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1 Statistical inference

1.1 Estimators

Estimator

An estimatoris a statistic that es-
timates parameters of probability
distributions.

e Estimators for parameters of
normal distribution, Poisson
distribution and binomial dis-
tribution.

e |0, Aandp.

e The outcome of the estimators
are called estimates

e They are denoted with, 3, A
andp.

1.2 Estimator for the mean of a random variable

Metill & medaltal slem-
bisteerdar

The estimator used for the mean
of arandom variable is

X = X

n

IE]

i=1

wheren is the total number of
measurements.

It is believed that the number of children that break a legyeday in Iceland follows a Poisson distri-
bution. A doctor at the emergency room wants to estimate hawnehildren, on average, break a leg
per day. He has some data describing the number of breakashéep days: 2,0, 1,7, 3, 3,6, 4, 4, 1.
What is the doctors estimate of the average number of lekbmear day?

The A parameter in the Poisson distribution represents the geemamber of breaks per day. The
estimator isX, which is simply the mean of the measurements:

2+0+1+7+3+3+6+4+4+1 31
10 —10 T

A= X—



1.3 Estimator for the variance of a random variable

Estimator for the variance of a
random variable

The estimator used for the vari-
ance of a random variable is

_ 3 02
52721 n-1

whereX is the estimator for the
mean of the measurements amd
is the total number of measure-
ments. meelinga.

Helga believes that womens shoe sizes follow a normal bigtan. She wants to open up a shoe shop
so she is interested in finding out what the variance of worshpe size is to find out how many pairs
she needs to buy of each number. She measures the shoe sgletei@nmen and gets: 40, 36, 37, 39,
38, 39, 40, 38. What is the estimated variance?

The mean i¢0+36:37+:39:36+39:40138 _ 38 375,

The deviation from the mean is: 1.625, -2.375, -1.3729.60.375, 0.625, 1.625, -0.375.
The numbers squared are: 2.641, 5.641, 1.891, 0.3911,013P1, 2.641, 0.141.

The sum of the squared number is 13.878.

o & w0 NP

13878 __ 13878 _

So0:6%2 =& = 1.983.

1.4 Estimator for the ratio of a random variable

Estimator for the ratio of a ran-
dom variable

The estimator used for the ratio
of arandom variable is

P=

E1R

where X is the number of suc-
cessful confidence intervals and
is the total number of confidence
intervals.

Let us assume that the numbers of rotten apples in a box ofIROvira binomial distribution. Anna
wants to insure that she buys enough if good apples so she waastimate the proportion of rotten
apples per box. She buys a box of 20 apples and finds 2 rottdesapf‘hat is the estimated ratio of
rotten apples?

We haven = 20 andx = 2 so the estimated proportion is:

L X 2
p_ﬁ_%_o.l.



1.5 Confidence level

Usually there is no probability that our
estimate is exactly the true value of the
parameter.

Confidence intervals

1 - a confidence intervalis a
numerical interval that contains
the true value with the confidence
level 1 -a.

Confidence level

Confidence levelis the ratio of
cases when the confidence inter-
val contains the true value of the
parameter, when the experiment
is repeated very often.

1.6 Confidence limits

Confidence limits

Confidence limits are the end-

points of the confidence inter-
val. The upper confidence limitis
the upper endpoint of the interval
(the highest value in the interval),
but the lower confidence limit is
the lower endpoint (the smallest
value in the interval).

Type | error

Type | error denotedy, is the ra-
tio of cases where the confidence
interval contains the true value of
the parameter, if the experiment
is repeated very often.




1.7 The ideology behind hypothesis tests

The ideology behind hypothesis
tests

A hypothesis is found that
describes what we want to
demonstrate and another that
describes a neutral case.

A statistic is found that has a
known probability distribution in
the neutral case. This statistic is
our test statistic.

It is defined what values of the
test statistic are “"improbable"
according to the probability
distribution in the neutral case.

If the retrieved estimate classifies
as “"improbable” the hypothesis
for the neutral stage is rejected
and the hypothesis we want to
demonstrate is claimed.

If the estimate is not "improba-
ble" no claims are made.

1.8 Hypothesis

Null hypothesis

Null hypothesis is a hypothe-
sis that can be rejected with ob-
served data. It can never we be
claimed. It is usually denoted
with Hg.

Alternative hypothesis
Alternative hypothesisis the hy-
pothesis we wish confirm with
the experiment. It can only be
claimed but not rejected. It is ei-
ther denoted wittiiq or Ha.




1.9 Directions of hypothesis tests

Two-sided tests

If the data allows, awo-sided
test claims that one or more
parameters of the population or
populations ar@ot equalto each
other or a certain value.

One-sided tests

There are two types afne-sided
tests

Those who claim that one param-
eter of the probability distribution
is larger then another parameter
or a certain value, if the measure-
ments allow.

Those who claim that one param-
eter of the probability distribution
is smalerthen another parameter
or a certain value, if the measure-
ments allow.

1.10 Test statistics

Test statistic

A test statisticis a statistic that
can be used to reject a null hy-
pothesis if the measurements al-
low.

Null hypothesis rejected

A null hypothesis isrejected if
the test statistic receives a im-
probable value compared to the
probability distribution it should
have if the null hypothesis would
be true.




1.11 Rejection areas andi-levels

a-level

Thea levelof a hypothesis test is

the highest acceptable probabil-
ity that we receive an improbable
value when the null hypothesis is
true.

Rejection areas of hypothesis
tests

Rejection areas of hypothesis
tests are the intervals that contain
all of the improbable values and
only those values.

If the test statistics falls within
the rejection interval of the hy-
pothesis test, we reject the null
hypothesis.

If it does not fall within the re-
jection interval of the hypothesis
test, we make no claims

1.12 Rejection areas andi-levels

Rejection area of a two sided test

Figure 1: Rejection areas of two-sided tests

1.13 Rejection areas andi-levels

Rejection area of a < test

Rejection area of a > test

11



1.14 Rejection areas andi-levels

The probability that a test statistic falls
within the rejection are when the null
hypothesis is true is exactly thelevel of
the hypothesis test.

In order to define rejection ares one needs
to decide:

e What is the direction of the
test? (one- or two-sided test)

e What is an acceptable-level
for the test.

1.15 p-values

p-values

A p-value is the probability of
receiving as improbable value or
an value even more improbable
as the one received with the mea-
surements if the null hypothesis
is true. TheHq shall be rejected
if the p-value is less them. If the
p-value is greater them the null
hypothesis cannot be rejected.

Power

Thepower of a hypothesis test is
the probability of rejecting a null
hypothesis that is not true. It is
denoted with 1- B.

1.16 Errors of type | and Il

Type | error

Type | error is the error of re-
jecting a null hypothesis that was
true. The probability of a type |
error is thea-level of the hypoth-
esis test.

