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1 Overview of simple linear regression

1.1 Background

e This lecture gives an overview
of simple linear regression
(SLR) at an advanced level

e See other tutorials for more
detail

e This tutorial will eventually
become less theoretical (more
applied)

This tutorial gives an introduction to simple linear regiies. It assumes familiarity with elementary
probability theory and random variables (see e.g. tuteiiabtats on the tutor-web).

This tutorial is rather theoretical for an "applied" coumsesimple linear regression. The text should
therefore be considered a placeholder.

Optional theoretical background:

Recall that a random variab}is a real-valued (measurable) function, the expected \@lagandom
variable is denotel[X] and the variance ¥ [X].

The probability distribution of a random variable may beatiézmed by its cumulative distribution func-
tion,
F(x) :=P[X <X

or, when this is differentiable, by the density functidns- F’.

These notions extend to multivariate cases. In particaléunctionf is a density function for a vector
mathbfY= (Y1,...,Ys)" of random variables if (y > O for ally € R" and

Yn Y1
P[Y:lgyl,...vngyn]:/ / f(y,... t)dtr .. dta

th=—00 t1=—o

A collection of random variables is independent if the jalatsity is the product of the individual ones.

Densities may have unknown parameters. These may be estimsing e.g. least squares or maximum
likelihood.

TheMaximum Likelihood Estimate, MLE is the value of a parameter which maximizes the likelihood
function.

Itis fairly easy to see that the MLE forfor the normal distribution is given by the mean of fhealues.

The density function describing a Gaussian random varig@iariable having the normal distribution)
is given by
1 y-w?

f(y)=\/§[ce_ 202 yeR"

For a set olh measurements from independent and identically distrib(ited.) normal distributions,



the joint density is given by.

f( ) 1 _(yi—u)2
geeey = e 20
Y1 Yn ITl N 2
1

)2
_ e_ Zi (Y|20U) c R
(Zn)n/zo_n Yla---,yn

For given values of the parameters this function can be wsdddcribe how probable certain outcomes
are.

Once the experiment has been conducted and the data havelissewved, this function can be evaluated
for different values of the parameters. In this context ftheetion is called dikelihood function:

1 s, <ym24>2 R R
_— 20
(2rm)n/2gn HER,GERY

Lk, 02) =

1.2 Informal regression

Have data as (x,y)-pairs
Scatterplot indicates relationship
Want to “fit a line” through the data
Evaluate the fit

1.3 Formal regression

Fixed numbersy;
Random variablesy; ~ n(a + Bxi,cz)
orY; =a+PBx +§
& ~ n(0,02) independent and identically
e distributed (i.i.d.)

7 The data:

Vi =0+ Bx g

Regression analysis is concerned with finding and estigagtationships between sets of measure-
ments. Usually it is assumed that there is a desire to predietset of measurements from another

set.

Assume therefore that there are fixed numbegrsuch that the measurements are outcomes of random

variables which are of the form
Y, ~ n(a + Bx;, 0?)

or

Yi=a4+pBx+¢, i=1,...,n



whereg; ~ n(0,0?) are independent and identically distributed (i.i.d.) and3 are some fixed (but
usually unknown) numbers.

The data are therefore of the form:

Vi =a+PBxi+e.

Thex-values are commonly called independent variables whehegsvalues, which depend on these,
are termed dependent variables.

1.4 Estimation methods

Least squares estimation technique mini-
mizes:S=y (yj — (a+ Bxi))z

Maximum likelihood assumes a probabil-

ity distribution for the data and maximizes

the corresponding likelihood function.

The method of least squares estimatesnd3 by minimizing the sum of squares

S= ZI (0 +Bxi))?

which is viewed as a function of af andf3.

Maximum likelihood assumes a probability distribution the data and maximizes the corresponding
likelihood function. In the regression setting it is comrhyoessumed that the data come from a Gaussian
distribution. In this case the parameter estimates bechensame as from least squares. In addition an
estimate of the variance can be obtained as a part of thequoze

1.5 The point estimates of a and b

a=y—bx

b 2X=X-Y)
3 (x—%)?

These are the least squares estimates of the
coefficient of a regression line through the
data pointgx,y).

Itis implicitly assumed that the only errors
are in they-measurements.

It is quite simple to differentiate the functi®@with respect tax andp in order to find the values which
minimize this sum of squares.

This gives minimum values at a point estimate. Those nurakraues are denoted layandb:

a=y—bx
and
( @2

These are the least squares estimates of the coefficientsegfr@ssion line through the data points
(Xivyi)v I = 17"'7”




It must be kept in mind that it is assumed throughout thaixtkiales are fixed numbers and any mea-
surement errors are only present in yhealues.

