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1 Overview of simple linear regression

1.1 Background

• This lecture gives an overview
of simple linear regression
(SLR) at an advanced level

• See other tutorials for more
detail

• This tutorial will eventually
become less theoretical (more
applied)

This tutorial gives an introduction to simple linear regression. It assumes familiarity with elementary
probability theory and random variables (see e.g. tutorials in Stats on the tutor-web).

This tutorial is rather theoretical for an "applied" coursein simple linear regression. The text should
therefore be considered a placeholder.

Optional theoretical background:

Recall that a random variableX is a real-valued (measurable) function, the expected valueof a random
variable is denotedE[X] and the variance isV[X].

The probability distribution of a random variable may be described by its cumulative distribution func-
tion,

F(x) := P[X ≤ x]

or, when this is differentiable, by the density function,f = F ′.

These notions extend to multivariate cases. In particular,a function f is a density function for a vector
mathb fY= (Y1, . . . ,Yn)

′ of random variables iff (y ≥ 0 for all y ∈ Rn and

P[Y = 1≤ y1, . . .Yn ≤ yn] =

Z yn

tn=−∞
. . .

Z y1

t1=−∞
f (y1, . . . ,tn)dt1 . . .dtn

A collection of random variables is independent if the jointdensity is the product of the individual ones.

Densities may have unknown parameters. These may be estimated using e.g. least squares or maximum
likelihood.

TheMaximum Likelihood Estimate, MLE is the value of a parameter which maximizes the likelihood
function.

It is fairly easy to see that the MLE forµ for the normal distribution is given by the mean of they-values.

The density function describing a Gaussian random variable(a variable having the normal distribution)
is given by

f (y) =
1√
2πσ

e
− (y−µ)2

2σ2 y∈ Rn

.

For a set ofn measurements from independent and identically distributed (i.i.d.) normal distributions,
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the joint density is given by.

f (y1, . . . ,yn) = ∏
i

1√
2πσ

e
− (yi−µ)2

2σ2

=
1

(2π)n/2σn
e
−∑i

(yi−µ)2

2σ2 y1, . . . ,yn ∈ R

For given values of the parameters this function can be used to describe how probable certain outcomes
are.

Once the experiment has been conducted and the data have beenobserved, this function can be evaluated
for different values of the parameters. In this context, thefunction is called alikelihood function :

L(µ,σ2) =
1

(2π)n/2σn
e
−∑i

(yi−µ)2

2σ2 µ∈ R,σ ∈ R+

1.2 Informal regression

Have data as (x,y)-pairs
Scatterplot indicates relationship
Want to “fit a line” through the data
Evaluate the fit

1.3 Formal regression
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Fixed numbers,xi
Random variables:Yi ∼ n(α+βxi ,σ2)
or: Yi = α+βxi + εi
εi ∼ n(0,σ2) independent and identically
distributed (i.i.d.)
The data:

yi = α+βxi +ei

Regression analysis is concerned with finding and estimating relationships between sets of measure-
ments. Usually it is assumed that there is a desire to predictone set of measurements from another
set.

Assume therefore that there are fixed numbers,xi , such that the measurements are outcomes of random
variables which are of the form

Yi ∼ n(α+ βxi,σ2)

or

Yi = α+ βxi + εi, i = 1, . . . ,n
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whereεi ∼ n(0,σ2) are independent and identically distributed (i.i.d.) andα, β are some fixed (but
usually unknown) numbers.

The data are therefore of the form:

yi = α+ βxi +ei.

Thex-values are commonly called independent variables whereasthey-values, which depend on these,
are termed dependent variables.

1.4 Estimation methods

Least squares estimation technique mini-

mizes:S= ∑(yi − (α+βxi ))
2

Maximum likelihood assumes a probabil-
ity distribution for the data and maximizes
the corresponding likelihood function.

The method of least squares estimatesα andβ by minimizing the sum of squares

S=
n

∑
i=1

(yi − (α+ βxi))
2

which is viewed as a function of ofα andβ.

Maximum likelihood assumes a probability distribution forthe data and maximizes the corresponding
likelihood function. In the regression setting it is commonly assumed that the data come from a Gaussian
distribution. In this case the parameter estimates become the same as from least squares. In addition an
estimate of the variance can be obtained as a part of the procedure.

1.5 The point estimates of a and b

a = ȳ−bx̄

b =
∑(x− x̄)(y− ȳ)

∑(x− x̄)2

These are the least squares estimates of the
coefficient of a regression line through the
data points(x,y).
It is implicitly assumed that the only errors
are in they-measurements.

It is quite simple to differentiate the functionSwith respect toα andβ in order to find the values which
minimize this sum of squares.

This gives minimum values at a point estimate. Those numerical values are denoted bya andb:

a = ȳ−bx̄

and

b =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

These are the least squares estimates of the coefficients of aregression line through the data points
(xi ,yi), i = 1, . . . ,n.
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It must be kept in mind that it is assumed throughout that thex-vales are fixed numbers and any mea-
surement errors are only present in they-values.

Also note that though this computed regression line is commonly called the best line through the data,
this is only in the context of least squares. There are other possible definitions of the quality of a line,
particularly when one assumes that theYi-variables have a different distribution from the Gaussian.

To iterate:α andβ are the unknown correct parameters anda, b are numerical estimates of these values,
based on a specific data set.