Type Il error

Type Il error is the error of not
rejecting a null hypothesis that
was not true. The probability of
atype Il error isB, where 1- B is
the power of the hypothesis test.

Ho is true H is false
RejectHg Type | error Right decision
Probability:a Probdbility: 1- B
Not rejectHg Right decision Tyre Il error
Probability: 1e Probability:




1.17 Notrejecting a null hypothesis

There can be various reasons behind one
not rejecting a null hypothesis:

e The number of measurements
was to small and therefore
the hypothesis test had little
power.

e The null hypothesisiis true.

e Our model does not fit the
measurements - the assump-
tions we made about the mea-
surements do not hold.

We may never claim which one of the
following cases was the reason!

But we may make arguments for one rea-
son being the most plausible.

1.18 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide thea-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.

13



1.19 The relationship between confidence intervals and hypiwesis tests

If the a-level is the same for both the con-
fidence interval and the hypothesis test, the
following are equivalent:

o Wereject the null hypothesis
that a particular statistic has a
certain value.

e The confidence interval cal-
culated doesiot contain that
value.

If we conduct an hypothesis test with the
a-level 5% and calculate a 95% confidence
interval:

e We reject the null hypothesis
that the statistic is equal to the
number 1 if the number 1 is
not within the confidence in-
terval.

e The number 1 is not within
the confidence interval if we
reject the null hypothesis that
the statistic is equal to the
number 1.

2 Inference on the mean of a population

2.1 Hypothesis tests fou

e In this lecture we will dis-
cuss hypothesis tests and con-
fidence intervals that apply
when making inference on the
mean of a populatiom.

o We will use them for exam-
ple to test the hypothesis that
mean precipitation in Reyk-
javik in june is less then 50
mm, that the average heart
rate of men over fifty years
old is greater then 99 beats
p/minute, that the average
number of nights slept in ho-
tels and hostels in june differs
from 100000 and so and so
forth.

e Allhypothesis test that will be
discussed have the same null
hypothesis, that the mean of
the population is equal to a
certain value that is callegy.

14



2.2 Hypothesis tests fop

The null hypothesis is written:

Hoi=Ho

e It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

e If the hypothesis test is two
sided, we can conclude that
the mean of the populatiop,
differs frompg.

e Ifitis one sided we can only
conclude that it is greater in
one case or less in the other
case themy depending on the
case.

2.3 Hypothesis tests fop

e Circumstances can be very
different when we make infer-
ence on the mean of a popu-
lation and we categorize them
into four different cases, but
each case is treated differ-
ently.

e The decision tree on slide?
shows which case corresponds
to which circumstance , butin
order to select the appropriate
case we need to answer three
questions that are shown on
slide??.

e The question are about the
probability distribution of the
population, whether it's vari-
a\nce,c2 is known and the size
of the population,n. Each
case is discussed separately in
the following slides

2.4 Decision tree

Normally distributed population?

@ @ Is n large? Is n large?

Figure 2: Decision tree fqu

15



2.5 Decision tree

These three questions are answered in cor-
rect order and the answers decide how we
trace us down the decision tree.

1. Is the population normally
distributed
This need to be based on prior
experience or by looking at
the distribution of the sample
and conclude from that. It can
though be douptful if the sam-
ple is small.

2. Is the variance of thpopula-
tion, 02, known?
Notice that this is rarely the
case, although it may happen
that such detailed prior inves-
tigations have been made that
we can assume that the vari-
ance is known.

3. Isthe sample large?
We use the rule of thumb that
nis large ifn > 30. This is not
a universal rule though.

2.6 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide thea-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.

16



2.7 Casel

Case 1 corresponds to:

e When one can assume that
the population follows a nor-
mal distribution and the vari-
ance ()2) of the distributionis
known.

e whenn is large ando? is
known, although the popu-
lation is not normally dis-
tributed.

2.8 Confidence interval foru - case 1

2.9 Hypothesis test foru - case 1

John is producing fish to export. The packages he exporiadl normal distribution with known
variancep? = 0.8 kg. He wants to make a 95% confidence intervajifand test the hypothesis thais
different from 50 kg. He therefore takes a random sample-efl2 and calculates the sample average
to be 50.84 kg. Usa = 0.05.

We have:x=50.84, n= 12, 0> = 0.8. We use the normal table to fimd /2. 21 o/2=21-0052=
Zo.975 = 1.96. The lower limit is:

X—21 g/ \/iﬁ —50.84— 1.96- Tvif = 50.84— 0.506= 50.33

and the upper limit;

X421 g/ % — 50.844 0.506= 51.35.

50.33< p< 51.35

The confidence interval is:

We test the hypothesis using six steps:

1. We are testing a hypothesis concernirand the variance of the distribution is known.
2. Vio fengum uppgefid ad nota= 0.05.
3. The hypotheses are
Ho : p=50
Hi : p#50
4. We havex=50.84, n= 12, 62 = 0.8. The value of the test statistic is

,_ X—Ho _ 508450
- o/yn  038/V12

5. Z1_q/2=2.975=1.96. We reject the null hypothesigik —1.96 orz> 1.96. We see that> 1.96.

=3.25.

6. We reject the null hypothesis and conclude that the baxekeavier than 50 kg.

17



2.10 p-case?2

Case 2 corresponds to:

o when the sample is large and
we do not know the variance
of the population. We do not
need to assume that the popu-
lation is normally distributed.

Be careful! One can always calculate the
variance of thesamplebut the variance of
thepopulation is rarely known!

211 p-case?2

As the variance of the population is not
known, we use the variance of the sample
to estimate the variance of the population
with
2_ Zin:;l(xi -2
===

In order to find the standard deviation of
the sample, we take the square root of the

variance
s=Vs2.

2.12 Confidence interval forp - case 2

2.13 Hypothesis test foiu - case 2

Hypothesis test forp - case 2
The null hypothesis is:

Hp:H=Hg

The test statistic is:

X—1

TSR

If the null hypothesis is true,

the test statistic follows the stan-
dardized normal distribution, or
Z ~N(0,1).

The rejection areas are:

Alternative hypothesis Rejgety if:
Hqi tp<pp Z<471_o
HE Z>p o
EETEAT Z<’Zl—u/2°'2>zl—a/2

Gugu is the CEO in a car company. She claims that the cars thpamy produces can drive 20 km. pr.
liter. Ingibjorg is working for a consumer board and she had lnany complains that the cars cannot

18



drive 20 km. pr. liter. Therefore she decided to conduct gregrment where she wanted to test the
hypothesis that the average number of kilometers is fewaar #0. A random sample of 40 cars was
taken and the average number of kilometers calculated t® I2sahd standard deviation of 1.7. Test the
hypothesis. Usa = 0.05.

1. We want to test a hypothesis regardingWe do not know the probability distribution not the
variance of that distribution but the sample is large.

2. a =0.05.

