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1 Sampling, distributions and convergence

1.1 Random sample

1.1.1 Definition of a random sample

A random sample is a collection of random variables which are independent and identically

distributed (i.i.d.).

1.1.2 Handout

Definition 1.1. A collection of random variables X1, . . . ,Xn are a random sample if they

are independent and identically distributed.

Typical usage: "let X1, . . . ,Xn be i.i.d.ǫr "let X1, . . . ,Xn ∼ fθ be i.i.d.ǫr "let X1, . . . ,Xn ∼ F

be i.i.d.ǫr "let X1, . . . ,Xn be i.i.d. n(0,1)".

In this type of usage, { fθ} refers to a family indexed by the unknown parameter θ and F is

a cumulative distribution function (c.d.f.).

1.2 Convergence concepts and Chebychev’s theorem

1.2.1 Handout

Convergence concepts

Theorem 1.1 (Chebychev or Markov’s inequality) Let X be a continuous random

variable and g ≥ 0 be a continuous function. Then for r ≥ 0:

P [g(X)≥ r]≤ E[g(X)]

r
.

Sönnun.

E[g(X)] =

∫ +∞

−∞
g(x) f (x)dx [ f is the density of X ]

=
∫
{x:g(x)<r}

g(x) f (x)dx+
∫
{x:g(x)≥r}

g(x) f (x)dx

≥
∫
{x:g(x)≥r}

g(x) f (x)dx [g ≥ 0]

≥
∫
{x:g(x)≥r}

r f (x)dx = r

∫
{x:g(x)≥r}

f (x)dx

= rP [g(X)≥ r]

Where the integral over {x : g(x)≥ r} is well defined since {x : g(x)≥ r}= g−1 (]−∞,r[)
and g is continuous. Similarly for {x : g(x)< r}.
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Definition 1.2. A sequence of random variables X1, . . . , converges to the random variable

X in probability if P[|Xn−X |< ε]−−−→
n→∞

1 is true for all ε > 0. We write Xn
P−→ X .

Theorem 1.2 (weak law of large numbers) If X1,X2, . . . are independent and identically

distributed (iid) random variables with EXi = µ and VXi = σ2 < ∞, then:

X̄n
P−→ µ,

where X̄n =
1
n ∑n

i=1 Xi.

Sönnun. P[|X̄n−µ|> ε]≤ σ2/n

ε2 −−−→
n→∞

0 (from the Chebychev inequality).

1.3 Estimators

1.3.1 Handout

Definition 1.3. An estimator is a (measurable) function of random variables X1, . . . ,Xn.

Commonly “an estimator” is of the form Tn = h(X1, . . . ,Xn), where X1,X2, . . . is a sequ-

ence of random variables, i.e. term “the estimator” actually refers to a sequence of

estimators.

An estimator T is said to be unbiased for a parameter θ if ETn = θ. An estimator Tn is

said to be consistent for θ if Tn
P−→ θ.

Example 1.1. If X1,X2, . . . are i.i.d. and EX4
i < ∞, then

S2
n

p−→ σ2,

where

S2
n :=

1

n−1

n

∑
i=1

(Xi − X̄n)
2
,

X̄n :=
1

n

n

∑
i=1

Xi

This is true since

P[|S2
n −σ2| ≥ ε]≤ V [S2

n]

ε2
−−−→
n→∞

0

if V [S2
n]→ 0, which holds since

V [S2] =
1

n

Å

Θ4 −
n−3

n−1
Θ2

2

ã

→ 0
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(see e.g. example in Casella and Berger.)

Recall that if the variables are also Gaussian, then

Wn :=
(n−1)S2

n

σ2
∼ χ2

n−1

so that

V [W2] = 2(n−1)

and

V [S2] =V

ñ

σ2

n−1
W

ô

=
σ4

(n−1)2
·V [W ] =

σ4

(n−1)2
2(n−1) =

2σ4

n−1
→ 0.

Theorem 1.3 If Xn
P−→ X and h is a continuous function, then h(Xn)

P−→ h(X).