1.6 The estimator and the estimate

The numberb should be viewed as the out-
come of the random variable,

β̂ =
∑(x− x̄)Y

∑(x− x̄)2

(note the rewrite from earlier formulab).
i.e. β̂ is a linear combination ofY1, . . .,Yn,
commonly assumed to be normally dis-
tributed.

A datum (yi) is considered the realization of a random variable (Yi).

It follows that the numberb is actually a realization (outcome) of the random variable

β̂ =
∑i(xi − x̄)(Yi − Ȳ)

∑i(xi − x̄)2 ,

or

β̂ =
∑i(xi − x̄)Yi

∑i(xi − x̄)2 ,

where we have slightly rewritten the original formula forb.

It is therefore seen thatβ̂ is a linear combination ofY1, . . . ,Yn, which are most commonly assumed to be
independently normally distributed.

It is useful to distinguish between the numerical outcome,b, the unknown number being estimated,β,
and the estimator,̂β, though this distinction does become tedious at later stages.

1.7 Assumptions

Common assumption: Gaussian
Leads to same numerical estimates as OLS
But can also use OLS without explicitly
stating a Gaussian assumption
Need to be careful in what results hold with
and without normality!

If the random variables are assumed to come from independentnormal (Gaussian) distributions, then the
density ofYi can be written down and the joint p.d.f. of all the variables is the product of the individual
p.d.f.’s.

When the joint density is viewed as a function of the parameters, for fixed values of the data, it is termed
a likelihood function .

Maximum likelihood estimation is undertaken by maximizingthe likelihood function, and the resulting
estimators are termedmaximum likelihood estimators.
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Simple manipulation shows that OLS provides numerically the same estimates as maximum likelihood
in the case of normal distributions.

The interpretation is not the same, however, as an assumption of normality will provide more detailed
results concerning the distribution of the estimators.

1.8 On expected values and variances

From elementary statistics course it is assumed known that if Y is a random variable, then the expected
value,µ= E[Y] is (when it exists) given by

E[Y] =

Z

y f(y)dy

if Y has a continuous density (f ), or by

E[Y] = ∑
y

yp(y)

if Y has a discrete distibution with probability mass functionp.

The variance,σ2 = V[Y] of the random variableY with expected valueµ is given by

V[Y] = E
[

(Y−µ)2
]

(when this exists).

In particular, for a random variableY with an expected value of the formE[Y] = α+βx, the variance is
given by

V[Y] = E
[

(Y− (α+ βx))2
]

.

1.9 Estimating dispersion

A point estimate ofσ2, the variance of the
y-measurements, is obtained with

s2 =
∑i
(

yi − (a+bxi
)

)2

n−2

The predicted value ofy at a givenx is of-
ten denoted by ˆy = a+bxand therefore

s2 =
∑i (yi − ŷi )

2

n−2

Commonlyσ̂2 is used in place ofs2.

A point estimate ofσ2 is obtained with

s2 =
∑i (yi − (a+bxi))

2

n−2
.

We will commonly use the notation

SSE= ∑
i

(yi − (a+bxi))
2

and
MSE= SSE/(n−2)
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so thats2 = MSE.

This will be used to derive an estimator for the variance ofβ̂, denoteds2
b (or σ2

β̂
).

To be accurate, one should always differentiate between an unknown quantity being estimated (e.g.
α, β), the estimator which is a random variable (e.g.α̂, β̂) and the estimate itself which is numerical
outcome (e.g.a, b).

If we consider the corresponding random variables, we have

σ̂2 =
∑i

(

Yi − (α̂+ β̂xi)
)2

n−2
.

where the random variablêσ2 is anestimator for σ2, the variance of they-measurements (or random
variables,Y, rather).

As is done here, the notations is commonly used for the numerical outcome of the random variableσ̂
ands2 or MSE= SSE/(n−2) for the numerical outcome of̂σ2.

Similarly, when estimating the accuracy of the slopesb is used to denote the numerical outcome ofσ̂β̂. In
these cases, the notation can become quite cumbersome and these distinctions are therefore commonly
omitted.

For a given value of thex-variable, the predicted value ofy is denoted by

ŷ

so that
ŷi = α̂+ β̂xi

and therefore the numerical estimate of variance can be denoted by:

s2 =
∑n

i=1(yi − ŷi)
2

n−2
.

It should be noted that although this is one natural point estimate ofσ2, it is by no means the only one.
An alternative estimator is the MLE, given by

s2 =
∑n

i=1(yi − ŷi)
2

n
.

As will be seen later, the MLE is biased and the division byn−2 in place ofn is what is needed to make
an unbiased estimator.

1.10 Correlation and explained variation

Recall the the correlation coeffficientr is
always between−1 and 1.

Write SSE= ∑(y− ŷ)2 (sum of squared
errors, i.e. error after regression), and

SSTOT= ∑(y− ȳ)2 (total sum of squares,
i.e. before regression)
Definition: The explained variation is

R2 = 1− SSE
SSTOT

Note:

R2 = 1− ∑(y− ŷ)2

∑(y− ȳ)2
= . . . = r2
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Recall the correlationr, which is given by

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2

is always between−1 and 1. The correlation is a useful concept, but one must notethatr has no simple
and direct interpretation other than the very vague “measures how close thex andy data are to being on
a straight line”.