3. The hypotheses are

Ho : pu=20
Hi @ p<20

4. We havex=19.2, s= 1.7, n=40. The test statistic is:

,_ Xl _192-20
T s/yn o 17/V40

5. —z1_q = —2p95 = —1.64. We reject the null hypothesisafi< —1.64. We see that < —1.64.

—2.98.

6. We reject the null hypothesis and conclude that the ageragsumption of gas is greater than 20
km per liter.

2.14 p-case3

Case 3 corresponds to two cases:

Inboth cases, the varianmzz() of thepop-
ulation, to which the sample belongs, un-
known. On the other hand, we either need
to assume that:

e the population is normally dis-
tributed

e or that we have many mea-
surements in our sample (then
the population does not have
to be normally distributed).
This is the same as case 2.

When calculating confidence intervals and
conducting hypothesis test in this case, one
uses the t-distribution.

19



2.15 Ofthe overlap of case 2 and 3

e Notice that when case 2
(which usesztest) is valid,
one can successfully use case
3 instead (which usestest).
This is because when the
number of degrees of freedom
is large, thet-distribution is
similar to the normal distribu-
tion.

o T-test, unlike z-tests, are built
in most statistical software
and therefore more used.

e Ifwe are doing calculations by
hand itis often better to use
tests because then we can eas-
ily calculatep-values.

2.16 Confidence interval foru - case 3

2.17 Hypothesis test fou - case 3

A cigarette producer states that the a certain types of eftger has on average 14 mg of nicotine per
cigarette. Health authorities wanted to investigate if &svin fact higher. Therefore they made an
experiment to test the hypothesis that the average nicletieéis higher than 14 gr./cigarette. Arandom

sample of size 12 was taken and the average level found to .Beahd the standard deviation of 0.9.

Test the hypothesis usirg= 0.05. We can assume that the nicotine level follows a norméiibiigion.

1. We want to test an hypothesis regardingre can assume that the population follows a normal
distribution,0? is unknown.

2. a=0.05
3. The hypothesis are:
Hh : p=14
H @ pu>14
4. We getn= 12, x=14.3, s= 0.9. The value of the test statistic is:

X—po 143-14

t= SR 0.9/v12 =115

5. We haven—1= 11 degrees of freedonty._q _1) = to.95(11) = 1.796. We reject the null hypoth-
esis ift > 1.796. We see thdt< 1.796.

6. We cannot reject the null hypothesis so we cannot conchate¢he average level is higher than
14 mg/cigarette.

20



2.18 p-case4

In case 4 one can neither use z-test nor
t-test unless further approximations are

used. In these cases one can do one of the
following:

e Transform the data
e Use nonparametric tests

o Check whether the population
follows some other known
distribution and use tests that
are applicable for them.

3 Inference on the means of two populations

3.1 Inference on the mean of two populations

e In this lecture we will dis-
cuss hypothesis tests and con-
fidence intervals that apply
when making inference on the
mean of two populations.

e The means are namgd and
o and we wish to make infer-
ence on their differencey —
Mo

e The tests applied can broadly
be divided into two groups:

— Tests for inde-
pendent measure-
ments.

— Tests for paired
measurements.

21



3.2 Independent or paired?

The first question we need to ask is if the
measurements are independent or paired.
Examples of tests for independent mea-
surements:

e Height of 50 men and 50
women used to test the hy-
pothesis that men are on aver-
age taller then women.

e The heart rate of 30 women in
the age 41-50 and 30 women
in the age 51-60 measured to
test the hypothesis that there
is a difference in the heart rate
of women in these two age
groups.

Examples of tests for paired measure-
ments:

e The weight of 30 men be-
fore they undergo an inten-
sive workout program. The
weight is measure again after
the program to test the hypoth-
esis that the workout is suc-
cessful for loosing weight.

e The age of 40 men and their
wives is noted to test the
hypothesis that in marriages
of men and women are the
men on average older then the
women.

3.3 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide thex-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.
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3.4 Independent measurements

e Allhypothesistestsin this lec-
ture test the same null hypoth-
esis, whether the difference of
the two means is equal to a
certain value that we cafl.

e The null hypothesis iHg :
by —Hp =3

e It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

e If the hypothesis test is two
sided, we can conclude that
the difference of the means,
Hq — M, differs fromd.

e Ifitis one sided we can only
conclude that the difference is
greater in one case or less in
the other case theb depend-
ing on the case.

3.5 Independent measurements

e Aswith one mean, we use dif-
ferent tests for different cir-
cumstances.

e The circumstances are catego-
rized into five cases:

e The decision tree shows which
case corresponds to which cir-
cumstance , but in order to se-
lect the appropriate case we
need to answer four questions
that are shown on an upcom-
ing slide.

e We note the mean, variance
and sample size of one popu-
lation with g, c% andng but

the other withuy, U% andny.




Normally distributed population?

oi , 03 known? Gf , a§ known?
VWO YGSNO
® ?=05? Large ns? Large ns?
ye no ye no ye no

® ONO) ® @9 ®

Figure 3: Decision tree fqu; — pp

3.6 Decision tree - independent measurements

3.7 Decision tree - independent measurements

1. Are the populations normally
distributed?
This need to be
based on prior
experience  or
by looking at
the distributions
of the samples
and  conclude
from that. It
can though be
douptful if the
samples are
small.

2. Is the variance

of the popula-
tions, 03,03,
known?
Notice that this
is rarely the
case, although it
may happen that
such  detailed
prior investiga-
tions have been
made that we
can assume that
the variance is
known.

3. Are the sam-
ples large?
We use the rule
of thumb that
the samples are
large if n; > 30
and np, > 30.
This is not a
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3.8 MWm—H-casel

Case one applies when:

e it can be assumed that the
populations are normally dis-
tributed and the variances of
the popu\ations,q% and c%)
are known.

e whennj andn; are large and
02 and 02 are known, al-
though the populations are not
normally distributed.

3.9 Confidence interval for the difference of two means - cask

Confidence interval for the dif-
ference of two means - case 1
Lower bound of - a confidence
interval is:

2 52
O O
5% 1,9
MR Aa/27\ T,

Upper bound of - a confidence

interval is:

2 2
X1 —Xp+2Z L4 + %2
A

3.10 Confidence interval for the difference of two means - casl

Confidence interval for the dif-
ference of two means - case 1
The confidence interval is:

Xl’XZ’Zl—a/Z'\ [T B 1**2“14:/2‘\

e
o2

where X, Xp are the sample
means and%, U% are the popula-
tion variancesz; _y /5 is found

in the standardized normal distri-
bution table.
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3.11 Hypothesis test for the difference of two means - case 1

Hypothesis test for the differ-
ence of two means - case 1
The null hypothesis is:

Ho:ipg —Hp =0

The test statistic is:

If the null hypothesis is true,
the test statistic follows the stan-
dardized normal distribution, or

Z ~N(0,1).
Alternative hypothesis Rejgety if:
Hy g —pp<d Z<471_o
Hitpy —Hp >0 Z>p o
Hy g —Hp #90 Z<’Zl—u/2°'2>zl—a/2

Notice thatd can be any number
at all, butin most cases= 0.

