Statistical packages

(STATS310.3: Simple linear regression)

Gunnar Stefansson

June 10, 2012

The R statistical package

R is freely available on the Internet.

Students can pick this up and install on their home computers.

Example: A typical R example. The following sequence inputs matrix data in columns x, y and z, from the file "test dat" into R and subsequently prints the data and does a simple linear regression.

The commands also plot a few examples of randomly generated data.

```
dat<-read.table("test.dat",col.names=c("x","y","z"))
print(dat)
summary(lm(y~x,data=dat))
x<-1:100
y<-2+0.5*x+rnorm(100)*5*x
plot(x,y)
plot(dat$x,dat$y)</pre>
```

Note that dat becomes a data frame, which is a bit like a matrix, but the columns have names and can be referred to as dat \$x etc.

Linear statistical models with R

Mathematical model:

$$y = \alpha + \beta x + \epsilon$$

R definition:

$$y \sim x$$

$$lm(y^x)$$

Storing the output

$$fm < -lm(y^x)$$
.

A sequence:

fm<-lm(y~x)
summary(fm)
drop1(fm)</pre>

Fitting the model
Traditional summary
Effect of dropping each variable

© · · · · ·

Figure: Example output from a simple linear model fit of the form y=a+bx. Items (1)-(2) are the estimates of a and b respectively. The estimate of the standard error of b is given by (3). The P-value for testing whether the true (underlying) value of b is zero is in (4). Items (5)-(7) give the MSE, R-squared and P-value for the entire model, respectively.

The SAS statistical package

SAS is expensive but freely available to students enrolled in courses at licensed universities.

Students are expected to obtain and install SAS and R.