Consider therefore the sum of squared errors, i.e. deviations from the straight line:

SSE= ∑
i
(yi − ŷi)

2

It is natural to compare this sum of squared errors to the sum of squares which is obtained if no rela-
tionship is assumed betweeny andx. This latter, total, sum of squares is denotedSSTOTand computed
with:

SSTOT= ∑
i

(yi − ȳi)
2.

Note thatSSEis the variation which is still unexplained after a linear relationship has been assumed, but
SSTOTis the variation to begin with, i.e. the total variation in they-data. It is now reasonable to define
the proportional variation which remains unexplained,SSE/SSTOTand hence the explained variation
is 1−SSE/SSTOT.

Definition: The explained variation is

R2 = 1− SSE
SSTOT

It must be noted that this is the same concept as before since

R2 = 1− ∑(y− ŷ)2

∑(y− ȳ)2 = . . . = r2.

We thus see that althoughr has no simple direct interpretations,R2 has a natural interpretation and is
therefore considerably more useful.
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1.11 Output from regression software

1.12 Overview and vocabulary

Phrase Synonym or
abbreviation

Explanation

Regression Simple linear
regression,
SLR

The act of fitting a regression line through data

Standard error The standard deviation of a summary statistic
Regression analysis The act of fitting and analysing a regression line through data
Least squares estimationLS or OLS The use of minimum sums of squares to estimate parameters
Likelihood function The joint pdf of observations, viewed as a function of parameters
Maximum likelihood es-
timation

Estimating parameters by maximizing the likelihood function

Maximum likelihood es-
timator

MLE The estimator resulting from maxizing the likelihood function

SSTOT Total sum of squares
SSE Sum of squared errors

2 Matrix representation of simple linear regression

2.1 Purpose of matrix representation

It is easy to set up matrices which describe the simple linearregression model. Solving this using matrix
algebra gives an alternative representation of the estimators.

It turns out that a number of results are simpler to obtain using geometry and matrix algebra, as opposed
to calculus. The matrix version of the regression problem also give a powerful tool for deriving estimates
of variances and covariances of estimators.

2.2 Matrix form of simple linear regression

y ∈ Rn = vector of measurements

X =











1 x1
.
.
.

.

.

.
1 xn











the “X-matrix”
min ∑(yi − (α + βxi ))

2 is equivalent to
finding

β =

(

α
β

)

to mininmize||y−Xβ||2
Number notation:y = Xβ+e

Denote the vector of measurements byy ∈ Rn and let

X =







1 x1
...

...
1 xn
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be the “X-matrix” so the regression problem of minimizing∑(yi − (α+ βxi))
2 is equivalent to finding

β =

(

α
β

)

such that||y−Xβ||2 is minimized.

When working with numerical outcomes the notationy = Xβ +e is common. Here,ei , i = 1, . . . ,n are
the numerical deviations from the model.

2.3 Prediction as linear projection

Viewing a linear model geometrically provides considerable new insight into the regression problem,

The basic model is of the formy = Xβ+ewhereX is a matrix of with dimensionsn× p (in the present
casep = 2). The best predictor ofy within this model... (i.e. in the sense of closest in norm) isobtained
using an orthogonal projection ofy onto the plane spanned by the column vectors of the matrixX. This
orthogonal projection is denoted byŷ. Now, as the orthogonal project is contained insp{X}, it must be
some linear combination of the column vectors ofX and hence one can writêy = Xβ̂ for some choice
of β̂.

Note: If V is a subspace ofRn, then the orthogonal projection of a vectoru ontoV is the vectorv which
has the properties thatv ∈V andu−v ∈V⊥ whereV⊥ is the collection (vector space) of vectors which
are orthogonal to all vectors inV.

The orthogonal projecction ofy ontospan{X}, the span of the column vectors ofX is thus the vector
ŷ ∈ span{X} such thaty− ŷ ∈ span{X}⊥.

Sinceŷ ∈X, it follows thatŷ is a linear combination of the column vectors ofX, so we can writêy = Xβ̂
for someβ̂.

If ŷ is to be a projection ontospan{X}, the residual,̂e= y− ŷ, is in span{X}⊥. Sinceê is orthogonal
to all vectors inspan{X}, it is also orthogonal to the column vectors ofX.

It follows thatX′(y− ŷ) = 0, i.e.
X′Xβ̂ = X′y

which are thenormal equations.
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2.4 Geometric solution to the simple linear regression problem

From linear algebra the matrix solution is
known

β̂ = X′ . . .

and also knoŵβ = ∑ . . . α̂ = ŷ− β̂x̄
which must be the same solutions.
LS estimation is therefore the same as find-
ing the projection onto the column vectors
of X.

From linear algebra, the solution to the projection problemis known:

β̂ =
(

X′X
)−1X′y

This solution is fairly easy to obtain either through projection consideration, where we splity into
orthogal componentŝy+e or through differentiation of the norm,||y−Xβ||2. In either case it becomes
obvious that the column vectors of theX-matrix must be orthogonal to the residual vector,y−Xβ. It
follows from this that the solution must satisfy thenormal equations X′Xβ = X′y which again implies
the above solution if the matrix inverse exists. The condition of the existence of the inverse is common
in regression problems but will be omitted for more complex linear models.

