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1 Multiple linear regression background

1.1 The basics

Want to describe or predict a depen-
dent y variable from several indepen-
dent/exploratory variables.

Main package for this course: R
Examples will be from engineering, biol-
ogy, economics, education etc.

For info on fields which use R, see http://cran.r-projegt\web/views/

Example (economics)The icecream data (economics) plotted in the figure is availat http://tgax14.rhi.hi.is/html/data/ic
or in the Ecdat package.

For more economic data sets, see e.g. http://www.micemprmohttp://eu.wiley.com/legacy/wileychi/verbeekZaatasets.}

For economic applications with R see e.g. http://cranojgmt.org/web/views/Econometrics.html
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Figure 1: Icecream data.

1.2 Plotting

The first step in analysing data should al-
ways consist of plots

Example (education):Comparing scores from several exams.

1.3 Data sets

Data are stored in files, which are then read
into data frames. Data files (or data sets)
should be structured as simple rectangular
tables before they are read into R

The data set is commonly just a table of

numbers, possibly with a single header

line.

We think of the data frame in the same way

- usually as a table of numbers.

Many data sets are available as built-in data
setsinR

Data can also be read directly from a URL




univ_GPA

Figure 2:Example (education): Typical first plot using the pairs command. Comparing scén@s several exams.

Example (medicine): R is commonly used in medicine.

A typical data set preloaded into R is the ais data set in thA®Abrary, accessible as follows:

library (DAAG)
data(ais)
pairs(ais[,c("rcc","wcc","bmi","ht","wt","pcBfat","1bm")])

Figure 3: Data set ais from the DAAG library (see http://crammoject.org/web/packages/DAAG/DAAG.pdf) contaimseral measurements on characteristics of how blood vaibdsport body size and
sex of athletes.

1.4 MULREG case studies

In a MULREG course you will be asked to
do analyze certain data sets (case studies).
Depending on the course, these may be as-
signed by the instructor or you may need to
find your own.

Example data sets:
http://www.stats4stem.org/data-sets.html
http://tgax14.rhi.hi.is/html/data/biol/shsamples

UCI Machine Learning Repository http://archive.ics.edu/ml/



Competitions: https://www.kaggle.com/c/informs2010/
Info on fields which use R, see http://cran.r-project.oaffiviews/
For more economic data sets, see e.g. http://www.micemprmohttp://eu.wiley.com/legacy/wileychi/verbeekZaatasets.}

Economic applications http://cran.r-project.org/wedhis/Econometrics.html

1.5 association vs causation

Evidence of a relationship does not show
causation

Example (biology): A data set of several quantities from Icelandic waters cdnined at http://tgax14.rhi.hi.is/html/data/b
This can be read into R using

b<-read.table("http://tgaxl4.rhi.hi.is/html/data/biol/borecol.txt", ,header=T)

Just typing "b" shows the content..

2 Multiple linear regression

2.1 Datasets

Air.Flow

Water.Temp

- - We will mostly be working with two
e oo datasets in the lecturstacklossandLife-

= CycleSavings both part of thedatasets

package that comes with your installation

of R.

Acid.Conc.

stack.loss




The stackloss data

We have operational data of a plant for the oxidation of amimtmnitric acid. The data were obtained
from 21 days of operation of a plant for the oxidation of amiagiNH3) to nitric acid (HNO3). The
nitric oxides produced are absorbed in a countercurretrpben tower.

Air Flow: the rate of operation of the plant.

Water Temp: the temperature of cooling water circulatedubh coils in the absorption tower.

e Acid Conc.: the concentration of the acid circulating, ng®0, times 10: that is, 89 corresponds
to 58.9 per cent acid.

stack.loss: 10 times the percentage of the ingoing ammontiaet plant that escapes from the
absorption column unabsorbed; that is, an (inverse) meadthne over-all efficiency of the plant.

Source: Brownlee, K. A. (1960, 2nd ed. 1965) Statistical drieand Methodology in Science and
Engineering. New York: Wiley. pp. 491-500.