The proof is left to the reader (use the definition of continuity).

Example 1.2. Toss a biased coin n times with independent tosses to obtain the random

variables Xn ∼ b(n, p). Define p̂n := Xn

n
. This will have the same distribution as Ȳn where

Y1,Y2, . . . are the outomes of individual tosses and Y1,Y2, . . . are i.i.d. Thus we have

p̂n
P−→ p,

i.e. P[|p̂n − p|> ε]−−−→
n→∞

0 for all ε > 0.

Example 1.3. Xn : [0,1]
︸︷︷︸

ω

→R, Xn(u) = un and use Borel-measure on [0,1], i.e. P[[a,b]] =

b−a if 0 ≤ a < b ≤ 1. Then the c.d.f. of Xn is given by

Fn(x) = P[Xn ≤ x] = P[{w : Xn(ω ≤ x}
= P[{ω : ωn ≤ x}= P[0,x

1
n ] = x

1
n .

Thus

Xn(ω]
=−−−→

n→∞

®

0 0 ≤ ω < 1

1 ω = 1,

so if we define the random variable X with

X(ω) =

®

0 0 ≤ ω < 1

1 ω = 1,
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then obviously

P[|Xn−X | ≥ ε]
1−−−→

n→∞

for all ε > 0.

Note that we do, however, have a much stronger convergence in this example since

Xn(ω)→ X(ω) for all ω ∈ Ω = [0,1].

This is convergence of functions, not just convergence in probability.

1.4 Almost sure convergence

1.4.1 Handout

Definition 1.4. A sequence of random variables X1,X2, . . . converges almost surely to the

random variable X if

P
[

lim
n→∞

|Xn−X |< ε
]

= 1 ∀ε > 0.

Note: Recall that the random variables are functions, Xi : Ω → R and we can therefore

write

{ω ∈ Ω : lim
n→∞

|Xn(ω)−X(ω)|> ε}= Aε.

We see that Xn converges almost surely to X if and only if P[Aε] = 0 for all ε > 0.

We write Xn → X a.s.

If we define

A := {ω : Xn(ω)→ X(ω)}, Aε := {ω : lim
n→∞

|Xn(ω)−X(ω)|< ε}

then

A =
n⋂

j=1

A1/ j

and we obtain

P[A] = P

[
∞⋂

j=1

A1/ j

]

= lim
j→∞

P[A1/ j] = 1 (*)

((*): Since A1 j
form a decreasing sequence of sets it is fairly easy to prove (*).) In other

words, Xn(ω) → X(ω) except on a set ω ∈ A ⊆ Ω which has probability zero. For this

reason this type of convergence is commonly described as Xn → X with probability one.

The following has been covered:

6



• Xn
P−→ X if limn→∞ P[|Xn−X | ≥ ε] = 0 for all ε > 0.

• Weak law of large numbers: X1,X2, . . . iid, V Xi < ∞ implies X̄n := 1
n ∑n

i=1 Xi
P−→ µ :=

EXi.

• h cont, Xn
P−→ X implies h(Xn)→ h(X).

• Almost sure convergence: Xn → X a.s. if P[limn→∞ |Xn−X | ≥ ε] = 0 for all ε > 0.

• Recall: Xn → X a.s. implies Xn
P−→ X .

Theorem 1.4 (Strong law of large numbers) If X1,X2, . . . are i.i.d. with

EXi = µVXi = σ2 < ∞
︸ ︷︷ ︸

not needed

and X̄n := 1
n ∑n

i=1 Xi, then:

P
[

lim
n→∞

|X̄n−µ|< ε
]

= 1 ∀ε > 0,

i.e. X̄n → µ a.s. [proof omitted].

Definition 1.5. If X1,X2, . . . is a sequence of random variables and X is a random variable

such that Fn(x) = P[Xn ≤ x] and F(x) = P[X ≤ x] satisfy Fn(x) → F(x) whenever F is

continuous at x, then Xn converges to X in distribution , denoted Xn
D−→ X .