From earlier results, it is also known that

β̂ =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

and
α̂ = ȳ− β̂x̄

which must therefore give the same solutions.

It is seen that least squares estimation is numerically equivalent to obtaining the orthogonal projection
of the data vector onto the space spanned by the column vectors ofX.

Example:

The simplest linear model isyi = µ+ei, i.e. each measurement is a deviation from a common mean.

This model in matrix notation becomes:y = Xβ+e, where

X =















1
1
1
...
1















. (1)

Matrix algebra quickly givesX′X = [n], which is a 1×1 matrix with elementn, (or simply the number
n).

The inverse of this matrix is of course 1/n. It is also easy to see thatX′y = ∑yi and therefore(X′X)−1X′y =
ȳ, which is the same estimate as before.

The sum of squared deviations becomes

SSE= ||y−Xβ̂||2 = ∑(y− ŷ)2 = ∑(y− ȳ)2
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and the estimate of variance is

MSE= SSE/(n− p)=
∑(y− ȳ)2

n−1

as before.

2.5 Overview and vocabulary

Phrase Synonym or
abbreviation

Explanation

MSE Mean squared error

3 Distributions of linear projections of vectors of random vari-
ables*

3.1 Linear combinations of independent random variables

c a column vector
Y a vector of independent random vari-
ables
Same σ, expected values may differ,
E[Y] = µ
Then

E
[

c′Y
]

= c′µ

V
[

c′Y
]

= c′cσ2

Supposec a column vector andY a vector of independent random variables with a common variance,
σ2, but possibly different expected values. Then the mean and variance of the linear combination,c′Y,
are given by

E
[

c′Y
]

= c′µ

V
[

c′Y
]

= c′cσ2

These results are trivial to ascertain since the components,Yi , are independent and hence e.g.

V
[

c′Y
]

= V

[

∑
i

ciYi

]

= ∑
i

c2
i V [Yi ]

= c′cσ2
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3.2 Covariance between linear combinations of independentrandom variables

a, b column vectors
Y a vector of independent random vari-
ables
Same σ, expected values may differ,
E[Y] = µ
Then

Cov
[

a′Y,b′Y
]

= a′bσ2

Supposea, b are column vectors andY a vector of independent random variables with a common vari-
ance,σ2, but possibly different expected values. Then the covariance between the linear combinations,
a′Y andb′Y, is given by

Cov
[

a′Y,b′Y
]

= a′bσ2

This follows from looking at the linear combinations as sumsof components and noting that the covari-
ance is a sum of all possible combinations, all of which are zero except where the sameYi-combinations
appear:

Cov
[

a′Y,b′Y
]

= Cov

[

∑
i

aiYi ,∑
j

b jYj

]

= ∑
i, j

Cov[aiYi ,b jYj ]

= ∑
i, j

aib jCov[Yi ,Yj ]

= ∑
i

aibiCov[Yi ,Yi ]+ ∑
i, j :i 6= j

aib jCov[Yi ,Yj ]

= ∑
i

aibiV [Yi ]

= a′bσ2

This result indicates that if the projection vectors,a andb are orthogonal, then the covariance remains
zero. Note also that strictly, independence of the originalvariables is not required, but only zero covari-
ance which is not the same condition in the general case.

In the case of two Gaussian random variables, it is, however,true that they have zero covariance if and
only if they are independent. This can be seen by observing the bivariate Gaussian density function
which neatly factors if and only if the covariance is zero.

3.3 Linear projections of independent random variables

A ann×n matrix
Y a vector ofn independent random vari-

ables, meanµ, V[Yi ] = σ2.
Then

E [AY ] = µ

V [AY ] = AA ′σ2
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Let A be aq×n matrix andY ann-vector of independent random variables with common variance but
possibly different expected values, then

E [AY ] = Aµ

V [AY ] = AA ′σ2

This can be derived either by considering the componentwisecomposition ofAY or by writing A as a
collection of row vectors and using the earlier results.

3.4 Linear transformations of dependent random variables

A a matrix
Y a vector of random variables whose vari-
ances and covariances exist as a matrix,

Σ =
(

σi j

)

with σi j = Cov(Yi ,Yj ).

Then

V [AY ] = AΣA′

Let A be ann×n matrix andY a vector of random variables whose variances and covariances exist as
a matrix,Σ = (σi j ), whereσi j = Cov(Yi ,Yj).

This general situation occurs in regression analysis when measurements arrive in such a fashion that they
can not be assumed to be independent. Several such examples certainly exist and the theory therefore
needs to be properly developed.

This is also an important result when studying distributional properties of estimators, which are typically
already linear combinations of original variables and hence no longer independent.

The first step is to derive the variance of projections of suchvariables. As before, this can be done by
studying components or by looking at vector-wise linear combinations.

We obtain

V [AY ] = AΣA′
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4 The expected value and variance of the estimators in simplelin-
ear regression

4.1 Expected value of the slope estimator

The estimator for the slope is unbiased:

β̂ = ∑
i

(xi − x̄)Yi
∑ j (xj − x̄)2

⇒ Eβ̂ = ∑
i

(xi − x̄)E[Yi ]

∑ j (xj − x̄)2

= ∑
i

(xi − x̄)(α+βxi )

∑ j (xj − x̄)2
= . . . = β

Note: This result only depends on the
mean structure ofYi , not the p.d.f. or even
the variance.

