation of the mea-
surements.

• SSTr is a measure of the
variation between groups (or
treatments), that is, how much
to the means of the groups
vary.

• SSE is a measure of the vari-
ability within groups (or treat-
ments) and is therefore a mea-
sure of the error. It shows
how much the measurements
deviate from the mean of the
group.

4.8 Sums of squares

4.9 Sums of squares - graphically
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Figure 5: Sums of squares
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4.10 ANOVA table

• It is common to visualize the
sums of squares in a so-called
ANOVA table.

• The table consist of three
columns and three lines.

• The first column contains the
sums of squares, the next one
contains the number ofde-
grees of freedom. The first
column contains the sums of
squares, the second one con-
tains the number ofdegrees
of freedomfor each sum of
squares and the third column
contains so-called mean sum
of squares.

• Mean sum of squares is cal-
culated by dividing the corre-
sponding sum of squares with
the number of corresponding
degrees of freedom (in the
same line).

4.11 ANOVA table

Sums of squares Degrees of freedom Mean sum of squares

SSTr a−1 MSTr =
SSTr
a−1

SSE N−a MSE =
SSE
N−a

SST N−1

4.12 Hypothesis testing with ANOVA
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4.13 Hypothesis testing with one-sided ANOVA

• The alternative hypothesis is
that at least one of the means
differs from the others, it is
therefore then only informa-
tion we receive if the null hy-
pothesis is rejected.

• We do not know which of the
means differs from the others
or if they are potentially all
different.

• Further analysis needs to be
done in order to find that out.
A common test i Tukey’s test,
but they will not be covered in
this lecture.

Look at the example from the lecture about the blood pressuremedicine. The data are the following:

Medicine 1 Medicine 2 Medicine 3
4.29 10.32 12.89
11.28 3.23 15.68
5.37 4.51 16.03
7.89 4.57 9.43
8.10 8.85 12.86
11.93 6.23 11.15

1. We would like to compare three mean values, the samples areindependent, the variance is similar
so we use analysis of variance.

2. α = 0.05 að venju.

3. The hypotheses are
H0 : µ1 = µ2 = µ3

og
H1 : at least one mean different from the others.

4. We need to calculate the sums of squares.

We have three groups soa= 3. We have six measurements per group son1 = n2 = n3 = 6 and
N = 6+6+6= 18. The grand mean is:

ȳ.. =
∑a

i=1 ∑ni
j=1yi j

N
=

4.29+10.32+12.98+11.28+ ...+11.15
18

= 9.15

and the averages within the groups:

ȳ1. =
∑n1

j=1y1 j

n1
=

4.29+11.28+ ...+11.93
6

= 8.14,

ȳ2. =
∑n2

j=1y2 j

n2
=

10.32+3.23+ ...+6.23
6

= 6.29,

ȳ3. =
∑n3

j=1y3 j

n3
=

12.89+15.68+ ...+11.15
6

= 13.01.
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SST =
a

∑
i=1

ni

∑
j=1

(yi j − ȳ..)
2

=(4.29−9.15)2+(11.28−9.15)2+ ...+(11.15−9.15)2= 262.16.

SSTr =
a

∑
i=1

ni(ȳi.− ȳ..)
2

=6 · (8.14−9.15)2+6 · (6.29−9.15)2+6 · (13.01−9.15)2= 144.53.

SSE = SST −SSTr = 117.63.

Lets make a SS table:

SS DF MS
SSTr = 144.53 a−1 = 2 MSTr = 72.27
SSE = 117.63 N−a = 15 MSE = 7.84
SST = 262.16 N−1 = 17

The value of the test statistic:

F =
MSTr

MSE
=

72.27
7.84

= 9.21.

5. We look up fora−1 = 2 ogN−a = 15 degrees of freedom.F1−α,((a−1),(N−a)) = F0.95,(2,15) = 3.68.
We see thatF > 3.68.

6. We reject the null hypothesis and conclude that at leas oneof the mean values is different from
the others.

5 Inference on variances

5.1 Introduction

• In this lecture we will discuss
inference on the variance of
a normally distributed popula-
tion and how to compare the
variances in two normally dis-
tributed populations.