3.12 p1— Mo -case?2

Case 2 applies when:

e we do not know the popula-
tion variancesﬁ andc%) but
the samples are large. We do
not need to assume that the
populations are normally dis-
tributed.

e In this case one can success-
fully use case 4, but that is
built in most statistical soft-
ware (such as R). When calcu-
lating in hands case 2 is easier
though.

As the variance of the population is not
known, we use the variance of the sample
to estimate the variance of the population
with

SR 6-%2
==

In order to find the standard deviation of
the sample, we take the square root of the

variance
s=Vs2.

These values are calculated for each sam-
ple separately and nameg ands, as ap-
propriate.
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3.13 Confidence interval for the difference of the mean of twpopulations - case
2

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 2

Lower bound of - a confidence
interval is:

ﬁ*@*zl—a/z‘\nil+%

Upper bound of - a confidence
interval is:

o

xl—x2+zl,a/zﬂ\ n71+E

3.14 Confidence interval for the difference of the mean of twpopulations - case
2

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 2

The confidence interval is:

RN % + niz W2\

where X1, Xp are the sample
means ants% % are the sam-
ple variances.zy gy /5 is found
in the standardized normal distri-
bution table.
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3.15 Hypothesis test for the difference of the means of two pailations - case 2

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 2

The null hypothesis is:

Ho:ipg —Hp =0

The test statistic is:

o

—Xo—

s %1%
i

/

[npt

&

—_

2

If the null hypothesis is true, the
test statistic follows the standard-
ized normal distribution, o ~

N(0,1).
Alternative hypothesis Rejgety if:
Hy g —pp<d Z<471_o
Hithy —pp >0 Z>p o
Hy g —Hp #90 Z<’Zl—u/2°'2>zl—a/2

Notice thatd can be any number
at all, butin most cases= 0.

3.16 p1— Mo -case3

Case 3 applies when:

e One can assume that the
populations are normally dis-
tributed, the variances& and

0‘%) of the populations are un-
known, but we assume that
o2 =a

1 2°

Later on we will see how to test this hy-
pothesis formally, but until then we will
use the rule of thumb that if one sample
variance is more then four times greater
then the other, we cannot assume that the
variances of the populations are equal.

The t-distribution is used for calculating
confidence intervals and hypothesis testing
in this case.

3.17 p1— Mo -case 3

Before we can calculate confidence inter-
vals and conduct hypothesis tests we need
to calculate thepooled variance of the
samples, which is denot#.

2_ -V -1
SR I AL e

N +np—2

where% and% are calculated in the same
way as earlier.
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3.18 Confidence interval for the difference of the mean of twpopulations - case
3

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 3

Lower bound of - a confidence
interval is:

R /
X172~ _q/2,(ng+ny-2) ‘Sp\// P,

Upper bound of - a confidence
interval is:

R 1
X1 =%t /2 (ng +np—2) 'SP V/ oy

where X, Xp are the sample
means and% % are the sample
variances "1—u/2.(nl+n2—2)
is found in the t-distribution ta-
ble.

3.19 Hypothesis test for the difference of the means of two pallations - case 3

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 3
The null hypothesis is:

Ho:ipg —Hp =3

The test statistic is:

7o X1-%08
spy /e + s
Py g ng

If the null hypothesis is truél, ~

t(n1+nz—2)‘
Alternative hypothesis Rejett if:
Hitpg —p <0 T<l_qgn+np-2)
Hitpg -1 >0 T>4 a,ng+np-2)
Hitpmg —p #0 T<1-a/2|ng+np-2) O T > t—a/2,(ng+ny-2)

Notice thatd can be any number
atall, butin most case3= 0.

Ingunn og Arni are interested in investigating if there isifiedence in mean salaries of males and
females working in fisheries in Iceland. Random samples taken, 20 males and 20 females. Mean
and standard deviation of male salaries were 245163 kr a@ti2Mean and standard deviation in the
female sample were 218634 and 18312. Test the hypothesibhéna is a difference in average salaries
between males and females. Wse- 0.05. We can assume that the salaries follow a normal disioibut

1. We want to compare the means of two populations. The samaptandependent. We can assume
that the salaries follow a normal distribution, we dont krtbe variances but we can assume that
they are the same.
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2. a =0.05

3. The hypotheses are:

Ho : pi—=0
Hi @ m—m#0.

4. The value of the test statistic is:

t X1 —Xo— 0
N 11

where

2_ (- 1)k + (N2 — 1)

P nm+n—2

We have thah; = 20,n, = 20,x; = 2451635, = 22814,
Xo = 2186345, = 18312 ogd = 0.

= 2068584

. (20—1)-22814+ (20—1)-18312
P 20+20-2

and
. 245163-218634-0

2068584,/ % + %

5. We look up aftern; +nz —2=38. t1_q/2 n,4+n,—2) = to.o75(38) = 2.024, so we reject the null-
hypothesis it > 2.024 ort < —2.024. We see thdt> 2.024.

=4.06.

6. We reject the null hypothesis and conclude that there iferehce between males and females
in the average salaries in fisheries in Iceland. jofn.

3.20 W —Me-case4d

Case 4 applies when:

e it can be assumed that the
populations are normally dis-
tributed, the variancesr§ and

0‘%) are unknown and we can-
not assume that the variances
are equal, OU% # a5.

e when the variancesc% and

02) are unknown but the sam-
ples are large. Then we don't
have to assume that the sam-
ples are normally distributed.
Then one can also use case 2,
which is normally used when
calculating by hands, but case
4 is used in most statistical
software.

Later on we will see how to test this hy-
pothesis formally, but until then we will
use the rule of thumb that if one sample
variance is more then four times greater
then the other, we cannot assume that the
variances of the populations are equal.
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3.21 p—H-cased

In this case the confidence interval and the
test statistic resembles the one in case 2
but here it follows the t-distribution. The
number of degrees of freedom in this t-
distribution is denoted witlv and calcu-
lated by

(3 2)

. (Eedy
/1
(ﬁn,lfll) +(%ﬂz/'iz)

where% ands5 are calculated by same
methods as earlier. This hypothesis test is
rarely done by hands but a statistical soft-
ware used for the calculations.