Example 1.4. Let Xn ∼ b(n, pn) where pn =
λ
n
. We want to show that

Xn
D−→ X ∼ P(λ)

We have:

P[Xn = x] =

Å

n

x

ã

px
n (1− pn)

n−x =
n!

x! (n− x)!

λx

nx

Å

1− λ

n

ãn−x

=
λx

x!

Å

1− λ

n

ãn
n!

nx (n− x)!

Å

1− λ

n

ã−x

We know that
Ä

1− λ
n

än −−−→
n→∞

e−λ. We also get:

n!

nx (n− x)!
=

n(n−1) · . . . · (n− x+1)

nx
=

n

n
· n−1

n
· . . . · n− x+1

n
−−−→
n→∞

1

We therefore conclude that

P[Xn = x] =
λx

x!

Å

1− λ

n

ãn
n!

nx (n− x)!

Å

1− λ

n

ã−x

−−−→
n→∞

e−λ λx

x!
= P[X = x],

where X ∼ P(λ).
Since we have shown that limn→∞P [Xn = x] = P [X = x], we also see that

limn→∞P [Xn ≤ x] = P [X ≤ x] (these are finite sums and each element converges).

It follows that the sequence Xn converges in distribution to X , or

Xn
D−→ X ∼ P(λ) .
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Theorem 1.5 Xn
P−→ X ⇒ Xn

D−→ X [see exercise 5.40].

Theorem 1.6 Xn
D−→ c ⇒ Xn

P−→ c if c ∈ R.
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2 Order statistics

2.1 Order statistics

2.1.1 Handout

Suppose X1, . . . ,Xn are i.i.d., i.e. are a random sample.

Definition 2.1. Define the random variable X(n) := max{X1, . . . ,Xn}.

Note 2.1. Sometimes (n) is defined as the random variable which corresponds to the largest

element in (X1, . . . ,Xn).

Definition 2.2. We define X(1) ≤ X(2) ≤ ·· · ≤ X(n) to be be the n order statistics of the

random sample X1, . . . ,Xn.

Note: Formally, since each random variable is really a function, these new variables need

to be defined as new functions...

Example 2.1. If Xi ∼U(0,1) then we have for 0 ≤ ω ≤ 1:

P[X(n) ≤ ω] = P[X1 ≤ ω1, . . . ,Xn ≤ ω]

= P[X1 ≤ ω]n (iid)

= ωn −−−→
n→∞

®

0 0 ≤ ω < 1

1 ω = 1

so that X(n)
D−→ X with P[X = 1] = 1, i.e. X(n)

D−→ 1, and it follows that

P[X ≤ x] =

®

0 x < 1

1 x ≥ 1
.

Note:

P[X(1) ≤ ω] = 1−P[X(1) > ω] = 1−P[X1 > ω]n

= 1− (1−w)n −−−→
n→∞

®

0 ω = 0

1 0 < ω ≤ 1

so that X(1)
D−→ 0.
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We also obtain:

P[|X(n)−1| ≤ ε] = P[1− ε ≤ X(n) ≤ 1+ ε]

= P[X(n) ≥ 1− ε] = 1−P[X(n) ≤ 1− ε]

= 1− (1− ε)n 1−−−→
n→∞

if 0 < ε < 1, and hence X(n)
P−→ X . We have X ′

(n)
D−→ 1 and X(n)

P−→ 1.

The density of X(n) is given by

fn(x) = F ′
n(x) =

d

dx
F(x)n

= n f (x)F(x)n−1 = nxn−1I[0,1](x).

The expected value of X(n) is therefore

EX(n) =
∫ 1

0
xnxn−1 dx = . . .=

n

n+1
−−−→
n→∞

1,

and the variance is obtained by first evaluating

E[X2
(n)] =

∫ 1

0
x2nxn−1 dx = . . .=

n

n+2

from which we see that

V[X(n)] =
n

n+2
−
Å

n

n+1

ã2

=
n

(n+1)2(n+2)
,

i.e. V[X(n)] “behaves like” 1
n2 .

