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1 Verifying the assumptions of SLR

1.1 Introduction
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Figure 1: Simulated data

Evaluate model assumption:Yi ∼ n(α +

βxi ,σ2), independent.

• Linearity

• Independence

• Normality

• Constancy of variance

The simple linear regression model can be formulated succinctly as

Yi ∼ n(α+ βxi,σ2), independent

Hence the underlying random variables are assumed to come from a Gaussian distribution, their mean
is a linear function of thex-variables, their variance is constant and they are independent:

• Linearity

• Independence

• Normality

• Constancy of variance

These assumptions are all used when hypotheses are tested orconfidence intervals obtained for param-
eters. For several other uses only some of these assumptionsare required.

Naturally, each of these assumptions may be violated and some of these violations may influence the
validity of any conclusions drawn.

This tutorial introduces some methods for “regression diagnostics”, i.e. techniques for checking the
validity of these assumptions. The first two sections/lectures contain methods appropriate for simple
linear regression (SLR) whereas the subsequent sections introduce methods which are used in multiple
regression.
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Example: It will be useful to have a fixed example at hand to illustrate the concepts and methods. The
following R commands will generate and plot data which satisfy the assumptions:set.seed(19) # make sure we an repeat these resultsalpha<-1 # fix the true intereptbeta<-2 # fix the true slopesigma<-0.5 # fix the true standard deviatoinn<-10 # the base sample sizex<-1:n # set the base x-valuesy.base<-alpha+beta*x+rnorm(10,sd=sigma) # set the base y-valuesy<-y.base
The simulated data can be plotted along with the regression line withplot(x,y)abline(fm.base)
and analysed withfm.base<-lm(y~x)summary(fm.base)
which givesCall:lm(formula = y ~ x)Residuals:Min 1Q Median 3Q Max-0.45512 -0.16751 -0.08178 0.22318 0.56482Coeffiients:Estimate Std. Error t value Pr(>|t|)(Interept) 0.84411 0.24303 3.473 0.0084 **x 2.01628 0.03917 51.478 2.25e-11 ***---Signif. odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Residual standard error: 0.3558 on 8 degrees of freedomMultiple R-squared: 0.997, Adjusted R-squared: 0.9966F-statisti: 2650 on 1 and 8 DF, p-value: 2.247e-11
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Note 1: Recall that if we do not specify the distributional assumptions, the simple linear regression
model can be written in short-hand notation asE [y] = βX, whereX is ann× 2 matrix (and could in
general ben× p). In the following we frequently use this matrix notation.

Note 2: See influence.measures(), resid() and other functions related to lm() in R.
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1.2 Residuals

The first step in most diagnostic analyses is
to compute the residuals

êi = yi − ŷi

When we write the linear model in terms of the data,

yi = α+ βxi + ei,

theei are the actual residuals which generated the numbers.

The estimated residuals, based on the fitted model, are defined as

êi := yi − ŷi

and these form the basis for most validation or diagnostics tests.

These are usually considered observed values ofεi in the model

Yi = α+ βxi + εi

whereεi are usually taken to be i.i.d.n(0,σ2).

Note that¯̂e = 0 always holds and hence the observed residuals are not independent observations. Since
the residuals in SLR correspond to estimation of two parameters, the variance of the true residuals is
estimated with

s2 = MSE =
∑n

i=1 e2

n−2
=

∑n
i=1 (yi − ŷi)

2

n−2
,

which estimatesσ2.

Since the true residuals have varianceσ2, a natural first step in standardizing the observed residuals is
with ei

s
,

in order to obtain observations which are close to having mean zero and variance 1, but it will be seen
later that there are many alternatives to this scaling method.

Example: Continuing with the previous example, the R commandsehat<-resid(fm)plot(x,ehat)
will compute the residuals from the regression and plot themagains thex-variable.