Also note that though this computed regression line is contyncalled the best line through the data,
this is only in the context of least squares. There are otbssiple definitions of the quality of a line,
particularly when one assumes that W&ariables have a different distribution from the Gaussian

To iterate:a andp are the unknown correct parameters anllare numerical estimates of these values,
based on a specific data set.

1.6 The estimator and the estimate

The numbeb should be viewed as the out-
come of the random variable,

B S(x=xY

T(x-%?
(note the rewrite from earlier formutg).
i.e. Bisalinear combination ofy ,..., Yn,
commonly assumed to be normally dis-
tributed.

A datum ;) is considered the realization of a random varialje (

It follows that the numbel is actually a realization (outcome) of the random variable

B > —x)(¥i—Y)

Yiki—x)? 7
or
B 3i(x — XY
Yil—x)2’

where we have slightly rewritten the original formula for

It is therefore seen thétis a linear combination ofy,. .., Y,, which are most commonly assumed to be
independently normally distributed.

It is useful to distinguish between the numerical outcoméehe unknown number being estimat@d,
and the estimatof, though this distinction does become tedious at later stage

1.7 Assumptions

Common assumption: Gaussian

Leads to same numerical estimates as OLS
But can also use OLS without explicitly
stating a Gaussian assumption

Need to be careful in what results hold with
and without normality!

If the random variables are assumed to come from independemial (Gaussian) distributions, then the
density ofY; can be written down and the joint p.d.f. of all the variabkethie product of the individual
p.d.f’s.

When the joint density is viewed as a function of the paramefer fixed values of the data, it is termed
alikelihood function.

Maximum likelihood estimation is undertaken by maximizthe likelihood function, and the resulting
estimators are termadaximum likelihood estimators.



Simple manipulation shows that OLS provides numericallygame estimates as maximum likelihood
in the case of normal distributions.

The interpretation is not the same, however, as an assumgttioormality will provide more detailed
results concerning the distribution of the estimators.

1.8 On expected values and variances

From elementary statistics course it is assumed knownftNaisia random variable, then the expected
value,pu = E[Y] is (when it exists) given by

E[Y] = /yf(y)dy
if Y has a continuous density); or by

E[Y] =3 yp(y)
y

if Y has a discrete distibution with probability mass functon

The varianceg? = V[Y] of the random variabl¥ with expected valugtis given by

VIV =E[(Y -]
(when this exists).

In particular, for a random variab¥with an expected value of the forB[Y] = a + Bx, the variance is
given by

V[Y]=E [(Y —(a+ Bx))z} .

1.9 Estimating dispersion

A point estimate ob2, the variance of the
y-measurements, is obtained with

2_ Zili-(a+bg)?
B n—2

The predicted value of at a givenx is of-
ten denoted by = a-+bxand therefore

_sibi-w)?
¢ n-2

Commonlyc‘x2 is used in place o2,

A point estimate ob? is obtained with

2_ 2 (vi — (a+bx))?
n—-2 '

We will commonly use the notation

SSE= Y (yi — (a+bx))

and
MSE=SSE(h—2)



so thats? = MSE

This will be used to derive an estimator for the variancé,o:(enoted% (or GE).

To be accurate, one should always differentiate betweeménawn quantity being estimated (e.g.
a, B), the estimator which is a random variable (edg.B) and the estimate itself which is numerical
outcome (e.ga, b).

If we consider the corresponding random variables, we have

i (Yi - (6(+I3Xi))2

)
0=
n-2

where the random variab&? is anestimator for 02, the variance of thg-measurements (or random
variablesy, rather).

As is done here, the notatiais commonly used for the numerical outcome of the randonabieis
ands’ or MSE= SSKE/(n — 2) for the numerical outcome @?.

Similarly, when estimating the accuracy of the slgpis used to denote the numerical outcomé@fln
these cases, the notation can become quite cumbersomeeseddistinctions are therefore commonly
omitted.

For a given value of the-variable, the predicted value gfs denoted by

y
so that R
Vi = a4 Bx;
and therefore the numerical estimate of variance can beteeiy:
2— Sa(yi—9)?
n-2

It should be noted that although this is one natural poinirege ofa?, it is by no means the only one.
An alternative estimator is the MLE, given by

2 TLii—%)?

n

As will be seen later, the MLE is biased and the divisiomby?2 in place ofh is what is needed to make
an unbiased estimator.

1.10 Correlation and explained variation

Recall the the correlation coeffficientis
always between-1 and 1.