Since X(n) converges to 1 in distribution and the standard deviation behaves like 1/n, i is

of interest to see what happens to the distribution of the random variable
X(n)−1

1/n
or simply

n(1−X(n)). We would expect this transformed random variable to have (approximately)

mean zero and variance one, so it should converge to a proper non-constant random varia-

ble.

We obtain:

P[n(1−X(n))≤ t]−−−→
n→∞

1− e−t

(this is a popular exam question).
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3 Random number generation

3.1 Continuous distributions

3.1.1 Handout

Let U ∼U(0,1). If F is increasing, continuous and

0 ≤ F(x)≤ 1,x ∈ R.

F(x)−−−→
x→∞

0,

F(x)−−→
x→0

1,

and we set

Y := F−1(U)

then we see that

P[Y ≤ y] = P[F−1(U)≤ y] = P[U ≤ F(y)] = F(y),

so that Y ∼ F .

Example 3.1 (Example of usage). If U ∼U(0,1) and

Φ(x)
︸︷︷︸

pnorm(x)inR

:=
∫ ∞

−∞

1√
2π

e−t2/2

︸ ︷︷ ︸

dnorm(t)

dt,

then

Φ−1(U)∼ n(0,1)
︸ ︷︷ ︸

rnorm(1) in R

.

Note: Recall that we can write

g(x) =
∞

∑
i=0

g(i)(a)

i!
(x−a)i, x ∈ (a− r,a+ r)

if g if infinitely differentiable and g(n)(x) disappears “fast enough” as n→∞ [specifically

∃A > 0 s.t. g(n)(x)≤ An∀n].

3.2 Discrete distributions

3.2.1 Handout

Discrete distributions:

Define F−1(u) := in f{x : F(x)≥ u} and note that if F is a c.d.f. then F is continuous from

the right so the infimum is a minimum.

Suppose F “jumps” at x, so that P[X = x]> 0, i.e. F(x−)< F(x+) = F(x), then F(x)< u ≤
F(x)⇒ F−1(u) = x. In that case X := F−1(U) has a point mass probability of P[X = x] at

x.

Copyright 2021, Gunnar Stefansson
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4 Central limit theorem

4.1 Lemma on m.g.f.s and c.d.f.s

4.1.1 Handout

Lemma

If Xn each have c.d.f. Fn and m.g.f. Mn, defined in ]− h,h[ and there is a c.d.f. F which

corresponds to m.g.f. M and Mn(t) →
n→∞

M(t) for |t|< h then Xn
D→ X if X has c.d.f. F .

Note: A corresponding lemma holds for characteristic functions.

4.2 A note on Taylor series

4.2.1 Handout

Recall that we can write

g(x) =
∞

∑
i=0

g(i)(a)

i!
(x−a)i, x ∈]a− r,a+ r[

if g is infinitely differentiable and g(n)(x) disappears "fast enough"as n → ∞ (i.e. ∃A > 0

s.t. g(n)(x)≤ An).

4.3 A lemma on limits

4.3.1 Handout

If (an) is a sequence of numbers s.t. an → 0 then lim
n→∞

(
1+ x+an

n

)n
= ex

4.4 Central limit theorem

4.4.1 Handout

Theorem 4.1 (Central limit theorem, CLT) Let X1,X2, . . . be iid random variables

such that the common moment generating function M exists in a neighborhood of 0.

Let EXi = µ, VXi = σ2 > 0 and define X̄n := 1
n ∑n

i=1 Xi. If

Gn(x) := P

ï

X̄n −µ

σ/
√

n
≤ x

ò

then

lim
n→∞

Gn(x) =
∫ ∞

−∞

1√
2π

e−t2/2 dt,

i.e. if Z ∼ n(0,1) then √
n(X̄n −µ)

σ

D−→ Z.
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Proof. Assume that M(t)= E[etX ] exists for |t|< h. Define Yi =
Xi−µ

σ and let Y be a random

variable with the same distribution as all Y , so the m.g.f. of Y is

MY (t) =E[etY ] = E[etYi ] = E[et
X1−µ

σ ]

=E[e
t
σ X1e−

µ
σ t ] = e−t

µ
σ E[e

t
σ X1] = e−t

µ
σ M

(
t

σ

)

which exists for |t|< hσ.