Example: It is easy to modify the base example to simulate data which donot satisfy the linearity
assumption, e.g. withset.seed(19) # make sure we an repeat these resultsalpha<-1 # fix the true intereptbeta<-2 # fix the true slopesigma<-0.5 # fix the true standard deviatoinn<-10 # the base sample sizex<-1:n # set the base x-valuesy.base<-alpha+beta*x+rnorm(10,sd=sigma) # set the base y-values
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y<-y.base#plot(x,y)#abline(fm.base)fm.base<-lm(y~x)#summary(fm.base)# residual plots with and without quadrati termsehat<-resid(fm.base)#plot(x,ehat)y.nonlin<-alpha+beta*x+0.2*x*x+rnorm(10,sd=sigma)fm.nonlin<-lm(y.nonlin~x)ehat.nonlin<-resid(fm.nonlin)plot(x,ehat.nonlin)
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Figure 2: Residuals vs independent variable. No errors in model assumptions.

1.3 Verifying the distribution

Kolmogorov-Smirnov: Compares data to a
theoretical distribution

Fn(x) :=
1
n

n
∑

i=1
I[xi,∞)(x) for x ∈ R

H0 : P
[

Xi ≤ x
]

= F(x) for x ∈ R.

The statistic:

D := sup
x

|Fn(x)−F(x)|.

Given a set of measurements (possibly output such as deviations from a model) it is possible to set up an
empirical distribution function. It is also possible to setup an hypothesis which provides a theoretical
cumulative distribution function, such as for a Gaussian distribution. These two distribution functions
can then be plotted together and compared to evaluate whether the data fit the hypothesis.

The Kolmogorov-Smirnov testing procedure computes the largest possible difference,D, between the
empirical and cumulative distribution functions.

The probability distribution ofD has been tabulated and the null hypothesis of e.g. normalityis rejected
for large enough values ofD.
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More specifically, denote byFn the empirical distribution function (e.d.f.), so

Fn(x) :=
1
n

n

∑
i=1

I[xi,∞)(x) for x ∈ R

whereI denotes the indicator function and henceFn(x) is simply the fraction of observations which
lie below the numberx for x ∈ R. Let F denote the proposed cumulative distribution function, so the
hypothesis to be tested is

H0 : P [Xi ≤ x] = F(x) for x ∈ R.

The statistic to be used is
D := sup

x∈R
|Fn(x)−F(x)|. (1)

Example: Although R has a built-in function (ks.test) to evaluate theKolmogorov-Smirnov test, it
is quite useful to formally plot and evaluate such differences manually, or at least using transparent
commands. The following generates data from aU(0,10)-distribution and then tests whether that really
is the distribution.x<-runif(10)*10 # Generate some artifiial ``data''xs<-sort(x) # Sort the datay<-rep(1/length(x),length(x)) # The y-axis for Fn is givenys<-umsum(y) # -- just the umulative sum of 1/nxgrid<-(0,xs[1℄,NA,rbind(xs[1:(length(ys)-1)℄,xs[2:length(ys)℄,rep(NA,length(ys)-1)),xs[length(xs)℄,10)ygrid<-(0,0,NA,rbind(ys[1:(length(ys)-1)℄ ,ys[1:(length(ys)-1)℄,ys[1:(length(ys)-1)℄),1,1)yhat<-xgrid/10diff<-ygrid-yhatadiff<-abs(diff)D<-max(adiff,na.rm=T)plot(xs,ys,xlim=(0,10),ylim=(0,1))lines(xgrid,ygrid,lwd=2)lines((0,10),(0,1))Dx<-xgrid[adiff==D℄Dy<-ygrid[adiff==D℄Dx<-Dx[!is.na(Dx)℄Dy<-Dy[!is.na(Dy)℄dropline<-diff[xgrid==Dx&ygrid==Dy℄dropline<-dropline[!is.na(dropline)℄lines((Dx,Dx),(Dy,Dy-dropline))
Example: To continue with the base example whereYi = α+βxi +εi andεi ∼ n(0,σ2) are independent,
residuals from this model can be computed as beforeset.seed(19) # make sure we an repeat these resultsalpha<-1 # fix the true intereptbeta<-2 # fix the true slopesigma<-0.5 # fix the true standard deviatoinn<-10 # the base sample sizex<-1:n # set the base x-valuesy.base<-alpha+beta*x+rnorm(10,sd=sigma) # set the base y-valuesy<-y.basefm.base<-lm(y~x)ehat<-resid(fm)
and checked for normality by first computing residuals and finally running the ks.test function with
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# hek the normality assumptiondf<-fm.base$df.residualMSE<-sum(ehat^2)/dfs<-sqrt(MSE)ks.test(ehat,pnorm,sd=s)
Note that the pnorm()-command needs to get the argument "sd=s" which is done by passing it through
the ks.test-function.