The LifeCycleSavings data

Under the life-cycle savings hypothesis as developed byderdodigliani, the savings ratio (aggregate
personal saving divided by disposable income) is explameper-capita disposable income, the per-
centage rate of change in per-capita disposable incomaywendemographic variables: the percentage
of population less than 15 years old and the percentage qfchelation over 75 years old. The data
are averaged over the decade 1960-1970 to remove the usywds or other short-term fluctuations.

e SrI: aggregate personal savings

popl5: % of population under 15

pop75: % of population over 75

dpi: real per-capita disposable income

ddpi: growth rate of dpi

Source: The data were obtained from Belsley, Kuh and Wels88(Q). They in turn obtained the data
from Sterling (1977).
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2.2 Point estimation (with R)

Example (chemistry)

We get the data by writing:

data(stackloss)

We look at the data using a pairs plot:
pairs(stackloss)

We fit a model withstack.flow as the de-
pendent variable and the others as indepen-
dent variables using:

fit.stack <- Im(stack.loss Air.Flow + Wa-
ter.Temp + Acid.Conc.,data=stackloss)
Writing: summary(fit.stack)

returns the the point estimates of the pa-
rameters among other things.

If we only need the point estimates we
write: coefficients(fit.stack)

Example (chemistry)

We get the data by writing:

data(stackloss)

We look at the data using a pairs plot:

pairs(stackloss)

We fit a model withstack.flowas the dependent variable and the others as independeatilearusing:

fit.stack <- 1m(stack.loss™Air.Flow + Water.Temp + Acid.Conc.,data=stackloss)

Writing:

summary (fit.stack)

returns the the point estimates of the parameters amongtbthgs.

If we only need the point estimates we write:
coefficients(fit.stack)

Example (economics)

We get the data by writing:

data(LifeCycleSavings)

We look at the data using a pairs plot:
pairs(LifeCycleSavings)
We fit a model withsr as the dependent variable and the others as independeatilesrusing:

fit.life <- 1m(sr ~ poplb + pop75 + dpi + ddpi ,data=LifeCycleSavings)



Writing:
summary (fit.life)

returns the the point estimates of the parameters amongtbthgs.

If we only need the point estimates we write:

coefficients(fit.life)

2.3 Interpreting coefficients

Example (chemistry)
We continue working with thetacklossdata.

We can use our model to predigt(10 times) the percentage of the ingoing ammonia to thet et
escapes from the absorption column unabsorbed using thelrtibd following model can possibly be
reduced, see the slide on building a model).

A typical R session could run as follows:

> data(LifeCycleSavings)
> fit.life <- lm(sr ~ poplb + pop75 + dpi + ddpi ,data=LifeCycleSavings)
> summary(fit.life)

Call:
Im(formula = sr ~ poplb + pop75 + dpi + ddpi, data = LifeCycleSavings)

Residuals:
Min 1Q Median 3Q Max
-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 28.5660865 7.3545161 3.884 0.000334 *xx

poplb -0.4611931 0.1446422 -3.189 0.002603 **

pop75 -1.6914977 1.0835989 -1.561 0.125530

dpi -0.0003369 0.0009311 -0.362 0.719173

ddpi 0.4096949 0.1961971  2.088 0.042471 *

Signif. codes: 0 ‘*%x’> 0.001 ‘**’ 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385,Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

Y= —39.920+ 0.7156¢1 + 1.295¢; — 0.1523
wherex; is the air flow X, is the water temperature amglis the acid concentration.

This means that increasing the air flow by one unit increg$gs0.7156 units (holding other variables
constant), increasing the water temperature by one uméases by 1.295 units (holding other vari-
ables constant) and increasing acid concentration by oneegreases (note the signpy 0.152 units
(holding other variables constant).



Example (economics)
We continue working with théifeCycleSavings data.

We can use our model to predigtthe savings ratio, using the model (the following model passibly
be reduced, see the slide on building a model):

¥y =285661-0.4612 — 1.6915¢ — 0.0003X3+ 0.41074

wherex; is the % of population under 1%; is the % of population over 753 is the real per-capita
disposable income and is the % growth rate of dpi

This means that increasing the % of population under 15 byioitelecreasegby 0.4612 units (holding
other variables constant), increasing the % of populati@n @5 by one unit decreasgby 1.6915 units
(holding other variables constant), increasing the relatpepita disposable income by one unit decreases
y by 0.0003 units (holding other variables constant) andeiasing the growth rate of dpi by one unit
increasey by 0.4107 units (holding other variables constant),

24 R?

The summary command gives the?
value.

It can also be extracted directly, for use in
computations.

As usual, thisis + SSE/SSTOT.

Itis also the squared correlation betwgen
andy’.

In R, the summary() command gives tRévalue.

It can also be extracted directly, for use in computations.

As usual, this is - SSE/SSTOT, i.e. R? denotes the proportion of variation explained by the model.
It is also the squared correlation betwegesndy.

Example (chemistry)

We continue working with thetacklossdata.