3.22 Confidence interval for the difference of the mean of twpopulations - case
4

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 4

Lower bound of - a confidence
interval is:

[
+
R

-t _q/2,v)’

>

=
]

S

Upper bound of - a confidence
interval is:

[
+
[N

X%+t a/2,v)\

=
]
S

3.23 Confidence interval for the difference of the mean of twpopulations - case
4

Confidence interval for the dif-
ference of the mean of two pop-
ulations - case 4

The confidence interval is:

QR ea/2m) \ iy Ty TR TR w200 iy

where X1, Xp are the sample
means and;% % are the sample
variances 'tl—u/z.(v) is found
in the t-table.v is the number of
degrees of freedom.
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3.24 Hypothesis test for the difference of the means of two pailations - case 4

Hypothesis test for the differ-
ence of the means of two pop-
ulations - case 4

The null hypothesis is:

Ho:ipg —Hp =0
The test statistic is:

Ry -Xp-3
T
/
[t

T

—_
3

If the null hypothesis is true, the
test statistic t-dreifingu medfri-
grédum orT ~t(v) wherev is
calculated as shown in slic®

Alternative hypothesis Rejettg if:
Hit —1p <9 T4 aw
Hithy —1p > 8 T4 a()
Hy g —Hp #90 T< —1170[/2 v) orT>l17u/2.(V)

Notice thatd can be any number
at all, but in most case$= 0.

325 Hp—M2-caseb

In case 5 one can neither use z-test nor
t-test unless further approximations are
made. In these cases one of the following
can be done:

e Transform the data
o Use resampling methods
e Use nonparametric tests

e Test whether the measure-
ments follow any known dis-
tributions and look at tests that
apply to them.
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3.26 Paired measurements

e Assume that we have pair
of measurementg;,Y;), i =
1,2,3..n.

e We need to find the differ-
ences of these pairs:

Dy =X -¥.

Dj is arandom variable of size
nfrom a populationwith mean
HD-

e The hypothesis tests make in-
ference onupy.

3.27 Paired measurements

Before conducting hypothesis tests, the
following statistics need to be calculated:

which is the mean of the differences and

n . D)2
2 3i1(Bi-D)
= n—1

is the standard deviation of the differences.

3.28 Paired measurements

e We test the null hypothesis
that the mean of the differ-
ences is equal to a certain
value that is denotegp q.

e The null hypothesis iHg :
HD = Hp,0-

e It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

e If the hypothesis test is two
sided, we can conclude that
the difference of the means,
Up. differs fromyp o.

e |If itis one sided we can only
conclude that the difference is
greater in one case or less in
the other case thepp o de-
pending on the case. -




3.29 Paired measurements

e We test the null hypothesis
that the mean of the differ-
ences is equal to a certain
value that is denotegp g.

e The null hypothesis iHg :
HD = Hp,0-

e It depends on the direction of
the hypothesis test, what con-
clusions are made if we reject
the null hypothesis.

e If the hypothesis test is two
sided, we can conclude that
the difference of the means,
Up. differs fromyp o.

e |If itis one sided we can only
conclude that the difference is
greater in one case or less in
the other case thepp ¢ de-
pending on the case. -

3.30 Paired measurements

e Itdepends on how many pairs
of measurements we have en
whether it can be assumed that
the difference of the measure-
ments is normally distributed
if we use a z-test or a t-test to
make inference oppy.

e If nis large, which here de-
notes the number of pairs, we
can always use the z-test.

e The t-test can be used fp
is normally distributed and/or
the sample is large.

e When we use a statistical soft-
ware the t-test is preferred to
the z-test when both tests are
valid (whennis large).




3.31 Inference on paired measurements) large

Inference on paired measure-
ments,n large
The null hypothesis is:

Ho :'Mp =Hp 0

The test statistic is:

. D-upo
- S/vn

If the null hypothesis is true,
the test statistic follows the stan-
dardized normal distribution, or

Z ~N(0,1).
Alternative hypothesis Rejgt if:
H1'Hp <Hpo Z<i% a
H1'Hp >Hpo Z>p-a
Hi:Uup #Hp o Z< F1-a/2 orZ>zlia/2

2 _q/2 is found in the standard-
ized normal distribution table.

3.32 Inference on paired measurements, normally distribued differences and/or
large n

Whennis small the difference of the mea-
surements need to be normally distributed.

Inference on paired measure-
ments, normally distributed
differences and/or largen

The null hypothesis is:

Ho “Hp =Hp0
The test statistic is:

;_D-ioo
Sp/vn

If the null hypothesis is true, the
test statistic is t-distributed with
(n— 1) degrees of freedom, or

T ~t(n1)-
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3.33 Inference on paired measurements, normally distribugd differences and/or

Inference on paired measure-
ments, normally distributed
differences and/or largen
Alternative hypothesis Rejett if:
H11HD <Hp,0 K Y-am-1
H1 D >Hpo 1>t q,mn-1
H1:Hp #Hp 0 T<1-a/2|(n-1) o' T >Y—a/2,(n-1)
1170/2‘“]71) is found in t-table

An experiments has been performed to asses the hypothasm/tdr weighted males could lose weight
by exercising in 30 minutes per day for two months. A randompa of 6 over weighted males was
taken and the males weighted before and after the two mofiitegescise. The results can be seen
below. Test the hypothesis using= 0.05. It can be assumed that weight follows normal distributio

Individual Befire [kg] After [kg]

1 123 120
2 112 108
3 107 106
4 101 99
5 112 112
6 116 114

We needD;, D andSp.

Individual Before &) After(yi) di=x—Y;

1 123 120 3
2 112 108 4
3 107 106 1
4 101 99 2
5 112 112 0
6 116 114 2
g SLidi 3+4+1+240+2 )
=== 5 =
o SPi(di—d)?  (3-22+(4-2%+..+(2-2?2 )
N n-1 N 5 -
1. We have paired measurements.
2. a=0.05.
3. The hypotheses are:
Ho UMD = 0
Hq M >0
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4. The value of the test statistic is:
t— d— MDo 2-0
so/vn \/2/6

5. We look up aftem—1 =5 degrees of freedonty_q = tgg5(n_1) = 2.015, and we reject the
null-hypothesisit > 2.015. We see that> 2.015.

= 3.46.

6. We reject the null hypothesis and conclude that malestesght on average after doing exercises
for 30 minutes/day for two months.

4  Analysis of variance (ANOVA)

4.1 Introduction

e In lecture 110 we discussed
inference on the mean of a
population f1).

e In the former part of lecture
120 we discussed inference on
the difference of the mean of
two populationsify — Hp).

e In the latter part of lecture
120 we discussed inference on
paired measurementgrg).

e Now we will discuss a method
that we can apply to com-
pare the means of two or more
populations. The method is
called analysis of variance, or
ANOVA.
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4.2  Analysis of variance

e Analysis of variance is one of
the most commonly used sta-
tistical methods. There are
several variants of it that can
be used in a vast number of
various different cases.

e We will only look at one vari-
ant of the method thatis called
one-sided ANOVA

e Itis applied to data that con-
tain samples from two or more
populations and it is common
to speak of groups when dis-
cussing the samples.

e The method compares the
variability of the measure-
ments within the groups on
one hand and between them
on the other hand.

