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1 Multiple linear regression background

1.1 The basics

Want to describe or predict a depen-
dent y variable from several indepen-
dent/exploratoryx variables.
Main package for this course: R
Examples will be from engineering, biol-
ogy, economics, education etc.

For info on fields which use R, see http://cran.r-project.org/web/views/

Example (economics):The icecream data (economics) plotted in the figure is available at http://tgax14.rhi.hi.is/html/data/icecr
or in the Ecdat package.

For more economic data sets, see e.g. http://www.micecon.org/or http://eu.wiley.com/legacy/wileychi/verbeek2ed/datasets.html

For economic applications with R see e.g. http://cran.r-project.org/web/views/Econometrics.html
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Figure 1: Icecream data.

1.2 Plotting

The first step in analysing data should al-
ways consist of plots

Example (education):Comparing scores from several exams.

1.3 Data sets

Data are stored in files, which are then read
into data frames. Data files (or data sets)
should be structured as simple rectangular
tables before they are read into R
The data set is commonly just a table of
numbers, possibly with a single header
line.
We think of the data frame in the same way
- usually as a table of numbers.
Many data sets are available as built-in data
sets in R
Data can also be read directly from a URL
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Figure 2:Example (education):Typical first plot using the pairs command. Comparing scoresfrom several exams.

Example (medicine): R is commonly used in medicine.

A typical data set preloaded into R is the ais data set in the DAAG library, accessible as follows:

library(DAAG)

data(ais)

pairs(ais[,
("r

","w

","bmi","ht","wt","p
Bfat","lbm")℄)

Figure 3: Data set ais from the DAAG library (see http://cran.r-project.org/web/packages/DAAG/DAAG.pdf) contains several measurements on characteristics of how blood variedwith sport body size and
sex of athletes.

1.4 MULREG case studies

In a MULREG course you will be asked to
do analyze certain data sets (case studies).
Depending on the course, these may be as-
signed by the instructor or you may need to
find your own.

Example data sets:

http://www.stats4stem.org/data-sets.html

http://tgax14.rhi.hi.is/html/data/biol/shsamples

UCI Machine Learning Repository http://archive.ics.uci.edu/ml/
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Competitions: https://www.kaggle.com/c/informs2010/

Info on fields which use R, see http://cran.r-project.org/web/views/

For more economic data sets, see e.g. http://www.micecon.org/or http://eu.wiley.com/legacy/wileychi/verbeek2ed/datasets.html

Economic applications http://cran.r-project.org/web/views/Econometrics.html

1.5 association vs causation

Evidence of a relationship does not show
causation

Example (biology):A data set of several quantities from Icelandic waters can befound at http://tgax14.rhi.hi.is/html/data/biol/b
This can be read into R using

b<-read.table("http://tgax14.rhi.hi.is/html/data/biol/bore
ol.txt",header=T)

Just typing "b" shows the content..
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2 Multiple linear regression

2.1 Datasets
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We will mostly be working with two
datasets in the lecture,stacklossandLife-
CycleSavings, both part of thedatasets
package that comes with your installation
of R.
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The stackloss data

We have operational data of a plant for the oxidation of ammonia to nitric acid. The data were obtained
from 21 days of operation of a plant for the oxidation of ammonia (NH3) to nitric acid (HNO3). The
nitric oxides produced are absorbed in a countercurrent absorption tower.

• Air Flow: the rate of operation of the plant.

• Water Temp: the temperature of cooling water circulated through coils in the absorption tower.

• Acid Conc.: the concentration of the acid circulating, minus 50, times 10: that is, 89 corresponds
to 58.9 per cent acid.

• stack.loss: 10 times the percentage of the ingoing ammonia to the plant that escapes from the
absorption column unabsorbed; that is, an (inverse) measure of the over-all efficiency of the plant.

Source: Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and
Engineering. New York: Wiley. pp. 491–500.

The LifeCycleSavings data

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggregate
personal saving divided by disposable income) is explainedby per-capita disposable income, the per-
centage rate of change in per-capita disposable income, andtwo demographic variables: the percentage
of population less than 15 years old and the percentage of thepopulation over 75 years old. The data
are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.