We can get th&? along with other things writing:
summary (fit.stack)

TheR? can be extracted with

summary (fit.stack) $r.squared

Example (economics)
We continue working with théifeCycleSavings data.

We can get th&®? along with other things writing:
summary (fit.life)

TheR? can be extracted with

10



summary (fit.life)$r.squared

2.5 P-values

Example (chemistry)
We continue working with thetacklossdata.

By writing
summary (fit.stack)

we get some statistics and informations about out modelhdrast column of the Coefficients table,
markedPr (> |t|) we get the p-values for the tests of the individual coeffitsen

On the last line of the output we get the p-value for the ovimstithat all the coefficients of the model
are equal to zero.p

In general we reject the null hypothesis that the coeffi¢®ns equal to zero if the p-value is smaller
than thea-value used.

Example (economics)
We continue working with théifeCycleSavings data.

By writing
summary (fit.life)

we get some statistics and informations about out modelhdrast column of the Coefficients table,
markedPr (> |t|) we get the p-values for the tests of the individual coeffitsen

On the last line of the output we get the p-value for the ovimstithat all the coefficients of the model
are equal to zero.

In general we reject the null hypothesis that the coeffi¢®ns equal to zero if the p-value is smaller
than thea-value used.

2.6 Building a model

We can build models by

e specifying all the terms and
fitting a single model

e starting from a null model,
adding one variable at a time

e starting from a full model
with all available variables
and dropping one at a time

We can build models by

e specifying all the terms and fitting a single model

e starting from a null model, adding one variable at a time

11



e starting from a full model with all available variables an@pping one at a time

Example (chemistry)
We continue working with thetacklossdata.

If we use backward selection method building our stacklosdehwe start by including all the explana-
tory variables as we did before:

fit.stack <- 1m(stack.loss™Air.Flow + Water.Temp + Acid.Conc.,data=stackloss)
summary (fit.stack)

We look at the p-values for the individual coefficients anelissome of them are larger than thevalue
used. The p-value when testing if the parameter for the amidentration is equal to zero is 0.34405
and therefore the variable is removed from the model. Thatbeadone in a convenient manner by
writing

fit.stack.2<-update(fit.stack,”.-Acid.Conc.)

summary (fit.stack.2)

Note the notation; the "." means use same explanatory Yasias in the original model (fit.stack) and
then we remove the Acid.Conc. variable by wring "-Acid.Cdnblow all the p-values are small so we
stop.

Example (economics)
We continue working with théifeCycleSavings data.

If we use backward selection method building our LifeCyeléfigs model we start by including all the
explanatory variables as we did before:

fit.life <- 1lm(sr ~ poplb + pop75 + dpi + ddpi ,data=LifeCycleSavings)
summary (fit.life)

We look at the p-values for the individual coefficients anelissome of them are larger than thevalue
used. The p-value when testing if the parameter for the dgjisl to zero is 0.719173 (the largest one)
and therefore the variable is removed from the model. Thatbeadone in a convenient manner by
writing

fit.life.2<-update(fit.life,”.-dpi)

summary (fit.life.2)

Note the notation; the "." means use same explanatory Jasas in the original model (fit.life) and
then we remove the dpi variable by wring "-dpi". Looking a¢ th-values for the coefficients in our
new model we can see that the largest p-value is the one farapés variable (0.072473). Although
we might consider removing that one as well, it is probabistbeft in the model since it is so close to
being significant.

2.7 Stepwise linear regression

Can formalise the model building process
Forward stepwise regression

Backwards stepwise regression

Need to choose a criterion: P-value vs AIC
etc

12



Example (chemistry)
We continue working with thetacklossdata.

It is easy to perform stepwise regression in R using the sfap€tion. The AIC criteria is used. We
can choose backward, forward or both directions using theetion argument (both being the default).

step(fit.stack)
The step method returns the same model as we found usingtke/da selection method before.

Example (economics)
We continue working with théifeCycleSavings data.

It is easy to perform stepwise regression in R using the sfap€tion. The AIC criteria is used. We
can choose backward, forward or both directions using tfeetion argument (both being the default).

step(fit.life)

The step method returns the same model as we found usingtke/dal selection method before.

2.8 Thou shalt not seek a model with a shotgun (the multiplid¢y issue)

It is quite common that very many poten-
tial descriptors exist

Testing nonsense will eventually yield a
significant result

Example (biology): Consider again the Icelandic ecosystem data. Suppose wetwaearch for
significance among the variables in the data set but also b@@emore variables - all of which are
noise.

