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Introdution

Evaluate model assumption: Y

i

∼ n(β
0

+
β
1

x

i

, σ2), independent.
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Figure : Simulated data

See in�uene.measures in R.
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Residuals

The �rst step in most diagnosti analyses is

to ompute the residuals

Residuals

The vertial distane from our

measurements to the regression line are

alled the residuals and are denoted with

ê. The size of the residuals an be

alulated with

ê

i

= y

i

− ŷ

i

Points above the regression line have a

positive residue but points below it have a

negative.

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Number of beers

A
lc

oh
ol

 le
ve

l

0 2 4 6 8 10

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Number of beers

R
es

id
ua

ls

Gunnar Stefansson Diagnostis in SLR July 18, 2019 3 / 16



Diagnostis in SLR

Diagnostis based on residuals

Diagnostis for residuals inlude tests for normality and onstany of vari-

ane.

Semistudentized residuals (e

i

/
√

(MSE )) are ommonly used but

studentized e

i

/
√

(MSE )(1− h

ii

)
would obviously be better.
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Verifying the distribution

There are several ways to verify that the residuals follow a normal distri-

bution:

Kolmogorov-Smirnov test

Normal probability plot
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Constany of variane

If the variane is onstant, then e

2

should

not show a trend in any independent vari-

able.

Simple test: Regress e

2

on x and test in

usual manner.

Slightly more advaned: Breush-Pagan test

takes properties of e

2

into aount.
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Figure : Base model with orret

assumptions
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Verifying linearity

Basi:

Plot residuals against x-variable

Look for pattern

Later:

Test for autoorrelation

Multiple regression: Add a quadrati

term

Lak-of-�t tests (replae x by a fator)
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Figure : Residuals vs independent

variable. Error in linearity

assumption.
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Tests are approximate

Testing for normality et is only approximate

Most of the tests used for diagnostis are only approximate.

The Kolmogorov-Smirnov test is derived under the assumption that the distribution is fully

spei�ed under the null hypothesis. However, the residuals in OLS are omputed after �tting

a model and hene they are not independent.

Similarly when plotting e

2

against x .

Note that exat tests exist, but these simple approximate tests are often adequate.
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Outliers

Outlier with a high residual

x

y

Outlier with a low residual

x

y

Figure : Outliers and their residuals.
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Outliers and in�uential ases

It is in partiular important to searh for

outliers or in�uential ases in the x or y-

measurements.

Typially use residuals and/or hat matrix:

ŷ = Xβ̂ = X(X′
X)−1

X

′
y = Hy

Methods for this will be introdued.

Little influence on the regression line

x

y

Very influential

x

y

Same example as before - insert outliers in di�erent lo-

ations and investigate e�ets.
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Figure : E�ets of some outlier

types on simple linear regression.
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Outliers in y - onsider deleted residuals

Outliers an be onsidered a partiular deviation from normality

Can base analysis on the onept

Y

h

− (β̂
0

+ β̂
1

x

h

)

σ̂
Y

h

−Ŷ

h

∼ t

n−2

i.e. use the deleted residual:

d

i

= y

i

− ŷ

i(i)
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Computing deleted residuals

In priniple, ompute deleted residuals or studentized deleted residuals

through �tting model without i'th observations, ompute �tted, ŷ

i(i), and

ompute d

i

= y

i

− ŷ

i(i), ti = d

i

/s
d

i

.

Simpler

t

i

= e

i

[

n − p − 1

SSE (1− h

ii

)− e

2

i

]
1

2

Can use Bonferroni test with t

1−α/(2n),n−p−1
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Autoorrelation

Autoorrelation refers to orrelation between Y

i

and Y

i+1

.

Only makes sense if i is �time�.
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Cooks distane

Measures total e�et of i 'th on all preditions

D

i

=

∑

j

(

ŷ

j

− ŷ

i(i)

)

2

pMSE
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Leverage values

Hat matrix H = X (X ′
X )−1

X

′
so ŷ = Hy and ê = (I − H)y with Σ

ê

=
σ2(I − H) and V (ê

i

) = σ2(1− h

ii

).
h

ii

=leverage values.

∑

n

i=1

h

ii

= p 0 ≤ h

ii

≤ 1. Average h

ii

is p/n so

e.g. 2p/n is �large�, or use rules of thumb suh as 0.2 or 0.5 as �large�

values.
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In�uential observations, DFFITS

In�uential observations:

DFFITS

i

=
Ŷ

i

− Ŷ

i(i)√
MSE

i

h

ii

= t

i

(

h

ii

1− hii

)
1

2
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