Write SSE= S (y— )2 (sum of squared
errors, i.e. error after regression), and
SSTOT= 2[y—y’)2 (total sum of squares,
i.e. before regression)

Definition: The explained variation is

SSE
R-1- 5o

Note:




Recall the correlation, which is given by

SN Y)
VI 00— X251 (i — )2
is always between-1 and 1. The correlation is a useful concept, but one mustthate has no simple

and direct interpretation other than the very vague “messshow close thg andy data are to being on
a straight line”.

Consider therefore the sum of squared errors, i.e. demgfiom the straight line:

SSE= (yi — 9i)?

It is natural to compare this sum of squared errors to the susgquares which is obtained if no rela-
tionship is assumed betwegiandx. This latter, total, sum of squares is deno&sIT OTand computed
with:

SSTOT=Y (vi —%)*

Note thatSSEis the variation which is still unexplained after a linedat®mnship has been assumed, but
SSTOTis the variation to begin with, i.e. the total variation iretrdata. It is now reasonable to define
the proportional variation which remains unexplain88E/ SSTOTand hence the explained variation
is1— SSE/SSTOT

Definition: The explained variation is

1_ SSE
SSTOT

It must be noted that this is the same concept as before since

D1V
RR=1 SO r2.

We thus see that althoughhas no simple direct interpretatior®® has a natural interpretation and is
therefore considerably more useful.

10



1.11  Output from regression software

1.12 Overview and vocabulary

Phrase Synonym or| Explanation

abbreviation
Regression Simple linear| The act of fitting a regression line through data

regression,

SLR
Standard error The standard deviation of a summary statistic
Regression analysis The act of fitting and analysing a regression line through dat
Least squares estimationLS or OLS The use of minimum sums of squares to estimate parameter
Likelihood function The joint pdf of observations, viewed as a function of parizmse)
Maximum likelihood es- Estimating parameters by maximizing the likelihood fuomnti
timation
Maximum likelihood es-| MLE The estimator resulting from maxizing the likelihood funat
timator
SSTOT Total sum of squares
SSE Sum of squared errors

2 Matrix representation of simple linear regression

2.1 Purpose of matrix representation

Itis easy to set up matrices which describe the simple liregression model. Solving this using matrix
algebra gives an alternative representation of the egtimat

It turns out that a number of results are simpler to obtaingigeometry and matrix algebra, as opposed
to calculus. The matrix version of the regression problesa glve a powerful tool for deriving estimates
of variances and covariances of estimators.

2.2 Matrix form of simple linear regression

y € R" = vector of measurements

1 X1
X=1 ! :
1o

the “X-matrix”
min y(yj — (a+ Bxi))z is equivalent to

finding
(5 )

to mininmize||y — XBHZ
Number notationy = X +e

Denote the vector of measurementsby R" and let

X:

11



be the X-matrix” so the regression problem of minimiziggy; — (o + Bx;))? is equivalent to finding
a
o=(5)

When working with numerical outcomes the notatioa X3+ eis common. Hereg,i=1,...,nare
the numerical deviations from the model.

such that|y — XB||? is minimized.

2.3 Prediction as linear projection

SSE=SSE(F)=lly—Xbi"

7

sp(X)

Viewing a linear model geometrically provides consideeatgw insight into the regression problem,

The basic model is of the form= X3 + ewhereX is a matrix of with dimensions x p (in the present
casep = 2). The best predictor of within this model... (i.e. in the sense of closest in normybtained
using an orthogonal projection gfonto the plane spanned by the column vectors of the matrikhis
orthogonal projection is denoted fy Now, as the orthogonal project is containedp{ X }, it must be
some linear combination of the column vectorskoind hence one can wrife= Xf% for some choice
of 3.

Note: If V is a subspace d@&", then the orthogonal projection of a vectoontoV is the vectov which
has the properties thatc V andu —v € V! whereV ! is the collection (vector space) of vectors which
are orthogonal to all vectors W.

The orthogonal projecction gf ontospan{X}, the span of the column vectors Xfis thus the vector
¥ € span{X} such thay — § € span{X}*.

Sincey € X, it follows thaty is a linear combination of the column vectorsgfso we can writ§ = X[E
for somep.

If ¥ is to be a projection ontepan{X}, the residualg =y — ¥, is in span{X}+. Sincegis orthogonal
to all vectors irspan{X}, it is also orthogonal to the column vectorsXof

It follows thatX'(y —§) =0, i.e. A
X'XB = X'y

which are thenormal equations

12



2.4  Geometric solution to the simple linear regression prolem

From linear algebra the matrix solution is
known N
B=x"...

and also knovB = y...a —y-px

which must be the same solutions.