This can easily be simulated in R:

b<-read.table("http://tgaxl4.rhi.hi.is/html/data/biol/borecol.txt", ,header=T)
n<-nrows (b)

bad100<-matrix(rnorm(n*100) ,nrow=n)

newb<-as.data.frame(cbind(b,bad100))

Now check, which variable is most highly correlated with iewth in G.

The result is that one of the simulated noise variables besdime one with the highest correlation to
the growth. As a single regression variable it also appeghdyhsignificant.

A typical such session could be

n<-nrow(b)
bad100<-matrix(rnorm(n*100) ,nrow=n)
dim(bad100)
dat<-as.data.frame(cbind(b,bad100))
dim(b)

dim(dat)

max (abs (cor(dat$G,dat[,-7]1)))
round(cor(dat$G,dat[,-7]),3)

13



- but actual commands will vary on the noise pattern gendrate

2.9 Multiplicity corrections

Can correct for multiplicity: Bonferroni,
Scheffe...

Simplest: Bonferroni

Better: Holm

2.10 Comparing nested models

If one model is asubmodel of another,
then anF-test is used to compare the mod-
els.

Hp : submodel is correct

SE(R-SE(F)
df(R—df(F B .

F= W ~ Fdf(R)—df(F).df(F) if Hg is true.
df(F)

The usual t-test for dropping one variable
is a special case% =F).

If one model is asubmodelof another, then aR-test is used to compare the models.

Ho : submodel is correct

SSE(R)—SSE(F)
df(R)—df(F i i
F = % ~ Fdf(R)fdf(F),df(F)a if Hp is true.

R

The usual t-test for dropping one variable is a special d&se F).

Example: Check to see whether one or two straight lines ardatkto explain a data set.

2.11 Comparing non-nested models

Try to make them nested in a supermodel
Try to avoid the comparison

Worst-case: Use the AIC or similar crite-
rion

Example (biology): The case of natural mortality vs serial correlation in fisitktassessments (Myers
et al).

Example (general): Variable intercept vs variable slope (more later).

14



3 Deviations from assumptions

3.1 Plotting residuals

Example (chemistry)
We continue working with thetacklossdata.

As afirst tool to check it the assumptions of the model arelledfisee more in the tutorial on diagnos-
tics) we plot the residuals against the fitted values of oul@hdl here should be no pattern to see in the
plot. We get the fitted values using tfiged() function in R and the residuals using thessid() function
inR.

plot(fitted(fit.stack.2) ,residuals(fit.stack.2))

To check if the residuals follow a normal distribution we tiseqgnorm() function and to get a line on
the plot we use thggline() function

qqnorm(residuals(fit.stack.2))
qqline(residuals(fit.stack.2))

Example (economics)

We continue working with théifeCycleSavings data.

As afirst tool to check it the assumptions of the model arelliedfisee more in the tutorial on diagnos-
tics) we plot the residuals against the fitted values of oud@hor here should be no pattern to see in the
plot. We get the fitted values using tfited() function in R and the residuals using thesid() function

in R.

plot(fitted(fit.life.2),residuals(fit.life.2))

To check if the residuals follow a normal distribution we tiseqgnorm() function and to get a line on
the plot we use thggline() function

qqnorm(residuals(fit.life.2))
qqline(residuals(fit.life.2))

3.2 Common deviations from assumptions

3.3 Regression diagnostics

The same regression diagnostics apply as
for SLR.

In addition, matrix methods give tools
based on the hat matrix.

15



3.4 Transformations to normality
3.5 Weighting
3.6  Serial correlations

3.7 Errors in variables

The basic regression models assumexthe
values to be measured without error.
Suppose

y=Ybjxj+e
J
but you only measure
kg
Xj =Xj +d.

Then estimates of the parameters become
biased. This may or may not be important.

4 Extensions to the multiple linear regression model

4.1 Dummy variables

Suppose a single change affects the re-
sponse so that it increases by a constant
from then on.

To describe such a simple change we can
add a dummy variable to a regression.

This is done by defining a column of 0/1-
values.

Suppose a single change affects the response so that aéesrby a constant from then on, or it affects
only some subjects.

To describe such a simple change we can add a dummy variabletyession.
This is done by defining a newvariable, or column in the X-matrix, consisting of 0/1-was.
A regression with only a dummy variable is equivalent to estt

Dummy variables can be used to test whether slopes or iptisroe both are different for groups of
subjects or time periods.