® ANOVA assumes that the
samples are random samples,
that they are sampled from
populations with a normal dis-
tribution and that the variance
is the same in all populations.

4.3 Conducting hypothesis tests

Conducting hypothesis tests

[

Decide which hypothesis test
is appropriate for our
measurements.

N

Decide thea-level.

w

Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

IS

Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.




4.4  One sided ANOVA - example of application

A pharmacutical company is testing new
blood pressure medicine and conducts a lit-
tle experiment. Eighteen individuals par-
ticipated in the experiment and they were
randomly allocated to three groups. Group
one gotdrug 1, group two drug 2 and group
three drug 3. The blood pressure was mea-
sured before and after the intake of the
drug. The variable of interest is the dif-
ference in blood pressure before and af-
ter the drug intake. The mean difference
blood pressure in the three groups was cal-
culated. In all cases the blood pressure had
decreased on average.

Average change group §; = 8.14
Average change group 25 = 6.28
Average change group §3 = 13.01

The question is, do the drug decrease the
blood pressure equally or not?

45 The data

~—— average within group M
- - total average

@ 84 .
E .
2
2 .
14
5
5 2
3 2
o .
A
c .
®
g - :
5
g
o

~ T T T

Med. 1 Med. 2 Med. 3

Figure 4: Data for ANOVA

4.6 Syntax
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4.7 Sums of squares

e We need to calculate three
sums of squares, and are they
denoted withSS-, SSry and
SE.

e S§ is the total sums of
squares and is a measure of
the total variation of the mea-
surements.

e SS is a measure of the
variation between groups (or
treatments), that is, how much
to the means of the groups
vary.

e S§ is a measure of the vari-
ability within groups (or treat-
ments) and is therefore a mea-
sure of the error. It shows
how much the measurements
deviate from the mean of the
group.

4.8 Sums of squares

4.9 Sums of squares - graphically

The data s
e ™ e ™
5 5
o T T T o T T T
ved. 1 Vea. 2 wea 3 wea 1 Med.2 Meaa
Sy sSe
5 5
o T T T o T T T
Med. 1 Vea. 2 e 3 e 1 Med.2 Ved. 3

Figure 5: Sums of squares
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4.10 ANOVA table

It is common to visualize the
sums of squares in a so-called
ANOVA table

The table consist of three
columns and three lines.

The first column contains the
sums of squares, the next one
contains the number ofle-
grees of freedom The first
column contains the sums of
squares, the second one con-
tains the number ofiegrees
of freedomfor each sum of
squares and the third column
contains so-called mean sum
of squares.

Mean sum of squares is cal-
culated by dividing the corre-
sponding sum of squares with
the number of corresponding
degrees of freedom (in the
same line).

4.11 ANOVAtable

Sums of squares Degrees of freedom Mean sum of squ
EET)
SSr a-1 MSrr = 34
S N-a ME - N5
[ S5 N-_1

412

res

Hypothesis testing with ANOVA
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4.13 Hypothesis testing with one-sided ANOVA

e The alternative hypothesis is
that at least one of the means
differs from the others, it is
therefore then only informa-
tion we receive if the null hy-
pothesis is rejected.

e We do not know which of the
means differs from the others
or if they are potentially all
different.

e Further analysis needs to be
done in order to find that out.
A common test i Tukey's test,
but they will not be covered in
this lecture.

Look at the example from the lecture about the blood pressadicine. The data are the following:

Medicine1l Medicine2 Medicine 3

4.29 10.32 12.89
11.28 3.23 15.68
5.37 451 16.03
7.89 4.57 9.43
8.10 8.85 12.86
11.93 6.23 11.15

1. We would like to compare three mean values, the samplésdgpendent, the variance is similar
so we use analysis of variance.

2. a =0.05 ad venju.

3. The hypotheses are
Ho:py =2 =13
0g
Hs : at least one mean different from the others.
4. We need to calculate the sums of squares.

We have three groups so= 3. We have six measurements per groumse- n; = nz3 = 6 and
N=6+6+6=18. The grand meaniis:

=9.15

7 STV 42941032+ 1298+1128+...+1115
T N - 18

and the averages within the groups:

YY1 4294+1128+..41193

V1. = = =8.14
Y1 Nt 6 )
n2 .
_ = 10.324+3.23+...+6.23
2

S%1Ysi  1289+1568+...+1115
ng 6

Y3 = =1301
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S _ a n i-__ 2
S i;gl(yj y.)

—=(4.29-9.15)%+(11.28—9.15)°+ ... + (11.15— 9.15)* = 26216.

SSr =§ni (¥ ~¥.)?

=6-(8.14—9.15)°46- (6.29— 9.15)?+ 6 (13.01— 9.15)2 = 14453,

S§& =S5 -S5,=11763.

Lets make a SS table:

SS DF MS
S§r=14453 a—-1=2 MS,=7227
S§&=11763 N—-a=15 M&S=7.84
S§=262.16 N-1=17

The value of the test statistic:

_MSr _ 7227 _ 9.21.

F= ME  7.84

5. We look up foa—1 =2 ogN —a= 15 degrees of freedorf;_ ((a—1),(N—a)) = Fo.95,(2,15 = 3.68.
We see thaF > 3.68.

6. We reject the null hypothesis and conclude that at leasobttee mean values is different from
the others.

5 Inference on variances

5.1 Introduction

e In this lecture we will discuss
inference on the variance of
anormally distributed popula-
tion and how to compare the
variances in two normally dis-
tributed populations.

e First we will discuss confi-
dence intervals and hypothesis
test for the variance of a nor-
mally distributed population.

e Then we explore hypothesis
tests that can be used when
comparing the variances of
two normally distributed pop-
ulations.
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5.2 Conducting hypothesis tests

Conducting hypothesis tests

1 Decide which hypothesis test
is appropriate for our
measurements.

2 Decide theo-level.

3 Propose a null hypothesis and
decide the direction
of the test (one- or
two-sided).

4 Calculate the test statistic for
the hypothesis test.

5a See whether the test statistic
falls within the re-
jection interval.

5b Look at the p-value of the
test statistic.

6 Draw conclusions.

5.3 Inference on the variance of a population

e In this section we discuss
hypothesis tests and confi-
dence intervals that apply
when making inference on the
variance of a normally dis-

tributed populationoz,

e When calculating confidence
intervals and testing hypothe-
sis for the variance of a pop-
ulation, 1hex2—d\slribution is
used.

e The null hypothesis in this
section is that the variance
of the population equals some
specific value that we denote
)

o The null hypothesis is written
Hp: 2= c%.

e It depends on the direction of
the hypothesis test what con-
clusion are drawn if the null
hypothesis is rejected.

e If the hypothesis test is two-
sided we conclude that the
variance of the population,
02, differs from U(ZJ but if
it is one-sided we can only
conclude that the variance is
greater or less thawg de-
pending on the case.