Some properties of the various estimators need to be derived. In particular it is important to derive the
expected value and variance of both the estimators of slope and intercept. These will be derived using
only the assumptions needed, but for latter statistical inference more assumptions will be added in order
to derive the probability distributions of these estimators.

The expected value is easy to compute based on writing the slope estimator as a linear combination of
the dependent variables. First write

β̂ = ∑
i

(xi − x̄)

∑ j(x j − x̄)2Yi

so that

Eβ̂ = ∑
i

(xi − x̄)

∑ j(x j − x̄)2 E[Yi ]

= ∑
i

(xi − x̄)(α+ βxi)

∑ j(x j − x̄)2

=
∑i(xi − x̄)(α+ βxi)

∑i(xi − x̄)2

= β

where we have used the facts that the sum of deviationsxi − x̄ is zero and the corollary that the sum of
(xi − x̄)xi is the same as the sum of squares,(xi − x̄)2

It follows that the slope estimator,β̂, is unbiased.

These results only use the assumption on the mean of theYi-variables. Thus, they also hold even if the
variables are not Gaussian.

Also one should make a note that the slope estimator is also unbiased even if the variance structure is
wrong. In particular, the slope is still unbiased whether the measurements all have the same variances
or not.
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4.2 Variance of the slope estimator

The variance of the estimator can be de-
rived:

V
[

β̂
]

= . . . =
σ2

∑(x− x̄)2

Note: This result only depends on the
mean and variance structure ofYi , not the
p.d.f.

Slightly more work yields the variance of the estimator:

V
[

β̂
]

= V

[

∑
i

(xi − x̄)Yi

∑ j(x j − x̄)2

]

= ∑
i

(xi − x̄)2

(

∑ j(x j − x̄)2
)2V[Yi ]

=
σ2

∑(x− x̄)2

Here, we have used elementary facts concerning the varianceoperator,V[aU +V] = a2V[U ]+V[V] if
U andV are independent, extended in an obvious fashion to a linear combination of the independent
random variables,Yi .

As for the slope estimator, these results only use the assumption on the mean, variance and independence
of theYi -variables. Thus, they also hold even if the variables are not Gaussian.

4.3 Expected value of the intercept estimator

The estimate of the intercept is unbiased:

Eα̂ = E
[

Ȳ− β̂x̄
]

= E [Ȳ]−βx̄

= (α+βx̄)−βx̄

= α.

Note: This result only depends on the
mean and variance structure ofYi , not the
p.d.f.

The expected value of the intercept estimate can be derived in a number of ways, the obvious being an
attack on the basic equation:

Eα̂ = E
[

Ȳ− β̂x̄
]

= E [Ȳ]−βx̄

= (α+ βx̄)−βx̄

= α.

We have thus shown that the estimator is unbiased.

These results only use the assumption on the mean, variance and independence of theYi-variables. Thus,
they also hold even if the variables are not Gaussian.
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4.4 Variance of intercept estimator

The variance of the estimator can be de-
rived:

V [α̂] =





1
n

+
x̄2

∑n
i=1

(

xi − x̄
)2





Note: This result only depends on the
mean and variance structure ofYi , not the
p.d.f.

The variance of the estimator can be derived by rearranging terms in the formula for̂α so that it is
written as a linear combination of theYi-variables.

α̂ =
n

∑
i=1

(

1
n
− x̄

xi − x̄

∑n
j=1 (x j − x̄)2

)

Yi

V [α̂] =

(

1
n

+
x̄2

∑n
i=1 (xi − x̄)2

)

As for the mean, these results only use the assumption on the mean, variance and independence of the
Yi-variables. Thus, they also hold even if the variables are not Gaussian.

4.5 Estimating slope accuracy

The standard error of the slope:

σ̂2
β̂

=
σ̂2

∑(x− x̄)2

where

σ̂2 =
∑(y− ŷ)2

n−2

When computing variances and standard deviations of derived quantities it is customary to call these
standard errors to distinguish from from standard deviations in the meaning of simple deviations from a
common mean.

The estimated standard error of the slope is usually denotedby

σ̂2
β̂.

The natural estimator of the slope variance

σ̂2
β̂ =

σ̂2

∑(x− x̄)2 ,

given the earlier estimator of the variance of they-values. What remains, however, is to develop distri-
butional properties of the estimator, since this is crucialfor inference (drawing formal statistical conclu-
sions about the true slope).

where
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σ̂2 =
∑(y− ŷ)2

n−2

is the customary estimator of the variance of they-values around the regression line.

4.6 Experimental design issues

The formulae for variances of slope and in-
tercept can be used to obtain optimal de-
sign
Would like x̄ close to 0
Ideally dispersion ofx-values should be
large

The formulae for slope and intercept can be used to obtain optimal design for a given sample size.

In the regression setting, the location of thex-values may be at the discretion of the experimenter.
The experimenter may then choose to allocate these values soas to obtain minimum variance in the
estimators of slope and intercept.

5 Distribution of estimators in SLR

5.1 Marginal distribution of estimator of slope

Recall that
Eβ̂ = β

and

V
[

β̂
]

=
σ2

∑(x− x̄)2

Under normality, the estimator also has a
Gaussian (normal) distribution:

β̂ ∼ n

(

β,
σ2

∑(x− x̄)2

)

In addition to the mean and variance, the distributions of the estimators need to be derived.