LS estimation is therefore the same as find-
ing the projection onto the column vectors
of X.

From linear algebra, the solution to the projection probigknown:

B=(X'X) "Xy

This solution is fairly easy to obtain either through prdjec consideration, where we spitinto
orthogal componenig-+ e or through differentiation of the normiy — XB||2. In either case it becomes
obvious that the column vectors of tikematrix must be orthogonal to the residual vecior Xf. It
follows from this that the solution must satisfy thermal equations X X3 = X’y which again implies
the above solution if the matrix inverse exists. The cooditf the existence of the inverse is common
in regression problems but will be omitted for more complegdr models.

From earlier results, it is also known that

_ 2=

P= ST X2

and R
d=y—px
which must therefore give the same solutions.

It is seen that least squares estimation is numericallyeatgrit to obtaining the orthogonal projection
of the data vector onto the space spanned by the column sexft&c

Example:
The simplest linear model is = u+ g, i.e. each measurement is a deviation from a common mean.

This model in matrix notation becomes= X3+ e, where

B

Matrix algebra quickly giveX’X = [n], which is a 1x 1 matrix with elemenn, (or simply the number
n).

The inverse of this matrix is of coursgr. Itis also easy to see thdty = 3y and therefor¢x’X) ~1X'y =
y, which is the same estimate as before.

The sum of squared deviations becomes

SSE=[ly—XBIP =S (y-9° =3 (y-¥)°

13



and the estimate of variance is

MSE=SSE/(n—p)= M

n—-1
as before.
2.5 Overview and vocabulary
Phrase Synonym or| Explanation
abbreviation
MSE Mean squared error

3 Distributions of linear projections of vectors of random \vari-
ables*

3.1 Linear combinations of independent random variables

¢ a column vector

Y a vector of independent random vari-
ables

Same o, expected values may differ,
E[Y]=p

Then

E[C’Y}:c’u

2 [C,Y] =dco?

Suppose& a column vector an a vector of independent random variables with a common negia
02, but possibly different expected values. Then the mean aridnce of the linear combinatiody,
are given by

E[cY]=cu

V [Y] =co?

These results are trivial to ascertain since the compongngse independent and hence e.g.

> GY
ZCiZV i)

= cco?

VY] =V

14



3.2 Covariance between linear combinations of independemandom variables

a, b column vectors

Y a vector of independent random vari-
ables

Same o, expected values may differ,
E[Y]=u

Then

Cuv[a’Y.b’Y] =a'bo?

Suppose, b are column vectors and a vector of independent random variables with a common vari-
ance0?, but possibly different expected values. Then the covagdretween the linear combinations,
a'Y andb’Y, is given by

Cov[dY,b'Y] = &bo?

This follows from looking at the linear combinations as swwhsomponents and noting that the covari-
ance is a sum of all possible combinations, all of which are e&cept where the sanvecombinations
appear:

Cov[dY,b'Y] = Cov

Izam,;ijjl

= CovaY, b;Yj]
I’J
= Za;bjCov[Yi,Yj]
]
S ZQb.Cov\ﬁ,Y+ aibjCov[Yi,Y;j]
T

= Z aibiV [Y;
1
= abo?
This result indicates that if the projection vectaasndb are orthogonal, then the covariance remains

zero. Note also that strictly, independence of the origiaaibles is not required, but only zero covari-
ance which is not the same condition in the general case.

In the case of two Gaussian random variables, it is, howéwer that they have zero covariance if and
only if they are independent. This can be seen by observiagihariate Gaussian density function
which neatly factors if and only if the covariance is zero.

3.3 Linear projections of independent random variables

A ann x n matrix

Y a vector ofn independent random vari-
ables, mea, V[Y|] = o2.
Then

E[AY] =p

VAY] = AA' G2

15



Let A be agq x n matrix andY ann-vector of independent random variables with common vagaut
possibly different expected values, then

E[AY] = Au
V [AY] = AA'G?

This can be derived either by considering the componenteasgposition ofAY or by writing A as a
collection of row vectors and using the earlier results.

3.4 Linear transformations of dependent random variables

A amatrix
Y a vector of random variables whose vari-
ances and covariances exist as a matrix,

£ = (oij ) with ojj =Cov(¥;,Y;).
Then

V[AY] = AZA/

Let A be ann x n matrix andY a vector of random variables whose variances and covasagst as
a matrix,> = (ajj ), wheregjj = CouY;,Y;j).

This general situation occurs in regression analysis wheasarements arrive in such a fashion that they
can not be assumed to be independent. Several such exarepbislg exist and the theory therefore
needs to be properly developed.

