Diagnostics in SLR stats544-1-slr Applied simple linear regression

Gunnar Stefansson

July 18, 2019

Gunnar Stefansson

Diagnostics in SLR

July 18, 2019 1 / 16

э

Introduction

Evaluate model assumption: $Y_i \sim n(\beta_0 + \beta_1 x_i, \sigma^2)$, independent.

- Linearity
- Independence
- Normality
- Constancy of variance

See influence measures in R.

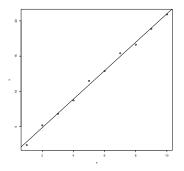


Figure : Simulated data

Residuals

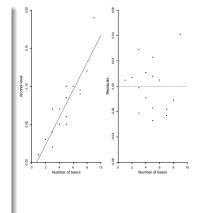
The first step in most diagnostic analyses is to compute the residuals

Residuals

The vertical distance from our measurements to the regression line are called the **residuals** and are denoted with \hat{e} . The size of the residuals can be calculated with

$$\hat{e}_i = y_i - \hat{y}_i$$

Points above the regression line have a positive residue but points below it have a negative.



Diagnostics based on residuals

Diagnostics for residuals include tests for normality and constancy of variance.

Semistudentized residuals $(e_i/\sqrt{(MSE)})$ are commonly used but studentized $e_i/\sqrt{(MSE)(1-h_{ii})}$ would obviously be better.

Verifying the distribution

There are several ways to verify that the residuals follow a normal distribution:

- Kolmogorov-Smirnov test
- Normal probability plot

Constancy of variance

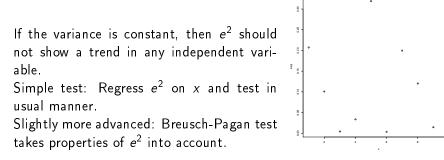


Figure : Base model with correct assumptions

Verifying linearity

Basic:

- Plot residuals against x-variable
- Look for pattern

Later:

- Test for autocorrelation
- Multiple regression: Add a quadratic term
- Lack-of-fit tests (replace x by a factor)

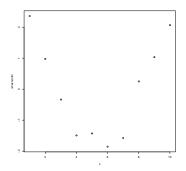


Figure : Residuals vs independent variable. Error in linearity assumption.

Tests are approximate

Testing for normality etc is only approximate

Most of the tests used for diagnostics are only approximate.

The Kolmogorov-Smirnov test is derived under the assumption that the distribution is fully specified under the null hypothesis. However, the residuals in OLS are computed after fitting a model and hence they are not independent.

Similarly when plotting e^2 against x.

Note that exact tests exist, but these simple approximate tests are often adequate.

A B K A B K

Outliers

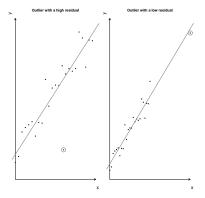


Figure : Outliers and their residuals.

Gunnar	

Diagnostics in SLF

불▶ < 불▶ 불 ∽ < < July 18, 2019 9 / 16

<ロ> (日) (日) (日) (日) (日)

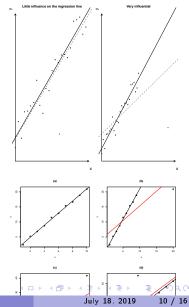
Outliers and influential cases

It is in particular important to search for outliers or influential cases in the x or ymeasurements.

Typically use residuals and/or hat matrix:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{oldsymbol{eta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

Methods for this will be introduced.



Same example as before - insert outliers in different locations and investigate effects. Diagnostics in SLR

Gunnar Stefansson

Outliers in y - consider deleted residuals

Outliers can be considered a particular deviation from normality Can base analysis on the concept

$$\frac{Y_h - (\hat{\beta}_0 + \hat{\beta}_1 x_h)}{\hat{\sigma}_{Y_h - \hat{Y}_h}} \sim t_{n-2}$$

i.e. use the deleted residual:

$$d_i = y_i - \hat{y}_{i(i)}$$

Gunnar Stefansson

July 18, 2019 11 / 16

Computing deleted residuals

In principle, compute deleted residuals or studentized deleted residuals through fitting model without i'th observations, compute fitted, $\hat{y}_{i(i)}$, and compute $d_i = y_i - \hat{y}_{i(i)}$, $t_i = d_i/s_{d_i}$. Simpler

$$t_i = e_i \left[\frac{n - p - 1}{SSE(1 - h_{ii}) - e_i^2} \right]^{\frac{1}{2}}$$

Can use Bonferroni test with $t_{1-lpha/(2n),n-p-1}$

Autocorrelation

Autocorrelation refers to correlation between Y_i and Y_{i+1} . Only makes sense if *i* is "time".

3

< 日 > (一) > (二) > ((二) > ((L) > ((

Cooks distance

Measures total effect of i'th on all predictions

$$D_{i} = \frac{\sum_{j} \left(\hat{y}_{j} - \hat{y}_{i(i)} \right)^{2}}{pMSE}$$

Gunnar Stefansson

Diagnostics in SLR

July 18, 2019 14 / 16

Э

イロン 不聞と 不同と 不同と

Leverage values

Hat matrix
$$H = X(X'X)^{-1}X'$$
 so $\hat{y} = Hy$ and $\hat{e} = (I - H)y$ with $\Sigma_{\hat{e}} = \sigma^2(I - H)$ and $V(\hat{e}_i) = \sigma^2(1 - h_{ii})$.
 h_{ii} =leverage values. $\sum_{i=1}^n h_{ii} = p$ $0 \le h_{ii} \le 1$. Average h_{ii} is p/n so e.g. $2p/n$ is "large", or use rules of thumb such as 0.2 or 0.5 as "large" values.

Gunnar Stefansson

Diagnostics in SLF

July 18, 2019 15 / 16

Э.

Influential observations, DFFITS

Influential observations:

$$DFFITS_{i} = \frac{\hat{Y}_{i} - \hat{Y}_{i(i)}}{\sqrt{MSE_{i}h_{ii}}} = t_{i} \left(\frac{h_{ii}}{1 - h_{ii}}\right)^{\frac{1}{2}}$$

Gunnar Stefansson

 $\exists \rightarrow$ July 18, 2019 16 / 16

Э

Copyright 2018, Gunnar Stefansson This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.