• sr: aggregate personal savings

• pop15: % of population under 15

• pop75: % of population over 75

• dpi: real per-capita disposable income

• ddpi: growth rate of dpi

Source: The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the data
from Sterling (1977).
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2.2 Point estimation (with R)

Example (chemistry)
We get the data by writing:
data(stackloss)
We look at the data using a pairs plot:
pairs(stackloss)
We fit a model withstack.flow as the de-
pendent variable and the others as indepen-
dent variables using:
fit.stack <- lm(stack.loss Air.Flow + Wa-
ter.Temp + Acid.Conc.,data=stackloss)
Writing: summary(fit.stack)
returns the the point estimates of the pa-
rameters among other things.
If we only need the point estimates we
write: 
oefficients(fit.stack)

Example (chemistry)

We get the data by writing:

data(sta
kloss)

We look at the data using a pairs plot:

pairs(sta
kloss)

We fit a model withstack.flowas the dependent variable and the others as independent variables using:

fit.sta
k <- lm(sta
k.loss~Air.Flow + Water.Temp + A
id.Con
.,data=sta
kloss)

Writing:

summary(fit.sta
k)

returns the the point estimates of the parameters among other things.

If we only need the point estimates we write:


oeffi
ients(fit.sta
k)

Example (economics)

We get the data by writing:

data(LifeCy
leSavings)

We look at the data using a pairs plot:

pairs(LifeCy
leSavings)

We fit a model withsr as the dependent variable and the others as independent variables using:

fit.life <- lm(sr ~ pop15 + pop75 + dpi + ddpi ,data=LifeCy
leSavings)
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Writing:

summary(fit.life)

returns the the point estimates of the parameters among other things.

If we only need the point estimates we write:


oeffi
ients(fit.life)

2.3 Interpreting coefficients

Example (chemistry)

We continue working with thestacklossdata.

We can use our model to predicty, (10 times) the percentage of the ingoing ammonia to the plant that
escapes from the absorption column unabsorbed using the model (the following model can possibly be
reduced, see the slide on building a model).

A typical R session could run as follows:

> data(LifeCy
leSavings)

> fit.life <- lm(sr ~ pop15 + pop75 + dpi + ddpi ,data=LifeCy
leSavings)

> summary(fit.life)

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCy
leSavings)

Residuals:

Min 1Q Median 3Q Max

-8.2422 -2.6857 -0.2488 2.4280 9.7509

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) 28.5660865 7.3545161 3.884 0.000334 ***

pop15 -0.4611931 0.1446422 -3.189 0.002603 **

pop75 -1.6914977 1.0835989 -1.561 0.125530

dpi -0.0003369 0.0009311 -0.362 0.719173

ddpi 0.4096949 0.1961971 2.088 0.042471 *

---

Signif. 
odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 3.803 on 45 degrees of freedom

Multiple R-squared: 0.3385,Adjusted R-squared: 0.2797

F-statisti
: 5.756 on 4 and 45 DF, p-value: 0.0007904

ŷ =−39.920+0.7156x1+1.295x2−0.152x3

wherex1 is the air flow ,x2 is the water temperature andx3 is the acid concentration.

This means that increasing the air flow by one unit increases ˆy by 0.7156 units (holding other variables
constant), increasing the water temperature by one unit increases ˆy by 1.295 units (holding other vari-
ables constant) and increasing acid concentration by one unit decreases (note the sign) ˆy by 0.152 units
(holding other variables constant).
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Example (economics)

We continue working with theLifeCycleSavings data.

We can use our model to predicty, the savings ratio, using the model (the following model canpossibly
be reduced, see the slide on building a model):

ŷ = 28.5661−0.4612x1−1.6915x2−0.0003x3+0.4107x4

wherex1 is the % of population under 15,x2 is the % of population over 75,x3 is the real per-capita
disposable income andx4 is the % growth rate of dpi

This means that increasing the % of population under 15 by oneunit decreases ˆy by 0.4612 units (holding
other variables constant), increasing the % of population over 75 by one unit decreases ˆy by 1.6915 units
(holding other variables constant), increasing the real per-capita disposable income by one unit decreases
ŷ by 0.0003 units (holding other variables constant) and increasing the growth rate of dpi by one unit
increases ˆy by 0.4107 units (holding other variables constant),

2.4 R2

The summary command gives theR2

value.
It can also be extracted directly, for use in
computations.
As usual, this is 1−SSE/SSTOT .
It is also the squared correlation betweeny
andŷ.

In R, the summary() command gives theR2 value.

It can also be extracted directly, for use in computations.

As usual, this is 1− SSE/SSTOT , i.e. R2 denotes the proportion of variation explained by the model.

It is also the squared correlation betweeny andŷ.

Example (chemistry)

We continue working with thestacklossdata.