This is also an important result when studying distribugigproperties of estimators, which are typically
already linear combinations of original variables and leemg longer independent.

The first step is to derive the variance of projections of statiebles. As before, this can be done by
studying components or by looking at vector-wise linear borations.
We obtain

V[AY] =AsA/

16



4 The expected value and variance of the estimators in simpl&-
ear regression

4.1 Expected value of the slope estimator

The estimator for the slope is unbiased:

_¢ _(§=XYi
;Zj(xj -%?

5 04 REN)
Ty Sy w2

_¢ -X@Epg)
2 sjg-02 ¢

Note: This result only depends on the
mean structure of;, not the p.d.f. or even
the variance.

Some properties of the various estimators need to be derimgghrticular it is important to derive the
expected value and variance of both the estimators of slogeéndercept. These will be derived using
only the assumptions needed, but for latter statisticarerice more assumptions will be added in order
to derive the probability distributions of these estimator

The expected value is easy to compute based on writing tipe glstimator as a linear combination of
the dependent variables. First write

Z XJ_)Z)Z

so that

EF = ZZJ XJ_)Z)Z ]
_ —X)(a+Pxi)
a Z Y (X —%)?
¥i(% —x) (o +PBx)
Yi(x —Xx)2

where we have used the facts that the sum of deviatipAx is zero and the corollary that the sum of
(x —X)x; is the same as the sum of squares- X)?

It follows that the slope estimatcﬁs, is unbiased.

These results only use the assumption on the mean &-Weriables. Thus, they also hold even if the
variables are not Gaussian.

Also one should make a note that the slope estimator is alsimsed even if the variance structure is
wrong. In particular, the slope is still unbiased whethertireasurements all have the same variances
or not.

17



4.2 Variance of the slope estimator

The variance of the estimator can be de-
rived:

o2

Vigl=..=—
] T(x=%2

Note: This result only depends on the
mean and variance structure§f not the
p.df.

Slightly more work yields the variance of the estimator:

A (X —X)Y
‘B - V3R
(% —%)2
™ (3506 —%2)?

0—2

5 (x— %2

Here, we have used elementary facts concerning the var@yeratorV [aU + V] = a?V[U] +V|V] if
U andV are independent, extended in an obvious fashion to a linmabimation of the independent
random variablesy;.

As for the slope estimator, these results only use the agsamygn the mean, variance and independence
of theY;-variables. Thus, they also hold even if the variables até&amissian.

4.3 Expected value of the intercept estimator

The estimate of the intercept is unbiased:

Ed = E[\?—ﬁ)?]
= EM-fX
= (a+px)—Bx

= a.

Note: This result only depends on the
mean and variance structure§f not the
p.df.

The expected value of the intercept estimate can be denivachumber of ways, the obvious being an
attack on the basic equation:

Eqd = E[\?—ﬁﬂ
= E[V]-BX
— (a+BRBR
a.

We have thus shown that the estimator is unbiased.

These results only use the assumption on the mean, varindéedependence of thé-variables. Thus,
they also hold even if the variables are not Gaussian.

18



4.4 Variance of intercept estimator

The variance of the estimator can be de-
rived:

2
V[m—(%+ - (XX ;))

Note: This result only depends on the
mean and variance structure§f not the
p.df.

The variance of the estimator can be derived by rearrangings in the formula fod so that it is
written as a linear combination of thi-variables.

i(z A )Y
nooyh(x —i)

]— }'FL
A Zinzl(xi—i)z

As for the mean, these results only use the assumption on¢he mariance and independence of the
Yi-variables. Thus, they also hold even if the variables até&awissian.

(@}

Vi

4.5 Estimating slope accuracy

The standard error of the slope:
52
52 g

B y(x-%2

where

When computing variances and standard deviations of deguantities it is customary to call these
standard errors to distinguish from from standard deuistio the meaning of simple deviations from a
common mean.

The estimated standard error of the slope is usually dermted

given the earlier estimator of the variance of fhealues. What remains, however, is to develop distri-
butional properties of the estimator, since this is cruiainference (drawing formal statistical conclu-
sions about the true slope).

where

19



is the customary estimator of the variance ofyhealues around the regression line.

4.6 Experimental design issues

The formulae for variances of slope and in-
tercept can be used to obtain optimal de-
sign

Would likex close to 0

Ideally dispersion ofx-values should be
large

The formulae for slope and intercept can be used to obtaimaptiesign for a given sample size.

In the regression setting, the location of thealues may be at the discretion of the experimenter.
The experimenter may then choose to allocate these valuas soobtain minimum variance in the
estimators of slope and intercept.