5.4 Confidence interval for the variance of a population
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5.5

Inference on the variance of a population

A consumer group is investigating whether there is to l¢ibela in cans from a certain soda factory.

It is
ml?,
was

important that the filling process in the factory is d&glihat is the variance is not higher than 10
so that there is not many bottles with too much or too litlda To investigate this an experiment
performed where a random sample of 30 bottles was takkthastandard deviation calculated to,

s=3.5. It can be assumed that the soda level follows a normailalisiion. Test the hypothesis that the
variance is higher than 10 flUsea = 0.05.

[

5.6

. We would like to test a hypothesis regarding the variarfigermrmal distribution.
o = 0.05.
The hypotheses are:
Ho : ¢°=10
Hi : 02> 10
. The test statistic is:
, (n—1)%
a5
n—1=30-1=29,00=10.
29-12.25
2
=——=3553
X 10

. )(395’(29) = 42.56. We reject the null hypothesisf > 42.56. We see that? < 42.56.

. We cannot reject the null hypothesis so we cannot conthaté¢he variance is larger than 10%ml

Inference on the variance of two populations

e The hypothesis tests that we
discuss in this section are used
to compare the variance of
two populations that both are
normally distributed.

e Tests of this kind are often
conducted before hypothesis
tests where the means of two
populations are compared and
the variance of the populations
is unknown and the samples
are not large.

e The null hypothesis i this sec-
tion is that the variance of the
two populations is equal, writ-

262 — g2
tenHp : 07 =05.

e If the hypothesis test is two-
sided we can draw the conclu-
sion that the variances are un-
equal, but if it is one-sided we
can only draw the conclusion
that the variance in one sam-
ple is greater then the variance
in the other sample.
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5.7 Hypothesis tests for the variances of two populations

Let us go back to an example form the lecture on differencerdoet two mean values where we com-
pared the average salaries fro males and females workirghi@rfes in Iceland. There we assumed that
the variance in the two populations is the same. We are goirapéck that assumption know using
the appropriate hypothesis test. Random samples were tek@nboth populations of size 20. The
average and standard deviation in the make sample was 24b&46d@ 22814. The average and standard
deviation in the female sample was 218634 og 18312.dJs€0.05.

1. We are going to test whether the variances in two norméalyiduted populations is the same.
2. a =0.05.
3. The hypotheses are:

Ho : o2=0%
Ho 0%+ 03
4. The test statistic is: )
FoS
SN
22814

5. FlfG/Z,(anl,nmfl) = F0_975’(19’19>. we use that value that is negb'g75’(20’lg) =2.506, sowe reject
the null-hypothesis iF > 2.506. We see thd < 2.506.

6. We cannot reject the null-hypothesis so we cannot cordluat the variances are different.

6 Inference on ratios and contingency tables

6.1 Estimate of the ratio of a population

In this section we will discuss confidence
intervals and hypothesis tests for one ratio
p that describes the ratio of subjects within
a population that have a particular value of
a categorical variable.

6.2 Bernoulli trial and the binomial distribution
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Bemoulli trial

Every trial in a group of repeated
trials is classified as Bernoulli
trial if the following holds:

1. Every trial has only
two possible out-
comes (positive and
negative).

2. The probability of a
positive outcome are
the same in every
trial.

3. Theoutcomes are in-
dipendant.

The number of positive outcomes i
Bernoulli trials follows thebinomial dis-

tribution with the parametersy and p,

written X ~ B(n, p), wherep is the prob-
ability of a positive outcome.

6.3 Estimate of the ratio of a population

The ratio of the population, denotes is
estimated with the sample proportion:

wherex is the number of measurements
that receive the corresponding outcome
andn is the size of the sample.

6.4 Normal approximation

e When certain criteria is met,
the binomial distribution is
similar to the normal distribu-
tion.

e Then we can use methods
that assume the characteris-
tics of the normal distribution
to make inference on random
variables that in deed are bi-
nomially distributed.

e Thatis called to apply aor-
mal approximation

When can one use normal ap-
proximation?

If np and n(1- p) are greater
then 15, the normal approxima-
tion can be used to make infer-
ence on the proportion of a bino-
mial distribution.
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6.5 Confidence interval

Confidence interval for the ra-
tio of a population

If the criteria for using the normal
approximation is met, the lower
bound for p can be calculated
with:

= 1-p)
LR w

and the upper bound with:

= /p(1-p)
PHoa/e

wherep= X andzy_g 5 isin
the standardized normal distribu-
tion table

A company decided to make a pole to investigate whether aléohthe population is in favour of the
government. Out of the 8750 that were asked, 4530 said yed 22@dsaid no. Find a 95% confidence
interval for p, the ratio of those that are in favour of the government.

We start by findingp:

X 4530
p= o= 7= 0.5177

The conditions for using the normal approximation are natesnp and n(1— p) are both larger than
15.

The lower limit is:

o pl-p) 3 \/0.5177(1— 0.5177)

P—2zas2 ||~ =05177-1.96 5750 =0.5072
and the upper limit;

R pl-p) \/0.5177(1— 0.5177)

P+2ziaj2 |/ =05177+1.96 5750 =0.5282

The confidence interval is:
0.5072< p < 0.5282
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6.6 The null hypothesis

e The null hypothesis in this
section tests the hypothesis
that the ratio of the samplg
is equal to a certain value that
we call pg.

e The null hypothesis is written
Hop : p=pg.

e |If the test is two-sided we
can conclude that the ratip
differs frompg.

e |If it is one sided we can
only conclude thap is either
greater or less thapg, de-
pending on the case.

6.7 Hypothesis test for the ratio of a population

Hypothesis test for the ratio of

a population

If the criteria for using the nor-
mal approximation are met, the
following hypothesis test can be
used The null hypothesis is

Ho:p=pg

The test statistic is

where X is the number of suc-
cessful experiments amdlis the
size of the sample.

If the null hypothesis is true,

the test statistic follows the stan-
dardized normal distribution, or
Z ~N(0,1).
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6.8 Alternative hypothesis for the ratio of a sample.

Alternative hypothesis for the
ratio of a sample.

The alternative hypothesis along
with the rejection areas are shown

below.

Alternative hypothesis Rejgty if:
Hy:p<pg Z<4z_
Hq:p>pg Z>p ¢
Hy:p+#pg Z<H aq/2oZ>7 g)2

6.9 Inference on the ratio of two populations

We often want to compare the ratios of a
certain value of a categorical variable in
two populations.

We denote the ratios in the two popula-

tions with p1 and pp and estimate them
with

. X1 _X
ng’ 2 ny

wherex; andxp are the number of suc-
cessful outcomes in the two samples.