• First we will discuss confi-
dence intervals and hypothesis
test for the variance of a nor-
mally distributed population.

• Then we explore hypothesis
tests that can be used when
comparing the variances of
two normally distributed pop-
ulations.
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5.2 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theα-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.

5.3 Inference on the variance of a population

• In this section we discuss
hypothesis tests and confi-
dence intervals that apply
when making inference on the
variance of a normally dis-

tributed population,σ2.

• When calculating confidence
intervals and testing hypothe-
sis for the variance of a pop-

ulation, theχ2-distribution is
used.

• The null hypothesis in this
section is that the variance
of the population equals some
specific value that we denote

σ2
0.

• The null hypothesis is written

H0 : σ2 = σ2
0.

• It depends on the direction of
the hypothesis test what con-
clusion are drawn if the null
hypothesis is rejected.

• If the hypothesis test is two-
sided we conclude that the
variance of the population,

σ2, differs from σ2
0 but if

it is one-sided we can only
conclude that the variance is
greater or less thanσ0 de-
pending on the case.

5.4 Confidence interval for the variance of a population
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5.5 Inference on the variance of a population

A consumer group is investigating whether there is to littlesoda in cans from a certain soda factory.
It is important that the filling process in the factory is stable, that is the variance is not higher than 10
ml2, so that there is not many bottles with too much or too little soda. To investigate this an experiment
was performed where a random sample of 30 bottles was taken and the standard deviation calculated to,
s= 3.5. It can be assumed that the soda level follows a normal distribution. Test the hypothesis that the
variance is higher than 10 ml2. Useα = 0.05.

1. We would like to test a hypothesis regarding the variance of a normal distribution.

2. α = 0.05.

3. The hypotheses are:

H0 : σ2 = 10

H1 : σ2 > 10.

4. The test statistic is:

χ2 =
(n−1)S2

σ2
0

.

n−1= 30−1= 29,σ0 = 10.

χ2 =
29·12.25

10
= 35.53.

5. χ2
0.95,(29) = 42.56. We reject the null hypothesis ifχ2 > 42.56. We see thatχ2 < 42.56.

6. We cannot reject the null hypothesis so we cannot concludethat the variance is larger than 10 ml2.

5.6 Inference on the variance of two populations

• The hypothesis tests that we
discuss in this section are used
to compare the variance of
two populations that both are
normally distributed.

• Tests of this kind are often
conducted before hypothesis
tests where the means of two
populations are compared and
the variance of the populations
is unknown and the samples
are not large.

• The null hypothesis i this sec-
tion is that the variance of the
two populations is equal, writ-

tenH0 : σ2
1 = σ2

2.

• If the hypothesis test is two-
sided we can draw the conclu-
sion that the variances are un-
equal, but if it is one-sided we
can only draw the conclusion
that the variance in one sam-
ple is greater then the variance
in the other sample.
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5.7 Hypothesis tests for the variances of two populations

Let us go back to an example form the lecture on difference between two mean values where we com-
pared the average salaries fro males and females working in fisheries in Iceland. There we assumed that
the variance in the two populations is the same. We are going to check that assumption know using
the appropriate hypothesis test. Random samples were takenfrom both populations of size 20. The
average and standard deviation in the make sample was 245163kr and 22814. The average and standard
deviation in the female sample was 218634 og 18312. Useα = 0.05.

1. We are going to test whether the variances in two normally distributed populations is the same.

2. α = 0.05.

3. The hypotheses are:

H0 : σ2
1 = σ2

2

H0 : σ2
1 6= σ2

2

4. The test statistic is:

F =
S2

M

S2
m
.

F =
228142

183122
= 1.55.

5. F1−α/2,(nM−1,nm−1) =F0.975,(19,19). we use that value that is next,F0.975,(20,19)= 2.506, so we reject
the null-hypothesis ifF > 2.506. We see thatF < 2.506.