5 Distribution of estimators in SLR

5.1 Marginal distribution of estimator of slope

Recall that

and
M=

Under normality, the estimator also has a
Gaussian (normal) distribution:

R o2
=

In addition to the mean and variance, the distributions efgstimators need to be derived.
Recall that the mean and variance of the slope estimatorer by
EB=B

and

2

V{B

(0)

|= 55w

Since the estimator is a linear combination of ¥hariables, which are Gaussiefhjs also normally
distributed and we obtain:

N o2
Prn (B’ z<x—i)2)
These results will form the basis for testing hypothesescamdputing confidence intervals fr
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5.2 Marginal distribution of estimator of intercept

Exercise: Derive the marginal pdf af

6 Inference in SLR

6.1 Elements of inference in simple linear regression

Basic inference: Test hypotheses and gen-
erate confidence intervals for slope and in-
tercept.

Earlier results on the estimators can be used to make irder@mthe true slope and intercept.

The first question raised is whether there is any relatignbbiween thex andy measurements, i.e.
whether the slope is zero. This can be phrased as a generihlegys test for the slope.

Although hypothesis tests are important, they give no imfation if the hypothesis can not be rejected
and hence confidence intervals tend to be more informatigemeral.

Both hypothesis tests and confidence intervals can be defarethe intercept as well as the slope,
although inference for the intercept tends not to be as camynsed.

6.2 Testing hypotheses concerning the slope

Want to investigate formally whethfr=0
under Gaussian assumption and indepen-
dence.
Recall .

BB s

8

Ho: B=PBovsHa: B#Po

1~ PPo

~th-2
5
B

RejectHg if [t >t 5 a/2:

As the distribution of3 is known one can derive statistical tests of hypothesesarairg3. In general
one would like to test hypotheses of the foH®: 3 = Bo.

A particularly common hypothesis is one of whether therenisralationship, i.eHp : = 0.

In order to test the general hypothesis concerning the stype3 = Bo vsHa : B # 0 it should be noted
that

ti= ﬁ ~tho
%
in general.

Note: This statement concerning thalistribution tacitly assumed that the two quantities ia thtio
are statistically independent, and that #fedistribution applies to the denominator. This statemsnt i
easier to prove as a whole in the general case using matekiag
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It follows that if Hg is correct, then R
{— B—Bo
ot

should come from &-distribution withn — 2 degrees of freedom.

Ho will be rejected if the computedvalue is too extreme, i.e. [f| > t,_21_q/2-

Example: Suppose we have a few measuremexs), to be used in a regression analysis.

x|y [ x=x|x=%¥*| =9 ]| =9 | x=X¢=9| ¥ [y-9]|-9?
1] 1.0 | 2 Z 5 25 10 2.6 0.36
2 5 -1 1 -1 1 1 3.8 1.44
3] 6 | o 0 0 0 0 6.0 0
4 7 | 1 1 1 1 1 8.2 1.44
5 11 2 4 5 25 10 10.4 0.3
S| 15| 30 | 0 10 0 52 22 3.60
X=3|y=6

95% Confidence interval f@:
B+ tn2.007803 = 2.243.182:/0.12

TestingHp: =2 vs Ha: B#2

B-2 p-2
6 o1z

6.3 Confidence interval for the slope

Use same t-distribution
Invert for confidence interval

Given thet-distribution of the ratio,

ti="——~tho,
ot

it is easy to write down a probability statement, basicaifiting that there is probability 2 a thatt is

betweerH:tn_zvl_a/z.

These inequalities can be inverted to obtain a probabilgtesnent of two random endpoints incorpo-

rating the true value d.

Given subsequent data, i.e. a realisation of the randorablas, the data is used to compute the actual
interval and a statement is made that the unknown paranmetewrithin the interval.
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6.4 Inference for the intercept

Same procedure as for the slope, but replaﬁim@df& with a and@ gives a confidence statement for
the intercept.

6.5 Overview and vocabulary

Phrase Synonym or| Explanation
abbreviation
Statistical inference The act of drawing a formal conclusion based on data

7 Covariance between estimators and inference*

7.1 Covariance between estimates of slope and intercept

Need to deriveCoua&p) for general pur-
poses

Can use this for inference b (fdf etc-not
line -2.6 waits!) but it is easier to rewrite
as linear combination.

Itis in general useful to consider not only the variancesefdstimatorsy andf%, but also the covariance
between these estimators.