We can get theR2 along with other things writing:

summary(fit.sta
k)

TheR2 can be extracted with

summary(fit.sta
k)$r.squared

Example (economics)

We continue working with theLifeCycleSavings data.

We can get theR2 along with other things writing:

summary(fit.life)

TheR2 can be extracted with

10



summary(fit.life)$r.squared

2.5 P-values

Example (chemistry)

We continue working with thestacklossdata.

By writing

summary(fit.sta
k)

we get some statistics and informations about out model. In the last column of the Coefficients table,
markedPr(> |t|) we get the p-values for the tests of the individual coefficients.

On the last line of the output we get the p-value for the overaltest that all the coefficients of the model
are equal to zero.p

In general we reject the null hypothesis that the coefficient(s) is equal to zero if the p-value is smaller
than theα-value used.

Example (economics)

We continue working with theLifeCycleSavings data.

By writing

summary(fit.life)

we get some statistics and informations about out model. In the last column of the Coefficients table,
markedPr(> |t|) we get the p-values for the tests of the individual coefficients.

On the last line of the output we get the p-value for the overaltest that all the coefficients of the model
are equal to zero.

In general we reject the null hypothesis that the coefficient(s) is equal to zero if the p-value is smaller
than theα-value used.

2.6 Building a model

We can build models by

• specifying all the terms and
fitting a single model

• starting from a null model,
adding one variable at a time

• starting from a full model
with all available variables
and dropping one at a time

We can build models by

• specifying all the terms and fitting a single model

• starting from a null model, adding one variable at a time
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• starting from a full model with all available variables and dropping one at a time

Example (chemistry)

We continue working with thestacklossdata.

If we use backward selection method building our stackloss model we start by including all the explana-
tory variables as we did before:

fit.sta
k <- lm(sta
k.loss~Air.Flow + Water.Temp + A
id.Con
.,data=sta
kloss)

summary(fit.sta
k)

We look at the p-values for the individual coefficients and see if some of them are larger than theα-value
used. The p-value when testing if the parameter for the acid concentration is equal to zero is 0.34405
and therefore the variable is removed from the model. That can be done in a convenient manner by
writing

fit.sta
k.2<-update(fit.sta
k,~.-A
id.Con
.)

summary(fit.sta
k.2)

Note the notation; the "." means use same explanatory variables as in the original model (fit.stack) and
then we remove the Acid.Conc. variable by wring "-Acid.Conc.". Now all the p-values are small so we
stop.

Example (economics)

We continue working with theLifeCycleSavings data.

If we use backward selection method building our LifeCycleSavings model we start by including all the
explanatory variables as we did before:

fit.life <- lm(sr ~ pop15 + pop75 + dpi + ddpi ,data=LifeCy
leSavings)

summary(fit.life)

We look at the p-values for the individual coefficients and see if some of them are larger than theα-value
used. The p-value when testing if the parameter for the dpi isequal to zero is 0.719173 (the largest one)
and therefore the variable is removed from the model. That can be done in a convenient manner by
writing

fit.life.2<-update(fit.life,~.-dpi)

summary(fit.life.2)

Note the notation; the "." means use same explanatory variables as in the original model (fit.life) and
then we remove the dpi variable by wring "-dpi". Looking at the p-values for the coefficients in our
new model we can see that the largest p-value is the one for thepop75 variable (0.072473). Although
we might consider removing that one as well, it is probably best left in the model since it is so close to
being significant.

2.7 Stepwise linear regression

Can formalise the model building process
Forward stepwise regression
Backwards stepwise regression
Need to choose a criterion: P-value vs AIC
etc
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Example (chemistry)

We continue working with thestacklossdata.

It is easy to perform stepwise regression in R using the step() function. The AIC criteria is used. We
can choose backward, forward or both directions using the direction argument (both being the default).

step(fit.sta
k)

The step method returns the same model as we found using the backward selection method before.

Example (economics)

We continue working with theLifeCycleSavings data.

It is easy to perform stepwise regression in R using the step() function. The AIC criteria is used. We
can choose backward, forward or both directions using the direction argument (both being the default).

step(fit.life)

The step method returns the same model as we found using the backward selection method before.

2.8 Thou shalt not seek a model with a shotgun (the multiplicity issue)

It is quite common that very many poten-
tial descriptors exist
Testing nonsense will eventually yield a
significant result

Example (biology): Consider again the Icelandic ecosystem data. Suppose we want to search for
significance among the variables in the data set but also have100 more variables - all of which are
noise.