Now define

Zn :=
Xn −µ

σ/
√

n
=

1
n

n

∑
i=1

(Xi −µ)

σ/
√

(n)

=

√

(n)

n

n

∑
i=1

=
1

√

(n)

n

∑
i=1

Yi

Next look at the m.g.f of Zn

MZn
(t) =E

ñ

e
t√
(n)

n

∑
i=1

Yi

ô

=E

ï

e
t√
(n)

Y1
e

t√
(n)

Y2
...e

t√
(n)

Yn

ò

=
n

∏
i=1

E

ï

e
t√
(n)Yi

ò

=

Å

E

ï

e
t√
(n)

Y1

òãn

=MY

Ç

t
√

(n)

ån

which exists if

∣
∣
∣
∣

t√
(n)

∣
∣
∣
∣< hσ.

Now we use the note on Taylor series to write

MY

Ç

t
√

(n)

å

=
∞

∑
k=1

Mk
Y (0)

(t/
√

(n))k

k!

which holds if |t|< hσ
√
(n). Recall that MY (0) = 1, M′

T (0) = E[Y ] = 0, M′′
Y (0) = E[Y 2] =

1 and we can write the series as the first parts plus a remainder such as

MY (
t

√

(n)
= 1+0+1

Ä

t/
√

(n)
ä2

t!
+R

Ç

t
√

(n)

å

where R is the remainder that satisfies

R(x)

x2
→

x→0
0 i.e.

t
Ä

t/
√

(n)
ä2

→
n→∞

0

[Note: We do not use the full Taylor expansion].
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Next consider the limit of m.g.fs

lim
n→∞

MY

Å

t√
n

ãn

= lim
n→∞

ñ

1+
t2

2n
+2

2√
n

ôn

= lim
n→∞

ñ

1+
t2/2+2n(t/

√
n)

n

ôn

= lim
n→∞

ñ

1+
t2/2+an

n

ô2

where an is a sequence which satisfies an → 0
n→∞0

. According to lemma we obtain

lim
n→∞

MZ(t) = et2/2

and this holds for t ∈ R .

If Z ∼ n(0,1) then MZ(t) = et2/2, i.e. MZn
(t)→ MZ(t) and therefore Zn

D→ Z i.e.

X̄n −µ

σ/
√

n

D→ Z ∼ n(0,1).

We have looked at

• Almost sure convergence

• Convergence in probability

• Convergence in distribution

This is always based on a sequence X1,X2, ... (not always independent) e.g.

Yn =
1

n

n

∑
i=1

Xi

Yn
a.s.−−→ µ = E [Xi]

if

V [Xi]< ∞

such that

Yn
P−→ µ

We now have

X̄n −µ

σ/
√

n

D−−→Z ∼ n(0,1)

X1,X2, . . . iid

V [Xi]< ∞

This last conclusion was obtained by looking at the moment generating function of Zn,

where

Zn =
√

n
X̄n−µ

σ
.
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M(t) = E
[
etX

]
, og með Taylor-liðun:

= E

ñ

1+
tX

1!
+

tX2

2!
+ · · ·

ô

,

MZn
(t) = E

ï

exp

ï

t
√

n
X̄n −µ

σ

òò

= E

ñ

exp

ñ

t
1√
n

n

∑
i=1

Xi −µ

σ

ôô

= E

ñ

n

∏
i=1

exp

ï

t
1√
n

Xi −µ

σ

ò

ô

=

Å

E

ï

exp

ï

t
1√
n

X −µ

σ

òòãn

(iid)

=

Ç

E

ñ

1+
1

1!

Å

t√
n

X −µ

σ

ã

+
1

2!