Take the simple model with = a + Bx; + & andg; ~ n(0,02), i.i.d., so that

oS- D (YY)
i (% —@2

and

The simplest way to obtaiﬁov(ér,f%) is by rewriting the two formulae in terms of linear combiwaus
of theY;-variables:

St (% —X)Yi
|:l( —)Z)

A X
o zl( 211XJ—>0>

from which the covariance follows easily since we h@m(Y;,Yy) = 0 if i # kandCovY,,Y;) = ¢

Completion of the above derivation requires the equality
Cov(aU + bW, cU +dW) = acCo\U,U) + bdCo(W,W) = acV[U] + bdV[W)|

for independent random variablgsandW. This equality can be derived by expanding the above left
hand side using the defining expression for the covarianwedes two random variables,

CoUS,T) =E[(S—us)(T —ur)].
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7.2 Estimating a point on the regression line

Estimate mean responsexgt
E[Vn] := ¥ = &+ Bxy
Then

E[ER]] = E ] = a+Px,

_ 2
var [EV] | =varfy =02 (% + X:J 22 )

The mean (or, more accurately, expected) response at a-malue,xy, is most naturally done by using
the corresponding point on the estimated regression line:

—

E [Yh] =0+ BXh

Given Cov(ér,f%) it is now possible to compute the variance of this estimatmotly from the above
formula. o R
Var {E [Yh]} =Var [G + Bxh} =

Alternatively, the same variance can be obtained by ravgithe formula forE[ h] as a single linear
combination of the¥i-variables:

EVe) =+ P = (Y — B + B =V + (xn— X0 = zleth_@Z(( ?;
i.e. . ( ;
_ s
e =3 5+ 0o D2 )y

From this the variance of the estimator follows easily afigting that cross-product terms cancel:

var 50 v = (1 )

This gives the basis for inference ftﬁ

7.3 Predicting a new observation

PredictYy, atxh

UseVp, = 6+ |3><h

Wantd s.t. PV — Y| <d] =1-«a
Old and new are mdependem

_ 52
V[Yh—Yh]:c2<1+%+ O =% )

3 (xj —%)?

Predicting the respons¥,, at a newx-value,x, is most naturally done by using the corresponding point
on the regression line: A R
Yh=0+ BXn
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Notice, however, that as a prediction for a future points thcludes two sources of variation or error,
first due to the measurement errors in the original data titreariation in the parameter estimates and
secondly through the future measurement errors at thig.poin

This will give prediction intervals for future measurem&niNotice that these are not quite the same
as confidence intervals, since a prediction interval mak&st@ment about the outcome of a random
variable and this is a probability statement. A confidenagestent is a statement about an unknown
number and is therefore a different concept.

In the current setting we will want to be able to make a statégratthe form

P[[Ya—Yo| <d] =1-a.

and the " must be chosen so as to fulfill the statement.
Can use independence of new and old obs so

V [?h—Yh} =0? (l—|—%+ (Xh—)zjz )

3 (X —X)?

This will give t,_2-distributions for prediction intervals. Note that theseain important probabilistic
difference between prediction intervals and confidencriat's.

As we now have a probability distribution:

we can also make diagnostic inference on whether a panticala observation is likely to be produced
by the same mechanism as the earlier observations.

7.4  Predicting mean of several new observation

For mean ofnnew get

- Cof1 1 q-%?
VY=Y =0 <E+ﬁ+g(xl—>?)2

For the average of severah, new observations, at the same valgeof thex-variable, we get a slightly
different variance estimate.

V[Y_h—Yh]ZO'2<%+}+ (Xh_)ZDZ >

N 3(x—x?
8 Statistical packages

8.1 The R statistical package

R is freely available on the Internet.
Students can pick this up and install on
their home computers.

25



Students are expected to obtain and install R. R is freeljladla and can be downloaded from the
Internet.

Although R is free, it is very extensive. It is designed foseaxtensibility and the emphasis is on easy
graphical display and model searches.

The built-in help system is well-designed and is recommdrideall users.
Books on S and Splus generally apply to R as well.

Typical commands in R include

e scan. Reads data, one element at a time.

read.table. Reads tabular data.

print. Outputs data to screen or file.

Im. Fits linear model.

summary. Summarizes output, e.g. from linear model.

plot. General plotting function.

e rnorm. Generates normal (pseudo-)random deviates.

Example: A typical R example. The following sequence inputs matritada columns x, y and z, from
the file “test.dat” into R and subsequently prints the dathdoes a simple linear regression.

The commands also plot a few examples of randomly generated d

dat<-read.table("test.dat",col.names=c("x","y","z"))
print(dat)

summary (lm(y~x,data=dat))

x<-1:100

y<-2+0.5*x+rnorm(100) *5*x

plot(x,y)

plot(dat$x,dat$y)

Note that dat becomes a data frame, which is a bit like a mduwmixthe columns have names and can be
referred to as dat$x etc.