Recall that the mean and variance of the slope estimator are given by

Eβ̂ = β

and

V
[

β̂
]

=
σ2

∑(x− x̄)2

Since the estimator is a linear combination of theYi-variables, which are Gaussian,β̂ is also normally
distributed and we obtain:

β̂ ∼ n

(

β,
σ2

∑(x− x̄)2

)

These results will form the basis for testing hypotheses andcomputing confidence intervals forβ.
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5.2 Marginal distribution of estimator of intercept

Exercise: Derive the marginal pdf ofα̂.

6 Inference in SLR

6.1 Elements of inference in simple linear regression

Basic inference: Test hypotheses and gen-
erate confidence intervals for slope and in-
tercept.

Earlier results on the estimators can be used to make inference on the true slope and intercept.

The first question raised is whether there is any relationship between thex andy measurements, i.e.
whether the slope is zero. This can be phrased as a general hypothesis test for the slope.

Although hypothesis tests are important, they give no information if the hypothesis can not be rejected
and hence confidence intervals tend to be more informative ingeneral.

Both hypothesis tests and confidence intervals can be derived for the intercept as well as the slope,
although inference for the intercept tends not to be as commonly used.

6.2 Testing hypotheses concerning the slope

Want to investigate formally whetherβ = 0
under Gaussian assumption and indepen-
dence.
Recall

β̂−β
σ̂β̂

∼ tn−2

H0 : β = β0 vs Ha : β 6= β0

t :=
β̂−β0

σ̂β̂
∼ tn−2

RejectH0 if |t |> tn−2,1−α/2.

As the distribution of̂β is known one can derive statistical tests of hypotheses concerningβ. In general
one would like to test hypotheses of the formH0 : β = β0.

A particularly common hypothesis is one of whether there is any relationship, i.e.H0 : β = 0.

In order to test the general hypothesis concerning the slope, H0 : β = β0 vsHa : β 6= 0 it should be noted
that

t :=
β̂−β

σ̂β̂
∼ tn−2

in general.

Note: This statement concerning thet-distribution tacitly assumed that the two quantities in the ratio
are statistically independent, and that theχ2-distribution applies to the denominator. This statement is
easier to prove as a whole in the general case using matrix algebra.
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It follows that if H0 is correct, then

t =
β̂−β0

σ̂β̂

should come from at-distribution withn−2 degrees of freedom.

H0 will be rejected if the computedt-value is too extreme, i.e. if|t| > tn−2,1−α/2.

Example: Suppose we have a few measurements,(x,y), to be used in a regression analysis.

x y x− x̄ (x− x̄)2 (y− ȳ) (y− ȳ)2 (x− x̄)(y− ȳ) ŷ y− ŷ (y− ŷ)2

1 1.0 -2 4 -5 25 10 2.6 0.36
2 5 -1 1 -1 1 1 3.8 1.44
3 6 0 0 0 0 0 6.0 0
4 7 1 1 1 1 1 8.2 1.44
5 11 2 4 5 25 10 10.4 0.3

∑ 15 30 0 10 0 52 22 3.60
x̄ = 3 ȳ = 6

β̂ =
∑(x− x̄)(y− ȳ)

∑(x− x̄)2 =
22
10

= 2.2

α̂ = ȳ− β̂x̄ = 6−2.2×3= −0.6

σ̂2 =
∑(y− ŷ)2

n−2
=

3.60
3

= 1.2

σ̂2
β̂ =

σ̂2

∑(x− x̄)2 =
1.2
10

= 0.12

95% Confidence interval forβ:

β̂± tn−2.0975σ̂β̂ = 2.2±3.182·
√

0.12

TestingH0 : β = 2 vs Ha : β 6= 2

β̂−2
σ̂β2

=
β̂−2√

0.12
= . . .

6.3 Confidence interval for the slope

Use same t-distribution
Invert for confidence interval

Given thet-distribution of the ratio,

t :=
β̂−β

σ̂β̂
∼ tn−2,

it is easy to write down a probability statement, basically stating that there is probability 1−α thatt is
between±tn−2,1−α/2.

These inequalities can be inverted to obtain a probability statement of two random endpoints incorpo-
rating the true value ofβ.

Given subsequent data, i.e. a realisation of the random variables, the data is used to compute the actual
interval and a statement is made that the unknown parameter lies within the interval.
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6.4 Inference for the intercept

Same procedure as for the slope, but replacingβ andβ̂ with α andα̂ gives a confidence statement for
the intercept.

6.5 Overview and vocabulary

Phrase Synonym or
abbreviation

Explanation

Statistical inference The act of drawing a formal conclusion based on data

7 Covariance between estimators and inference*

7.1 Covariance between estimates of slope and intercept

Need to deriveCov(α̂& β̂) for general pur-
poses
Can use this for inference b (forŶ etc-not
line -2.6 waits!) but it is easier to rewritêY
as linear combination.

It is in general useful to consider not only the variances of the estimators,̂α andβ̂, but also the covariance
between these estimators.