Å

t√
n

X −µ

σ

ã2

+ · · ·
ôån

≈
Ç

E

ñ

1+
1

2!

Å

t√
n

ã2ÅX −µ

σ

ã2
ôån

=

Ç

1+
t2

2n
·1
ån

−−−→
n→∞

e
t2

2 .

4.5 Slutsky’s theorem

4.5.1 Handout

Theorem 4.2 (Slutzky) If

Xn
D−−→ X og Yn

P−→ a,

then

XnYn
D−−→ aX og Xn+Yn

D−→ a+X .

Example 4.1. We know that if Xn ∼ b(n, p) then

p̂n :=
Xn

n

D−→ p

and we know that the function

x 7→
»

x(1− x)

is continuous so that
»

p̂n(1− p̂n)
P−→
»

p(1− p)

We also know that Xn can be written as a sum

Xn
D
=

n

∑
i=1

Yi

15



where Yi are independent and Bernoulli, Yi ∼ b(1, p) i.i.d. and p̂n therefore has the same

distribution as an average,

p̂n
D
=

n

∑
i=1

Yi

n
,

so
p̂n −E[p̂]
√

V [p̂]

D−→ n(0,1)

But V [p̂] = p(1−p)
n

and so we can use Slutsky’s theorem to conclude

p̂n − p
√

p̂(1− p̂)/n

D−→ n(0,1)

On assumptions:

1) When should we use t-distribution?

X̄n−µ

Sn/
√

n
∼ tn−1

This holds exactly if X1, ..,Xn ∼ n
(
µ,σ2

)
, iid.

2) But if n is "large"then this still holds as an approximation, based on combining the CLT

and Slutzky’s theorem:
X̄ −µ

S/
√

n
∼ .∼ n(0,1)

Here we just need Xi iid with finite σ2 – we do not need the original random variables to

be Gaussian.

Slutzky’s theorem has a series of consequences. If X1,X2, . . . are iid with

E
î

X2
ó

< ∞

(so that σ2 =V [X ]< ∞) then the mean X̄n := 1
n ∑n

i=1 Xi has the property that

X̄n −µ

σ/
√

n

D−−→ n(0,1)

and we also know that

S2
n :=

1

n−1

n

∑
i=1

(Xi− X̄n)
2

Further, S2
n

P−→ σ2 and hence Sn
P−→ σ so Slutzky’s theorem implies:

X̄n−µ

Sn/
√

n
=

√
n

X̄n−µ
σ

Sn/σ

=
σ

Sn

√
n

︸ ︷︷ ︸

P−→1

X̄n −µ

σ

D−−→ n(0,1).
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Note that this implies that we can approximate probabilities of events such that

P

ï

X̄n−κ
Sn√

n
≤ µ ≤ X̄n +κ

Sn√
n

ò

= P

ï

−κ ≤ X̄n −µ

Sn/
√

n
≤ κ

ò

by corresponding n(0,1) probabilities, i.e.

P

ï

X̄n−κ
Sn√

n
≤ µ ≤ X̄n +κ

S√
n

ò

≈ 1−α

where κ = z1−α
2
. This is an approximation.

Finally, if Xi ∼ n(µ,σ2) iid already know that

Tn :=
X̄n −µ

S/
√

n
=

X̄n −µ

σ/
√

n
 

∑n
i=1(Xi − X̄)2

σ2

¡

(n−1)

and
∑n

i=1(Xi − X̄)2

σ2
∼ χ2

n−1 so that

P

ï

X̄n −κ
S√
n
≤ µ ≤ X̄n +κ

S√
n

ò

= 1−α

where κ = tn−1,1−α
2
. This is exact but requires the assumption of normality of the data.

Example 4.2. Xi =

®

0

1
,P[Xi = 1] = p = 1−P[Xi = 0],Xi iid, i.e. Xi ∼ b(1, p) iid and

Yn := ∑n
i=1 Xi ∼ b(n, p).