8.2 Linear statistical models with R

Suppose that within R a user has two columns of data, “x” arigvipich come in pairs and there is a
need to fit a straight line through the data points.

Having plotted the data, this is followed by specifying thedual, which should be of the form=
o + Bx. The model notation in R for this simple linear model is

Y~ X

The tilde character) indicates that the left-hand side is a dependent variaiddetze model is on the
right-hand side. On the right hand side it is implicitly assd that there will be an intercemt (n the
mathematical model) and therefore there is only a needttthks“dependent” variable(s), in this case
only x.

To fit the actual model the “Im” function is used (Im being stfor “linear model”):
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Mathematical model:

8 @ @ y=a+px+e
@ R definition:

1m(y x)
Storing the outputm<-Im(y x).

Figure 1: Example output from a simple linear model fit of thenf y=a+bx. Items (1)-(2) are the estimates of a and b reispéct The estimate of the
standard error of b is given by (3). The P-value for testingtlier the true (underlying) value of b is zero is in (4). Itg@)s(7) give the MSE, R-squared
and P-value for the entire model, respectively.

Im(y~x)
In order to process the model results, the fitted model idtander some name, e.g. “fm”:
fm<-1m(y~x).

Example: Suppose the data are given by

A simple linear model can be fitted to the data and the resul{sub using:
> summary (1m(y~x))

The results are shown in the figure.

Note: The output from the various Im-related programs is quitaited and although a statistics course
can be designed around the interpretation of the resulise $@msic knowledge is essential.

Consider the output given in the figure.

Example: Consider a data set with a dependent varighbtn independent variableand a factorf:

y
6.367151

10.783743
11.528125
15.564471
18.509431
4.608247
.849981
12.301949
14.251640
16.483796
6.293174
7.905664
10.640212
15.881404
16.679703

© 00 N O WN -

=
= O
O WNEFE O WONDFE O WNN X

12
13
14
15

QOO Q W wwE>E=>>>PE P> H
[0}
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If this data set is read in using read.table, the f-columh avitomatically become a factor and can be
used directly in a model such as

Im(y~f+x)

> summary (1m(y~x))

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-1.8277 -0.9488 -0.1151 0.7969 2.1061

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.7466 0.6992 3.928 0.00173 *x
X 2.9656 0.2108 14.066 3.04e-09 **x*
Signif. codes: 0 ‘x*x’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 1.155 on 13 degrees of freedom
Multiple R-Squared: 0.9383, Adjusted R-squared: 0.9336
F-statistic: 197.9 on 1 and 13 DF, p-value: 3.043e-09

> fm<-1m(y~f+x)
> dropl(fm,test="F")
Single term deletions

Model:
y 7 ff + x
Df Sum of Sq RSS AIC F value Pr(F)
<none> 10.317 2.386
f 2 7.018 17.335 6.170 3.7414 0.0576 .
X 1 263.837 274.153 49.585 281.3080 3.499e-09 **x*
Signif. codes: 0 ‘%%’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Use the resid function to extract residuals, then plot tlaeskstandardize to test for normality etc.
Use anova(fml1,fm2) to compare two models.

Having obtained the model, the coefficients can now be obthisummary statistics of the model can
be listed and the analysis of variance corresponding to thaelris obtained:

fm<-1m(y~x).

summary (fm) # General summary of model fit

anova(fm) # Additional variation explained by each effect
dropl(fm) # Marginal test of each effect in a model

coef (fm) # Extract coefficients of fitted model
resid(fm) # Extract residual

fitted(fm) # Extract fitted values
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8.3 The SAS statistical package

SAS is expensive but freely available to
students enrolled in courses at licensed
universities.

Students at licenced universtities can obtain and ins#&B.SSAS is an expensive package, but it is
possibly the most extensive statistical package availableder a university license it is available to
enrolled students.

SAS is best known for classical statistical analyses sudimear models or univariate analyses where
this package excels. This program is extremely well testetkrans on most computer platforms.

Detailed instructions on using SAS are available on httpult.tutor-web.net in various tutorials under
Statistics.

Example: A typical SAS example. The following sequence inputs datoinmns X, y and z, from the
file “F:
test.dat” into SAS and subsequently prints the data, coaspueans and does a simple linear regression.

libname mystore ’F:\’;

data mystore.mysasset;
infile ’F:\test.dat’;
input x y z;

proc print;

proc means;

proc glm;
model z=x;

The libname causes the data to be stored between SAS ruihg dath step can be omitted in the next
run, by using instead the libname statement alone and irefegrplicitly to mystore.mysasset.
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