These dummy variables can be included in very many differays.
It is important to understand the meaning of estimates ddipgron how the variables are included.

Examples: A pollution incident; different intercepts degag on sex; a medical treatment.

16



4.2 Factors

A factor is an independent variable which
can only take on (few) distinct levels.

Two values: Like a dummy variable
Multiple: Can use many dummy variables,
but packages do this automagically.

A factor is an independent variable which can only take ow)fitistinct levels.
When a factor can only take on two values we can use a dummsblario describe the effect.

Factors can also be used to test very generally whetheriglstiime is appropriate using a lack-of-fit
test.

A model with only a single factor will give parameter estiemtvhich are the sample mean for each
group.

Example: Yield from a field will depend on location (farm).

tapply() can be used to compute means for each level.

4.3 ANOVA

ANOVA is used to analyse a linear model
with only factors.

4.4 ANCOVA

ANCOVA: Analysis of models with both
continuous and discrete independent vari-
ables.

The datasetoothGrowth includes the results of an experiment where the length ofitadidasts (teeth)
in 10 guinea pigs was measured. The pigs got three diffemm# vels of Vitamin C (0.5, 1, and 2 mg)
with each of two delivery methods (orange juice or ascorbid)a

Source of data C. I. Bliss (1952) The Statistics of Bioasgé@ademic Press.

We get the data by writing

data(ToothGrowth)

Lets start by plotting the data:

plot(ToothGrowth$dose, ToothGrowth$len,pch=20,xlab="Dose",ylab="Length") # pch = 20 to get sol
A better way would be to have different colors for the two deding methods:

color = as.numeric(as.factor(ToothGrowth$supp))+1l # +1 to get red and green
plot (ToothGrowth$dose, ToothGrowth$len,col=color,pch=20,xlab="Dose",ylab="Length")
legend("topleft",legend=c("0J","VC"),fill=c(2,3))

17



Now we fit a ANCOVA model to the data using the Im() function. Adel including one continuous
variable and one factor variable with two levels corresppaaditting two regression lines, one for one
level of the factor and another one for the other (differéopes and intercepts), but still using only one
model. This way we can test if the lines have different inépts and/or slopes.

We fit the model writing
fit.tooth<-1m(len~dose+supp+supp*dose,data=ToothGrowth)
and get the parameter estimates and tests writing

summary (fit.tooth)

We interpret the parameter estimates in the following way:

(Intercept) 11.550

This is the intercept of the line for the 0J-line

dose 7.811 - This is the slope of the line for the 0J-line

suppVC -8.255 - This is what we need to add/withdraw from the estimate of the intercept
dose:suppVC 3.904 - This is what we need to add/withdraw from the estimate of the slope of t

By looking at the whole output from the summary() function see that both the intercepts and the
slopes of the lines are different.

To see if the interpretation of the parameter estimates iseft two models, one for the OJ-part of the
data and another for the VC-part.

fit.tooth.oj<-1lm(len~dose,data=subset (ToothGrowth,supp=="0J"))
summary (fit.tooth.oj)
fit.tooth.vc<-1lm(len~dose,data=subset (ToothGrowth,supp=="VC"))
summary (fit.tooth.vc)

We can add the two lines to our plot with

abline(fit.tooth.0j,col=2)
abline(fit.tooth.vc,col=3)

To see how the parameters are estimated, we can comparestis da the inclusion of an intercept or
not. First take the case with no intercept and differentesdgper factor level:

> fit.full<-1lm(len”-1+supp+supp:dose,data=ToothGrowth)
> summary(fit.full)

Call:
Im(formula = len ~ -1 + supp + supp:dose, data = ToothGrowth)

Residuals:
Min 1Q Median 3Q Max
-8.22643 -2.84625 0.05036 2.28929 7.93857

Coefficients:

Estimate Std. Error t value Pr(>|t])
supp0J 11.550 1.581 7.304 1.09e-09 *xx
suppVC 3.295 1.581 2.084 0.0418 =*

18



supp0J:dose 7.811 1.195 6.534 2.03e-08 *xx*
suppVC:dose 11.716 1.195 9.800 9.44e-14 *xx

Signif. codes: 0 ‘**x’> 0.001 ‘**’ 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 4.083 on 56 degrees of freedom
Multiple R-squared: 0.9622, Adjusted R-squared: 0.9595
F-statistic: 356.2 on 4 and 56 DF, p-value: < 2.2e-16

Then take the case of when we estimate an intercept and atseeaall slope before adding the mixed
term:

> fit.full<-1lm(len"supp+doset+supp:dose,data=ToothGrowth)
> summary(fit.full)

Call:
Im(formula = len ~ supp + dose + supp:dose, data = ToothGrowth)

Residuals:
Min 1Q Median 3Q Max
-8.22643 -2.84625 0.05036 2.28929 7.93857

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 11.550 1.581 7.304 1.09e-09 *x*x
suppVC -8.255 2.236 -3.691 0.000507 *xx
dose 7.811 1.195 6.534 2.03e-08 *x*
suppVC:dose 3.904 1.691 2.309 0.024631 *
Signif. codes: 0 ‘%%’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 4.083 on 56 degrees of freedom
Multiple R-squared: 0.7296, Adjusted R-squared: 0.7151
F-statistic: 50.36 on 3 and 56 DF, p-value: 6.521e-16

4.5 Poisson regression, via case studies

The dataseACF1 from the DAAG package includes the results of an experiment where the @umb
of aberrant crypt foci (ACF) in the section 1 of the colons 8frats subjected to a single dose of the
carcinogen azoxymethane (AOM), sacrificed at 3 differames where counted. Two variables are
in the datasetount: The number of ACF observed in section 1 of each rat celodtime: Time of
sacrifice, in weeks following injection of AOM

Source: Ranjana P. Bird, Faculty of Human Ecology, Univeisi Manitoba, Winnipeg, Canada.

We get the package and data by writing

install.packages("DAAG")
library (DAAG)
data(ACF1)

Since we are working with count data, the Poisson distrmuthight be appropriate. We use the gim()
function in R for Poisson regression. We start by plotting diata:
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plot(count ~ endtime, data=ACF1, pch=20) # pch = 20 for filled dots
We fit the model with:
ACF.glmO <- glm(formula = count ~ endtime, family = poisson, data = ACF1)

By looking a the plot again we can see that there seems to badatic effect so we try to include that
in our model.

ACF.glm <- glm(formula = count ~ endtime + I(endtime~2),family = poisson, data = ACF1)
We look at the results using the summary() function

summary (ACF.glm)

We get the estimates for the parameters along with the Wslsl. té/e also get the null deviance and the

residual deviance. We can use the residual variance tooteserall fitness of the model.

We can use the residual deviance to perform a goodness ditfiiotethe overall fitness of the model.
It is the difference between the deviance of the current maxle and the deviance of the ideal model
where the predicted values are identical to the observeatielfesidual difference is small enough the
goodness of fit test will not be significant indicating that thodel fits the data. We get the p-value for
the test using 1-pchisq(ACF.gthaviance, ACF.glmdf.residual)

The p-value is larger than 0.05 indicating that the modetliiésdata.

4.6 Logistic regression, via case studies

In this example we are going to use a data set that involvesuhaval of the members of the Donner
party which is the most famous tragedy in the history of thatward migration in the United States.
In spring of 1846, a group of American pioneers set out foif@alia However, they experienced a
series of setbacks and did not arrive at the Sierra Nevadataios until October. While crossing the
mountains, they became trapped by an snowfall, and had twishe winter there and almost one-half
starved to death. The data include some information abatit @gthe members of the party.

Source: Johnson, K. (1996). Unfortunate Emigrants: Niasibf the Donner Party. Logan, UT: Utah
State University Press

You can get the data by writing
install.packages("alr3")
library(alr3)

data(donner)

There are five variables in the dataset:

Age: Approximate age in 1846 Outcome: 1 if survived, O if digek: Male or Female Family.name:
Either a family name, hired or single Status: Family, sirgl@ired

Since the response variable (Outcome) is binary (0 or 1)riaisiral to use a logistic model. We fit a
model using:

fitl <- glm(Outcome~Age*Sex+Status,donner,family="binomial")
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This model includes the main effects Age, Sex and Statugjalith an interaction between Age and
Status (allowing for different effect of Age males and feesl We look at the results using the sum-
mary() function:

summary (fit1)

We get the parameter estimates along with the deviance. Weestour model against a model with
only a mean using:

4.7 Survival analysis (Coxph), via case studies
5 Case studies

5.1 Writing a report

Include the data analyses, describe how
outliers were handled and assumptions
were verified

Include the model description

Refer to package used

Describe model results and interpretations
etc etc

Include the data analyses, describe how outliers were bdratid assumptions were verified
Include the model description

Refer to package used

Describe model results and interpretations

etc etc

5.2 Case studies for students

Lists of possible case studies: ...
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