Criteria for normal approxi-
mation

A normal approximation can be
usedifng py, Ny (1—pPq), NP
and ny(1-pp) are all greater
than 15
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6.10 Confidence interval for the ratio of two populations

Confidence interval for the ra-
tio of two populations

If the criteria for using the normal
approximation are met, the lower
bound for the differencg; and
p2 can be calculated with:

PO [P1(1-P1)
PL=P2=2q/2| 1,1711 H =T

and the upper bound with:

n n2

— [p1(1-p1) |P2(1-|P2)
pl,pz+zlfa/2.v¥+z 2

X - X
wherepl.:.,%, 2= ,% a.nd
Z_q/2 s in the standardized
normal distribuiton table

6.11 The null hypothesis

e The hypothesis test in this
section tests the null hypoth-
esis that the ratios in the two
populations are equal.

e The null hypothesis is written
Ho - p1=p2.

e If the hypothesis test is two
sided we draw the conclusion
that the ratios are different if
we reject the null hypothesis.

e It is one sided we can only
conclude that one ratio is
greater than the other or vice
verse, depending on the case.
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6.12 Hypothesis test for the ratio of two populations

Hypothesis test for the ratio of
two populations

If the criteria for using the nor-
mal approximation are met, the
following hypothesis test can be
used:

The null hypothesis is:

Ho:p1=p2

The test statistic is:

XX
Z= ™ where[P = ﬁlj::Z
lei_p (1,1 1+n2
\/P(l—P)<nI+nE

If the null hypothesis is true
the test statistic follows the stan-
dardized normal distribution, or
Z ~N(0,1).

Let us look again at the example where governmental sup@srtmeasured. Now we get the additional
information that in fact two samples were taken, 4375 femaled 4375 males.

The result was that 4530 said yes in total and 4220 said no.ofthe 4530 that said yes, 2337 were
females. Find a 95% confidence interval for the differenceativ between females and mails that
support the government and test the hypothesis that thardifference in the ratio between the females
and the mails that support the government. Wse 0.05.

The conditions for using a normal approximation are fuldiliéncen; p1, ni(1— p1), n2p2 and ny(1—
p2) are all larger than 15.

We need to findp; and p2. We have thatn; = n, = 4375. We also know that the number of females
supporting the government is 2337 and the number of males #%30-2337 = 2193, sg = 2337 og
Xo = 2193.

. xq 2337 X 2193
== =""""-05342 =—=-—_=05013
b= T 2375 9P =1, T 2375

The lover limit is:

0.53421-0.5342 0.50131-0.5013
0.5342—0.5013— 1.96\/ 4375 4375 =0.0119
and the upper limit:
o Pr1-p1)  P2(1-p2)
P1—P2+2Zq)2° \/ L + 2 =
0.53421-0.5342 0.50131-05013
0.5342—0.5013+ 1.96\/ 4375 4375 = 0.0537.

The confidence interval is:
0.0119< p;— p2 <0.0537

1. We want to make a test regarding the difference betweemdtias. \We use a normal approxima-
tion.
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2. a =0.05

3. The hypotheses are:

Ho @ pi=p2
Hi @ p1#p2

4. We know thatp; = 0.5342 andp, = 0.5013. We need to fing:

. X1+X 4530
= =—— =0.5177
P ni+ny 8750
The test statistic is:
R 0.5342—0.5013

=3.08

Z=

\/ﬁ(l_ﬁ)(n_llJrn_lz) \/0.5177(1—0.5177) (g + 775)

5. 21_q/2 = 2975 = 1.96. We reject the null-hypothesiszf> 1.96 OR IFz < —1.96. We see that
z>1.96.

6. We reject the null hypothesis and conclude that there ifferehce in the ratio between males
and females.

6.13 The alternative hypothesis

The alternative hypothesis

The alternative hypothesis along
with their rejection areas are
shown below:

Alternative hypothesis Rejgety if:
Hq:pg <pp Z<471_o
Hyip1>pp Z>p o
Hi:py #p2 Z< a2 orZ>27)_ /2

6.14 Chisquared test

e The hypothesis in last section
can be generalized such that
it compares the ratio of more
than two populations.

e Then one cannot use methods
based on normal proximation,
but so called chi-squared tests

are used)(z—lest).

e The method can also be used
when comparing the ratios of
two populations, but only if
the alternative hypothesis is
two-sided.

e Then the Chi-squared test
statistic and the Z-statistic be
the same.
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6.15 The null hypothesis

e The hypothesistest in this sec-
tion tests whether the ratios of
c populations are all equal.

e |ltiswrittenHg: p; = pp =
.= pc.

e |If it is rejected we can con-
clude that the ratio are not all
equal.

e That does not mean that they
are all different!

e The hypothesis test does not
say which of the ratios differ
from the other.

e More evolved methods are
used to do so, which are not
taught in this lecture.

6.16 Tables for chi-squared prof

Toflur fyrir chi-squared prof
Pegar framkveema & chi-squared
test er gott ad bua til prjar toflur:

e Table 1: Con-
tains the observed
frequency in the in-
vestigation, denoted
with o.

e Table 2: Con-
taines the expected
frequency in the
investigation,  de-
noted withe. The
values are calculated
by multiplying the
sums for the corre-
sponding  column
and row and divide
by the total number
of measurements.
All values in this
table need to be
greater than 5 for the
test to be valid.

e Table 3: Contains
the tribute to the test
statistic, calculated

2
with ©-8% " F.

nally all ethe values
in Table 3 are added
together to calculate
the value of the test
statistic (see next
slide).




6.17 Chi-squared test for ratios

Chi-squared test for ratios
The hypothesis are:

Hp:ipp=p2=..=pc

Hj :the ratios are not all equal

The test statistic is:

c (gj-8j)?
iZ1j51 S

wherer is the number of rows;
is the number of columnsis the
observed frequency anglis the
expected frequency.

If the null hypothesis is true,

the test statistic follows thgz-
distribution with ¢ - 1) - (c -
1) degrees of freedom. The null
hypothesis is rejected ij(2 >

%o (1) (c-1)°

The following data are the results from an experiment wherpleyees in three governmental depart-
ments were asked if the were in favour of their pension plan.

| Departmentl Department2 Department3
In favour 66 85 108
Not in favour 34 65 42

We need to start make the three tables, that observed freigseithe expected frequencies and the
contribution to the test statistic.

Table 1- o Department1 Department2 Department Jotal
In favour 66 85 108 259
Not in favour 34 65 42 141
Total 100 150 150 400

We get the values in Table 2 by multiplying the totals in theresponding line and column from Table
1 and divide with the total number.

Table2-e | Dep.1 Dep. 2 Dep. 3
100259 150259 150259

; 100141 _ 150141 _ 150141 _
Notin favour | =555~ =3525 =555~ =5288 55~ =52.88

The values in Table three we get bg(fei)z

Table 3 | Gov. 1 Gov. 2 Gov. 3
66—64.75)2 85-97.13)2 108-97.13)2
|n faVOUr % = 002 % = 151 % == 122

: (34-3525)2 (65-52.88)2 (42-52.88)2
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