We know that
1
n
Yn−µ

σ/
√

n

D−→ n(0,1) (CLT) since µ = E[Yn]/n = p and σ = V
î

Yn

n

ó

= 1
n2 np(1−

p) i.e. if p̂n =
1
n
Yn then

p̂− p
√

np(1− p)

D−→ n(0,1)

We could use P

ï

−z1−α
2
≤ p̂−p√

np(1−p)
≤ z

1− alpha
2

ò

≈ 1−α to obtain intervals of the form

P [ f1(p̂)≤ p ≤ f2(p̂)]≈ 1−α,

but since we know that p̂n
P−→ p we obtain using Slutzky’s theorem

p̂− p
√

np̂(1− p̂)

D−→ n(0,1) (1)

[more exactly: p̂
P−→ p and s 7→ 1√

s(1−s)
is continuous

⇒ 1
√

p̂(1− p̂)

P−→ 1
√

p(1− p)

and (1) is therefore a consequence of Slutzky’s theorem]

i.e. we obtain:

P
[

p̂− z1−α
2

»

np̂(1− p̂)≤ p ≤ p̂+ z1−α
2

»

np̂(1− p̂)
]

≈ 1− α

2
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4.6 The Delta method

4.6.1 Handout

Theorem 4.3 (Delta method, (5.5.24)) Let Y1,Y2 . . . be a sequence of random variables

such that √
n(Yn −θ)

D−→ n(0,σ2)

and assume that g is a function such that g′(θ) 6= 0. Then:

√
n(g(Yn)−g(θ))

D−→ n
Ä

0,(g′(θ))2σ2
ä

.

Note: g(Yn) = g(θ)+ g′(θ)Yn−θ
1!

+ g′′(θ) (Yn−θ)2

2!
+ · · · so we can “approximate” V [g(Yn)]

með V [g(Yn)] = E [(g(Yn)−g(θ))2]≈ E
î

(g′(θ)(Yn −θ))2
ó

Example 4.3. Recall that

√
n(p̂− p)

D−→ n(0, p(1− p))

since

p̂ =
1

n

n

∑
i=1

Xi

and

V
[√

np̂
]
= n

p(1− p)

n
= p(1− p).

This can now be used to derive the properties of the arc sine square root transformation

arcsin
√

p̂
D−→?

Example 4.4 (5.5.25). Assume that (X̄n−µ)
√

n
D−→ n(0,σ2) and µ 6= 0.

Consider the function g(µ) := 1
µ

with g′(µ) = 1
µ2 to obtain

√
n

Å

1

X̄n
− 1

µ

ã

D−→ n

Ç

0,
σ2

µ4

å

but of course we would prefer a random variable which is not a function of σ2, e.g.:

√
n

Å

1

X̄n
− 1

µ

ã

Sn/X̄2
n

D−→ n(0,1)

and we obtain by applying a few theorems:

{

X̄n
P−→ µ

Sn
P−→ σ

⇒
{

X̄2
n

P−→ µ2

1
Sn

P−→ 1
σ

⇒ X̄2
n

Sn

P−→ µ2

σ
.
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This included using Slutzki with

√
n

Å

1

X̄n
− 1

µ

ã

σ/µ2

D−→ n(0,1).

Sönnun. Recall Slutsky’s theorem: If Xn → X in distribution and Zn → a, a constant, then:

XnZn → aX in distribution, and Xn +Yn → Xn +a in distribution

Now, the Taylor expansion of g(Yn) around Yn = θ is

g(Yn) = g(θ)+g′(θ)(Yn −θ)+R

where R is the remainder and R → 0 as Y → θ. From the assumption that Yn satisfies the

standard Central Limit Theorem, we have Yn → θ in probability, so it follows that R → 0

in probability as well. Rearranging the terms we have:

√
n(g(Yn)−g(θ)) = g′(θ)

√
n(Yn −θ)+R

Applying Slutsky’s theorem with Xn as g′(θ)
√

n(Yn −θ) and Zn as R, we have the right

hand side converging to n
(
0,σ2g′(θ)2

)
.
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