Take the simple model withYi = α+ βxi + εi andεi ∼ n(0,σ2), i.i.d., so that

β̂ =
∑n

i=1(xi − x̄) (Yi − Ȳ)

∑n
i=1(xi − x̄)2

and
α̂ = ȳ− β̂x̄

The simplest way to obtainCov(α̂, β̂) is by rewriting the two formulae in terms of linear combinations
of theYi -variables:

β̂ =
∑n

i=1 (xi − x̄)Yi

∑n
i=1(xi − x̄)2

α̂ =
n

∑
i=1

(

1
n
− x̄

xi − x̄

∑n
j=1 (x j − x̄)2

)

Yi

from which the covariance follows easily since we haveCov(Yi ,Yk) = 0 if i 6= k andCov(Yi ,Yi) = σ2.

Completion of the above derivation requires the equality

Cov(aU +bW,cU+dW) = acCov(U,U)+bdCov(W,W) = acV[U ]+bdV[W]

for independent random variablesU andW. This equality can be derived by expanding the above left
hand side using the defining expression for the covariance between two random variables,

Cov(S,T) = E[(S−µS)(T −µT)].
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7.2 Estimating a point on the regression line

Estimate mean response atxh:

̂E
[

Yh
]

:= Ŷh = α̂+ β̂xh

Then

E
[

̂E
[

Yh
]

]

= E
[

Ŷh
]

= α+βxh

Var
[

̂E
[

Yh
]

]

=Var[Yh] = σ2
(

1
n

+
(xh− x̄)2

∑(xj − x̄)2

)

The mean (or, more accurately, expected) response at a newx-value,xh is most naturally done by using
the corresponding point on the estimated regression line:

Ê [Yh] = α̂+ β̂xh

GivenCov(α̂, β̂) it is now possible to compute the variance of this estimator directly from the above
formula.

Var
[

Ê [Yh]
]

= Var
[

α̂+ β̂xh

]

= . . .

Alternatively, the same variance can be obtained by rewriting the formula forÊ [Yh] as a single linear
combination of theYi-variables:

Ê [Yh] = α̂+ β̂xh = (Ȳ− β̂x̄)+ β̂xh = Ȳ+(xh− x̄)β̂ =
1
n ∑Yi +(xh− x̄)

∑(xi − x̄)Yi

∑(xi − x̄)2

i.e.

Ê [Yh] = ∑
(

1
n

+(xh− x̄)
(xi − x̄)

∑(x j − x̄)2

)

Yi

From this the variance of the estimator follows easily afternoting that cross-product terms cancel:

Var
[

Ê [Yh]
]

= Var[Yh] = σ2
(

1
n

+
(xh− x̄)2

∑(x j − x̄)2

)

This gives the basis for inference for̂E [Yh].

7.3 Predicting a new observation

PredictYh, atxh
UseŶh = α̂+ β̂xh
Wantd s.t. P

[

|Ŷh−Yh| ≤ d
]

= 1−α
Old and new are independent:

V
[

Ŷh−Yh
]

= σ2
(

1+
1
n

+
(xh− x̄)2

∑(xj − x̄)2

)

Predicting the response,Yh, at a newx-value,xh is most naturally done by using the corresponding point
on the regression line:

Ŷh = α̂+ β̂xh
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Notice, however, that as a prediction for a future point, this includes two sources of variation or error,
first due to the measurement errors in the original data through variation in the parameter estimates and
secondly through the future measurement errors at this point.

This will give prediction intervals for future measurements. Notice that these are not quite the same
as confidence intervals, since a prediction interval makes astatement about the outcome of a random
variable and this is a probability statement. A confidence statement is a statement about an unknown
number and is therefore a different concept.

In the current setting we will want to be able to make a statement of the form

P
[

|Ŷh−Yh| ≤ d
]

= 1−α.

and the “d” must be chosen so as to fulfill the statement.

Can use independence of new and old obs so

V
[

Ŷh−Yh
]

= σ2
(

1+
1
n

+
(xh− x̄)2

∑(x j − x̄)2

)

This will give tn−2-distributions for prediction intervals. Note that there is an important probabilistic
difference between prediction intervals and confidence intervals.

As we now have a probability distribution:

Yh− Ŷh

spred
∼ tn−2

we can also make diagnostic inference on whether a particular new observation is likely to be produced
by the same mechanism as the earlier observations.

7.4 Predicting mean of several new observation

For mean ofmnew get

V
[

Ȳh−Yh
]

= σ2
(

1
m

+
1
n

+
(xh− x̄)2

∑(xj − x̄)2

)

For the average of several,m, new observations, at the same value,xh of thex-variable, we get a slightly
different variance estimate.

V [Ȳh−Yh] = σ2
(

1
m

+
1
n

+
(xh− x̄)2

∑(x j − x̄)2

)

8 Statistical packages

8.1 The R statistical package

R is freely available on the Internet.
Students can pick this up and install on
their home computers.
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Students are expected to obtain and install R. R is freely available and can be downloaded from the
Internet.

Although R is free, it is very extensive. It is designed for easy extensibility and the emphasis is on easy
graphical display and model searches.

The built-in help system is well-designed and is recommended for all users.

Books on S and Splus generally apply to R as well.

Typical commands in R include

• scan. Reads data, one element at a time.

• read.table. Reads tabular data.

• print. Outputs data to screen or file.

• lm. Fits linear model.

• summary. Summarizes output, e.g. from linear model.

• plot. General plotting function.