This can easily be simulated in R:

b<-read.table("http://tgax14.rhi.hi.is/html/data/biol/bore
ol.txt",header=T)

n<-nrows(b)

bad100<-matrix(rnorm(n*100),nrow=n)

newb<-as.data.frame(
bind(b,bad100))

Now check, which variable is most highly correlated with thegrowth in G.

The result is that one of the simulated noise variables becomes the one with the highest correlation to
the growth. As a single regression variable it also appears highly significant.

A typical such session could be

n<-nrow(b)

bad100<-matrix(rnorm(n*100),nrow=n)

dim(bad100)

dat<-as.data.frame(
bind(b,bad100))

dim(b)

dim(dat)

max(abs(
or(dat$G,dat[,-7℄)))

round(
or(dat$G,dat[,-7℄),3)
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- but actual commands will vary on the noise pattern generated.

2.9 Multiplicity corrections

Can correct for multiplicity: Bonferroni,
Scheffe...
Simplest: Bonferroni
Better: Holm

2.10 Comparing nested models

If one model is asubmodel of another,
then anF-test is used to compare the mod-
els.
H0 : submodel is correct

F =

SSE(R)−SSE(F )
d f (R)−d f (F)

SSE(F)
d f (F)

∼Fd f (R)−d f (F),d f (F) , if H0 is true.

The usual t-test for dropping one variable

is a special case (t2 = F).

If one model is asubmodelof another, then anF-test is used to compare the models.

H0 : submodel is correct

F =

SSE(R)−SSE(F)
d f (R)−d f (F)

SSE(F)
d f (F)

∼ Fd f (R)−d f (F),d f (F), if H0 is true.

The usual t-test for dropping one variable is a special case (t2 = F).

Example: Check to see whether one or two straight lines are needed to explain a data set.

2.11 Comparing non-nested models

Try to make them nested in a supermodel
Try to avoid the comparison
Worst-case: Use the AIC or similar crite-
rion

Example (biology): The case of natural mortality vs serial correlation in fish stock assessments (Myers
et al).

Example (general):Variable intercept vs variable slope (more later).
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3 Deviations from assumptions

3.1 Plotting residuals

Example (chemistry)

We continue working with thestacklossdata.

As a first tool to check it the assumptions of the model are fulfilled (see more in the tutorial on diagnos-
tics) we plot the residuals against the fitted values of our model. There should be no pattern to see in the
plot. We get the fitted values using thefitted() function in R and the residuals using theresid() function
in R.

plot(fitted(fit.sta
k.2),residuals(fit.sta
k.2))

To check if the residuals follow a normal distribution we usetheqqnorm() function and to get a line on
the plot we use theqqline() function

qqnorm(residuals(fit.sta
k.2))

qqline(residuals(fit.sta
k.2))

Example (economics)

We continue working with theLifeCycleSavings data.

As a first tool to check it the assumptions of the model are fulfilled (see more in the tutorial on diagnos-
tics) we plot the residuals against the fitted values of our model. There should be no pattern to see in the
plot. We get the fitted values using thefitted() function in R and the residuals using theresid() function
in R.

plot(fitted(fit.life.2),residuals(fit.life.2))

To check if the residuals follow a normal distribution we usetheqqnorm() function and to get a line on
the plot we use theqqline() function

qqnorm(residuals(fit.life.2))

qqline(residuals(fit.life.2))

3.2 Common deviations from assumptions

3.3 Regression diagnostics

The same regression diagnostics apply as
for SLR.
In addition, matrix methods give tools
based on the hat matrix.
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3.4 Transformations to normality

3.5 Weighting

3.6 Serial correlations

3.7 Errors in variables

The basic regression models assume thex
values to be measured without error.
Suppose

y = ∑
j

b j x j + e

but you only measure

x∗j = x j +d.

Then estimates of the parameters become
biased. This may or may not be important.

4 Extensions to the multiple linear regression model

4.1 Dummy variables

Suppose a single change affects the re-
sponse so that it increases by a constant
from then on.
To describe such a simple change we can
add a dummy variable to a regression.
This is done by defining a column of 0/1-
values.

Suppose a single change affects the response so that it increases by a constant from then on, or it affects
only some subjects.

To describe such a simple change we can add a dummy variable toa regression.

This is done by defining a newx-variable, or column in the X-matrix, consisting of 0/1-values.

A regression with only a dummy variable is equivalent to a t-test.

Dummy variables can be used to test whether slopes or intercepts or both are different for groups of
subjects or time periods.