6. We cannot reject the null-hypothesis so we cannot conclude that the variances are different.

6 Inference on ratios and contingency tables

6.1 Estimate of the ratio of a population

In this section we will discuss confidence
intervals and hypothesis tests for one ratio
p that describes the ratio of subjects within
a population that have a particular value of
a categorical variable.

6.2 Bernoulli trial and the binomial distribution
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Bernoulli trial
Every trial in a group of repeated
trials is classified as aBernoulli
trial if the following holds:

1. Every trial has only
two possible out-
comes (positive and
negative).

2. The probability of a
positive outcome are
the same in every
trial.

3. The outcomes are in-
dipendant.

The number of positive outcomes inn
Bernoulli trials follows thebinomial dis-
tribution with the parametersn and p,
written X ∼ B(n, p), wherep is the prob-
ability of a positive outcome.

6.3 Estimate of the ratio of a population

The ratio of the population, denotedp, is
estimated with the sample proportion:

p̂=
x
n

where x is the number of measurements
that receive the corresponding outcome
andn is the size of the sample.

6.4 Normal approximation

• When certain criteria is met,
the binomial distribution is
similar to the normal distribu-
tion.

• Then we can use methods
that assume the characteris-
tics of the normal distribution
to make inference on random
variables that in deed are bi-
nomially distributed.

• That is called to apply anor-
mal approximation

When can one use normal ap-
proximation?
If np̂ and n(1− p̂) are greater
then 15, the normal approxima-
tion can be used to make infer-
ence on the proportion of a bino-
mial distribution.
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6.5 Confidence interval

Confidence interval for the ra-
tio of a population
If the criteria for using the normal
approximation is met, the lower
bound for p can be calculated
with:

p̂−z1−α/2 ·
√

p̂(1− p̂)
n

and the upper bound with:

p̂+z1−α/2 ·
√

p̂(1− p̂)
n

where p̂ = x
n andz1−α/2 is in

the standardized normal distribu-
tion table

A company decided to make a pole to investigate whether over half of the population is in favour of the
government. Out of the 8750 that were asked, 4530 said yes and4220 said no. Find a 95% confidence
interval forp, the ratio of those that are in favour of the government.

We start by findinĝp:

p̂=
x
n
=

4530
8750

= 0.5177.

The conditions for using the normal approximation are met since np̂ and n(1− p̂) are both larger than
15.

The lower limit is:

p̂− z1−α/2 ·
√

p̂(1− p̂)
n

= 0.5177−1.96·
√

0.5177(1−0.5177)
8750

= 0.5072

and the upper limit:

p̂+ z1−α/2 ·
√

p̂(1− p̂)
n

= 0.5177+1.96·
√

0.5177(1−0.5177)
8750

= 0.5282.

The confidence interval is:
0.5072< p < 0.5282.
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6.6 The null hypothesis

• The null hypothesis in this
section tests the hypothesis
that the ratio of the sample,p
is equal to a certain value that
we call p0.

• The null hypothesis is written
H0 : p= p0.

• If the test is two-sided we
can conclude that the ratiop
differs fromp0.

• If it is one sided we can
only conclude thatp is either
greater or less thanp0, de-
pending on the case.

6.7 Hypothesis test for the ratio of a population

Hypothesis test for the ratio of
a population
If the criteria for using the nor-
mal approximation are met, the
following hypothesis test can be
used The null hypothesis is

H0 : p= p0

The test statistic is

Z =
X−np0√

np0(1− p0)

where X is the number of suc-
cessful experiments andn is the
size of the sample.

If the null hypothesis is true,

the test statistic follows the stan-
dardized normal distribution, or
Z ∼ N(0,1).
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6.8 Alternative hypothesis for the ratio of a sample.

Alternative hypothesis for the
ratio of a sample.
The alternative hypothesis along
with the rejection areas are shown
below.

Alternative hypothesis RejectH0 if:
H1 : p< p0 Z <−z1−α
H1 : p> p0 Z > z1−α
H1 : p 6= p0 Z <−z1−α/2 or Z > z1−α/2

6.9 Inference on the ratio of two populations

We often want to compare the ratios of a
certain value of a categorical variable in
two populations.