• rnorm. Generates normal (pseudo-)random deviates.

Example: A typical R example. The following sequence inputs matrix data in columns x, y and z, from
the file “test.dat” into R and subsequently prints the data and does a simple linear regression.

The commands also plot a few examples of randomly generated data.dat<-read.table("test.dat",ol.names=("x","y","z"))print(dat)summary(lm(y~x,data=dat))x<-1:100y<-2+0.5*x+rnorm(100)*5*xplot(x,y)plot(dat$x,dat$y)
Note that dat becomes a data frame, which is a bit like a matrix, but the columns have names and can be
referred to as dat$x etc.

8.2 Linear statistical models with R

Suppose that within R a user has two columns of data, “x” and “y”, which come in pairs and there is a
need to fit a straight line through the data points.

Having plotted the data, this is followed by specifying the model, which should be of the formy =
α+ βx. The model notation in R for this simple linear model is

y∼ x.

The tilde character (∼) indicates that the left-hand side is a dependent variable and the model is on the
right-hand side. On the right hand side it is implicitly assumed that there will be an intercept (α in the
mathematical model) and therefore there is only a need to list the “dependent” variable(s), in this case
only x.

To fit the actual model the “lm” function is used (lm being short for “linear model”):
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Figure 1: Example output from a simple linear model fit of the form y=a+bx. Items (1)-(2) are the estimates of a and b respectively. The estimate of the
standard error of b is given by (3). The P-value for testing whether the true (underlying) value of b is zero is in (4). Items(5)-(7) give the MSE, R-squared
and P-value for the entire model, respectively.

Mathematical model:

y= α+βx+ ε

R definition:
y∼ xlm(y x)

Storing the outputfm<-lm(y x).

lm(y~x)
In order to process the model results, the fitted model is stored under some name, e.g. “fm”:fm<-lm(y~x).
Example: Suppose the data are given byx 1 2 3 4 5 6y -7 -6 0 0 -2 6
A simple linear model can be fitted to the data and the results output using:> summary(lm(y~x))
The results are shown in the figure.

Note: The output from the various lm-related programs is quite detailed and although a statistics course
can be designed around the interpretation of the results, some basic knowledge is essential.

Consider the output given in the figure.

Example: Consider a data set with a dependent variabley, an independent variablex and a factor,f :x f y1 1 A 6.3671512 2 A 10.7837433 3 A 11.5281254 4 A 15.5644715 5 A 18.5094316 1 B 4.6082477 2 B 6.8499818 3 B 12.3019499 4 B 14.25164010 5 B 16.48379611 1 C 6.29317412 2 C 7.90566413 3 C 10.64021214 4 C 15.88140415 5 C 16.679703
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If this data set is read in using read.table, the f-column will automatically become a factor and can be
used directly in a model such aslm(y~f+x)> summary(lm(y~x))Call:lm(formula = y ~ x)Residuals:Min 1Q Median 3Q Max-1.8277 -0.9488 -0.1151 0.7969 2.1061Coeffiients:Estimate Std. Error t value Pr(>|t|)(Interept) 2.7466 0.6992 3.928 0.00173 **x 2.9656 0.2108 14.066 3.04e-09 ***---Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1Residual standard error: 1.155 on 13 degrees of freedomMultiple R-Squared: 0.9383, Adjusted R-squared: 0.9336F-statisti: 197.9 on 1 and 13 DF, p-value: 3.043e-09> fm<-lm(y~f+x)> drop1(fm,test="F")Single term deletionsModel:y ~ ff + xDf Sum of Sq RSS AIC F value Pr(F)<none> 10.317 2.386f 2 7.018 17.335 6.170 3.7414 0.0576 .x 1 263.837 274.153 49.585 281.3080 3.499e-09 ***---Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Use the resid function to extract residuals, then plot theseand standardize to test for normality etc.

Use anova(fm1,fm2) to compare two models.

Having obtained the model, the coefficients can now be obtained, summary statistics of the model can
be listed and the analysis of variance corresponding to the model is obtained:fm<-lm(y~x).summary(fm) # General summary of model fitanova(fm) # Additional variation explained by eah effetdrop1(fm) # Marginal test of eah effet in a modeloef(fm) # Extrat oeffiients of fitted modelresid(fm) # Extrat residualfitted(fm) # Extrat fitted values
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8.3 The SAS statistical package

SAS is expensive but freely available to
students enrolled in courses at licensed
universities.

Students at licenced universtities can obtain and install SAS. SAS is an expensive package, but it is
possibly the most extensive statistical package available. Under a university license it is available to
enrolled students.

SAS is best known for classical statistical analyses such aslinear models or univariate analyses where
this package excels. This program is extremely well tested and runs on most computer platforms.

Detailed instructions on using SAS are available on http://www.tutor-web.net in various tutorials under
Statistics.

Example: A typical SAS example. The following sequence inputs data incolumns x, y and z, from the
file “F:
test.dat” into SAS and subsequently prints the data, computes means and does a simple linear regression.libname mystore 'F:\';data mystore.mysasset;infile 'F:\test.dat';input x y z;pro print;pro means;pro glm;model z=x;
The libname causes the data to be stored between SAS runs, so the data step can be omitted in the next
run, by using instead the libname statement alone and referring explicitly to mystore.mysasset.
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