These dummy variables can be included in very many differentways.

It is important to understand the meaning of estimates depending on how the variables are included.

Examples: A pollution incident; different intercepts depending on sex; a medical treatment.
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4.2 Factors

A factor is an independent variable which
can only take on (few) distinct levels.
Two values: Like a dummy variable
Multiple: Can use many dummy variables,
but packages do this automagically.

A factor is an independent variable which can only take on (few) distinct levels.

When a factor can only take on two values we can use a dummy variable to describe the effect.

Factors can also be used to test very generally whether a straight line is appropriate using a lack-of-fit
test.

A model with only a single factor will give parameter estimates which are the sample mean for each
group.

Example: Yield from a field will depend on location (farm).

tapply() can be used to compute means for each level.

4.3 ANOVA

ANOVA is used to analyse a linear model
with only factors.

4.4 ANCOVA

ANCOVA: Analysis of models with both
continuous and discrete independent vari-
ables.

The datasetToothGrowth includes the results of an experiment where the length of odontoblasts (teeth)
in 10 guinea pigs was measured. The pigs got three different dose levels of Vitamin C (0.5, 1, and 2 mg)
with each of two delivery methods (orange juice or ascorbic acid).

Source of data C. I. Bliss (1952) The Statistics of Bioassay.Academic Press.

We get the data by writing

data(ToothGrowth)

Lets start by plotting the data:

plot(ToothGrowth$dose,ToothGrowth$len,p
h=20,xlab="Dose",ylab="Length") # p
h = 20 to get solid 
ir
les

A better way would be to have different colors for the two delivering methods:


olor = as.numeri
(as.fa
tor(ToothGrowth$supp))+1 # +1 to get red and green

plot(ToothGrowth$dose,ToothGrowth$len,
ol=
olor,p
h=20,xlab="Dose",ylab="Length")

legend("topleft",legend=
("OJ","VC"),fill=
(2,3))
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Now we fit a ANCOVA model to the data using the lm() function. A model including one continuous
variable and one factor variable with two levels corresponds to fitting two regression lines, one for one
level of the factor and another one for the other (different slopes and intercepts), but still using only one
model. This way we can test if the lines have different intercepts and/or slopes.

We fit the model writing

fit.tooth<-lm(len~dose+supp+supp*dose,data=ToothGrowth)

and get the parameter estimates and tests writing

summary(fit.tooth)

We interpret the parameter estimates in the following way:

(Inter
ept) 11.550 - This is the inter
ept of the line for the OJ-line

dose 7.811 - This is the slope of the line for the OJ-line

suppVC -8.255 - This is what we need to add/withdraw from the estimate of the inter
ept of the OJ-line to get the inter
ept for the VC-line.

dose:suppVC 3.904 - This is what we need to add/withdraw from the estimate of the slope of the OJ-line to get the slope for the VC-line.

By looking at the whole output from the summary() function wesee that both the intercepts and the
slopes of the lines are different.

To see if the interpretation of the parameter estimates is okwe fit two models, one for the OJ-part of the
data and another for the VC-part.

fit.tooth.oj<-lm(len~dose,data=subset(ToothGrowth,supp=="OJ"))

summary(fit.tooth.oj)

fit.tooth.v
<-lm(len~dose,data=subset(ToothGrowth,supp=="VC"))

summary(fit.tooth.v
)

We can add the two lines to our plot with

abline(fit.tooth.oj,
ol=2)

abline(fit.tooth.v
,
ol=3)

To see how the parameters are estimated, we can compare fits based on the inclusion of an intercept or
not. First take the case with no intercept and different slopes per factor level:

> fit.full<-lm(len~-1+supp+supp:dose,data=ToothGrowth)

> summary(fit.full)

Call:

lm(formula = len ~ -1 + supp + supp:dose, data = ToothGrowth)

Residuals:

Min 1Q Median 3Q Max

-8.22643 -2.84625 0.05036 2.28929 7.93857

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

suppOJ 11.550 1.581 7.304 1.09e-09 ***

suppVC 3.295 1.581 2.084 0.0418 *
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suppOJ:dose 7.811 1.195 6.534 2.03e-08 ***

suppVC:dose 11.716 1.195 9.800 9.44e-14 ***

---

Signif. 
odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 4.083 on 56 degrees of freedom

Multiple R-squared: 0.9622, Adjusted R-squared: 0.9595

F-statisti
: 356.2 on 4 and 56 DF, p-value: < 2.2e-16

Then take the case of when we estimate an intercept and also anoverall slope before adding the mixed
term:

> fit.full<-lm(len~supp+dose+supp:dose,data=ToothGrowth)

> summary(fit.full)

Call:

lm(formula = len ~ supp + dose + supp:dose, data = ToothGrowth)

Residuals:

Min 1Q Median 3Q Max

-8.22643 -2.84625 0.05036 2.28929 7.93857

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) 11.550 1.581 7.304 1.09e-09 ***

suppVC -8.255 2.236 -3.691 0.000507 ***

dose 7.811 1.195 6.534 2.03e-08 ***

suppVC:dose 3.904 1.691 2.309 0.024631 *

---

Signif. 
odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 4.083 on 56 degrees of freedom

Multiple R-squared: 0.7296, Adjusted R-squared: 0.7151

F-statisti
: 50.36 on 3 and 56 DF, p-value: 6.521e-16

>

4.5 Poisson regression, via case studies

The datasetACF1 from theDAAG package includes the results of an experiment where the number
of aberrant crypt foci (ACF) in the section 1 of the colons of 22 rats subjected to a single dose of the
carcinogen azoxymethane (AOM), sacrificed at 3 different times where counted. Two variables are
in the datasetcount: The number of ACF observed in section 1 of each rat colonendtime: Time of
sacrifice, in weeks following injection of AOM

Source: Ranjana P. Bird, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada.

We get the package and data by writing

install.pa
kages("DAAG")

library(DAAG)

data(ACF1)

Since we are working with count data, the Poisson distribution might be appropriate. We use the glm()
function in R for Poisson regression. We start by plotting the data:
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plot(
ount ~ endtime, data=ACF1, p
h=20) # p
h = 20 for filled dots

We fit the model with:

ACF.glm0 <- glm(formula = 
ount ~ endtime, family = poisson, data = ACF1)

By looking a the plot again we can see that there seems to be a quadratic effect so we try to include that
in our model.

ACF.glm <- glm(formula = 
ount ~ endtime + I(endtime^2),family = poisson, data = ACF1)

We look at the results using the summary() function

summary(ACF.glm)

We get the estimates for the parameters along with the Wald tests. We also get the null deviance and the
residual deviance. We can use the residual variance to test to overall fitness of the model.

We can use the residual deviance to perform a goodness of fit test for the overall fitness of the model.
It is the difference between the deviance of the current model and and the deviance of the ideal model
where the predicted values are identical to the observed. Ifthe residual difference is small enough the
goodness of fit test will not be significant indicating that the model fits the data. We get the p-value for
the test using 1-pchisq(ACF.glmdeviance,ACF.glmdf.residual)

The p-value is larger than 0.05 indicating that the model fitsthe data.

4.6 Logistic regression, via case studies

In this example we are going to use a data set that involves thesurvival of the members of the Donner
party which is the most famous tragedy in the history of the westward migration in the United States.
In spring of 1846, a group of American pioneers set out for California However, they experienced a
series of setbacks and did not arrive at the Sierra Nevada mountains until October. While crossing the
mountains, they became trapped by an snowfall, and had to spend the winter there and almost one-half
starved to death. The data include some information about each of the members of the party.

Source: Johnson, K. (1996). Unfortunate Emigrants: Narratives of the Donner Party. Logan, UT: Utah
State University Press

You can get the data by writing

install.pa
kages("alr3")

library(alr3)

data(donner)

There are five variables in the dataset:

Age: Approximate age in 1846 Outcome: 1 if survived, 0 if diedSex: Male or Female Family.name:
Either a family name, hired or single Status: Family, singleor hired

Since the response variable (Outcome) is binary (0 or 1) it isnatural to use a logistic model. We fit a
model using:

fit1 <- glm(Out
ome~Age*Sex+Status,donner,family="binomial")
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This model includes the main effects Age, Sex and Status along with an interaction between Age and
Status (allowing for different effect of Age males and females). We look at the results using the sum-
mary() function:

summary(fit1)

We get the parameter estimates along with the deviance. We can test our model against a model with
only a mean using:

4.7 Survival analysis (Coxph), via case studies

5 Case studies

5.1 Writing a report

Include the data analyses, describe how
outliers were handled and assumptions
were verified
Include the model description
Refer to package used
Describe model results and interpretations
etc etc

Include the data analyses, describe how outliers were handled and assumptions were verified

Include the model description

Refer to package used

Describe model results and interpretations

etc etc

5.2 Case studies for students

Lists of possible case studies: ...
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