We denote the ratios in the two popula-

tions with p1 and p2 and estimate them
with

p̂1 =
x1
n1

, p̂2 =
x2
n2

wherex1 and x2 are the number of suc-
cessful outcomes in the two samples.

Criteria for normal approxi-
mation
A normal approximation can be
used ifn1 p̂1, n1(1− p̂1), n2 p̂2
and n2(1− p̂2) are all greater
than 15
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6.10 Confidence interval for the ratio of two populations

Confidence interval for the ra-
tio of two populations
If the criteria for using the normal
approximation are met, the lower
bound for the differencep1 and
p2 can be calculated with:

p̂1− p̂2−z1−α/2 ·
√

p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

and the upper bound with:

p̂1− p̂2+z1−α/2 ·
√

p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

where p̂1 =
x1
n1

, p̂2 =
x2
n2

and

z1−α/2 is in the standardized

normal distribuiton table

6.11 The null hypothesis

• The hypothesis test in this
section tests the null hypoth-
esis that the ratios in the two
populations are equal.

• The null hypothesis is written
H0 : p1 = p2.

• If the hypothesis test is two
sided we draw the conclusion
that the ratios are different if
we reject the null hypothesis.

• It is one sided we can only
conclude that one ratio is
greater than the other or vice
verse, depending on the case.
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6.12 Hypothesis test for the ratio of two populations

Hypothesis test for the ratio of
two populations
If the criteria for using the nor-
mal approximation are met, the
following hypothesis test can be
used:

The null hypothesis is:

H0 : p1 = p2

The test statistic is:

Z=

X1
n1

− X2
n2√

P̂(1− P̂)
(

1
n1

+ 1
n2

) , where P̂=
X1+X2
n1+n2

If the null hypothesis is true
the test statistic follows the stan-
dardized normal distribution, or
Z ∼ N(0,1).

Let us look again at the example where governmental support was measured. Now we get the additional
information that in fact two samples were taken, 4375 females and 4375 males.

The result was that 4530 said yes in total and 4220 said no. Outof the 4530 that said yes, 2337 were
females. Find a 95% confidence interval for the difference inratio between females and mails that
support the government and test the hypothesis that there isa difference in the ratio between the females
and the mails that support the government. Useα = 0.05.

The conditions for using a normal approximation are fulfilled sincen1p̂1, n1(1− p̂1), n2p̂2 and n2(1−
p̂2) are all larger than 15.

We need to findp̂1 and p̂2. We have that:n1 = n2 = 4375. We also know that the number of females
supporting the government is 2337 and the number of males then: 4530-2337 = 2193, sox1 = 2337 og
x2 = 2193.

p̂1 =
x1

n1
=

2337
4375

= 0.5342 og p̂2 =
x2

n2
=

2193
4375

= 0.5013.

The lover limit is:

p̂1− p̂2− z1−α/2 ·

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
=

0.5342−0.5013−1.96

√
0.5342(1−0.5342)

4375
+

0.5013(1−0.5013)
4375

= 0.0119

and the upper limit:

p̂1− p̂2+ z1−α/2 ·

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
=

0.5342−0.5013+1.96

√
0.5342(1−0.5342)

4375
+

0.5013(1−0.5013)
4375

= 0.0537.

The confidence interval is:
0.0119< p1− p2 < 0.0537.

1. We want to make a test regarding the difference between tworatios. We use a normal approxima-
tion.
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2. α = 0.05.

3. The hypotheses are:

H0 : p1 = p2

H1 : p1 6= p2

4. We know thatp̂1 = 0.5342 andp̂2 = 0.5013. We need to find̂p:

p̂=
x1+ x2

n1+n2
=

4530
8750

= 0.5177.

The test statistic is:

z=
x1
n1
− x2

n2√
p̂(1− p̂)

(
1
n1
+ 1

n2

) =
0.5342−0.5013√

0.5177(1−0.5177)
(

1
4375+

1
4375

) = 3.08.

5. z1−α/2 = z0.975 = 1.96. We reject the null-hypothesis ifz> 1.96 OR IFz< −1.96. We see that
z> 1.96.

6. We reject the null hypothesis and conclude that there is a difference in the ratio between males
and females.

6.13 The alternative hypothesis

The alternative hypothesis
The alternative hypothesis along
with their rejection areas are
shown below:

Alternative hypothesis RejectH0 if:
H1 : p1 < p2 Z <−z1−α
H1 : p1 > p2 Z > z1−α
H1 : p1 6= p2 Z <−z1−α/2 or Z > z1−α/2

6.14 Chi squared test

• The hypothesis in last section
can be generalized such that
it compares the ratio of more
than two populations.

• Then one cannot use methods
based on normal proximation,
but so called chi-squared tests

are used (χ2-test).

• The method can also be used
when comparing the ratios of
two populations, but only if
the alternative hypothesis is
two-sided.

• Then the Chi-squared test
statistic and the Z-statistic be
the same.
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6.15 The null hypothesis

• The hypothesis test in this sec-
tion tests whether the ratios of
c populations are all equal.

• It is written H0 : p1 = p2 =
...= pc.

• If it is rejected we can con-
clude that the ratio are not all
equal.

• That does not mean that they
are all different!

• The hypothesis test does not
say which of the ratios differ
from the other.

• More evolved methods are
used to do so, which are not
taught in this lecture.

6.16 Tables for chi-squared próf

Töflur fyrir chi-squared próf
Þegar framkvæma á chi-squared
test er gott að búa til þrjár töflur:

• Table 1: Con-
tains the observed
frequency in the in-
vestigation, denoted
with o.

• Table 2: Con-
taines the expected
frequency in the
investigation, de-
noted with e. The
values are calculated
by multiplying the
sums for the corre-
sponding column
and row and divide
by the total number
of measurements.
All values in this
table need to be
greater than 5 for the
test to be valid.

• Table 3: Contains
the tribute to the test
statistic, calculated

with (o−e)2
e . Fi-

nally all the values
in Table 3 are added
together to calculate
the value of the test
statistic (see next
slide).
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6.17 Chi-squared test for ratios

Chi-squared test for ratios
The hypothesis are:

H0 : p1 = p2 = ...= pc

H1 : the ratios are not all equal

The test statistic is:

χ2 =
r
∑
i=1

c
∑
j=1

(oi j −ei j )
2

ei j

wherer is the number of rows,c
is the number of columns,o is the
observed frequency ande is the
expected frequency.

If the null hypothesis is true,

the test statistic follows theχ2-
distribution with (r - 1) · (c -
1) degrees of freedom. The null

hypothesis is rejected ifχ2 >

χ2
1−α,((r−1)·(c−1)) .

The following data are the results from an experiment where employees in three governmental depart-
ments were asked if the were in favour of their pension plan.

Department 1 Department 2 Department 3
In favour 66 85 108

Not in favour 34 65 42

We need to start make the three tables, that observed frequencies, the expected frequencies and the
contribution to the test statistic.

Table 1 - o Department 1 Department 2 Department 3Total
In favour 66 85 108 259
Not in favour 34 65 42 141
Total 100 150 150 400

We get the values in Table 2 by multiplying the totals in the corresponding line and column from Table
1 and divide with the total number.

Table 2 - e Dep. 1 Dep. 2 Dep. 3

In favour 100·259
400 = 64.75 150·259

400 = 97.13 150·259
400 = 97.13

Not in favour 100·141
400 = 35.25 150·141

400 = 52.88 150·141
400 = 52.88

The values in Table three we get by:(o−e)2

e

Table 3 Gov. 1 Gov. 2 Gov. 3

In favour (66−64.75)2

64.75 = 0.02 (85−97.13)2

97.13 = 1.51 (108−97.13)2

97.13 = 1.22

Not in favour (34−35.25)2

35.25 = 0.04 (65−52.88)2

52.88 = 2.78 (42−52.88)2

52.88 = 2.24
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