Additional notes:

It should be noted that the supremum in Eq. 1 always corresponds to one of the data points. However,
the e.d.f. jumps at each data point and is only continuous from the right. SinceFn is constant within
each interval between measurements, butF is monotonically increasing, the individual differences in 1
(before taking absolute value) must be decreasing within each interval.

It follows that the absolute difference may either increaseto a maximum from the right (at the left
endpoint) or increase towards a supremum from the left.

It follows that the statistic may be computed as

D = max{max{|Fn(xi)−F(xi)|, |Fn(xi)−F(xi+1)|} ,1≤ i ≤ n} ,

i.e. simply by evaluating the differences at all the datapoints.

When there are no unknown parameters that need to be estimated in F , the statisticD has a distribution
which is independent ofF and the resulting test which rejects for large values ofD is therefore termed
a non-parametric test.

1.4 Constancy of variance
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Figure 3: Base model with correct assumptions:e vsx.

If the variance is constant, thene2 should
not show a trend in any independent vari-
able.
Simple test: Regresse2 on x and test in
usual manner.
Slightly more advanced: Breusch-Pagan

test takes properties ofe2 into account.

A simple way to test whether the assumption of constant variance in regression analysis holds is to first
compute the residuals from the regression and define a new variable as the squared residuals.

These squared residuals should then not show a significant trend in any way, when plotted or modelled
as functions of the independent variables.

Alternative methods abound, such as splitting the data intotwo groups according to the levels of the
x-variable and computing separately the variance in each group.

Example: Verifying the constancy of variance in the base example is done in the followingset.seed(19) # make sure we an repeat these results
9



alpha<-1 # fix the true intereptbeta<-2 # fix the true slopesigma<-0.5 # fix the true standard deviatoinn<-10 # the base sample sizex<-1:n # set the base x-valuesy.base<-alpha+beta*x+rnorm(10,sd=sigma) # set the base y-valuesy<-y.basefm.base<-lm(y~x)ehat<-resid(fm)# hek whether the variane is onstantplot(x,ehat)e.sq<-ehat^2plot(x,e.sq)
The commandsummary(lm(e.sq~x))
will then test whether the quadratic term is significant.

Example: It is also easy to generate an example with a variance which increases as a function ofx:# example with inreasing varianex.in<-1:100y.in<-alpha+beta*x.in+rnorm(100,sd=sigma*x.in)plot(x.in,y.in)ehat.in<-resid(lm(y.in~x.in))plot(x.in,ehat.in)e.sq<-(ehat.in)^2plot(x.in,e.sq)
and a simple summary command will show a significant relationship betweene2 andx.
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Figure 4: Example with increasing variance with x, (a) residuals, e, vs x, (b)e2 vs x

1.5 Verifying linearity

Many tests available:

• Plot residuals against x-variable
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Figure 5: Residuals vs independent variable. Error in linearity assumption.

Basic:

• Plot residuals against x-
variable

• Look for pattern

Later:

• Test for autocorrelation

• Multiple regression: Add a
quadratic term

• Lack-of-fit tests (replace x by
a factor)

• Look for pattern

Later:

• Use factors

• Test for autocorrelation

• Multiple regression: Add a quadratic term

• Lack-of-fit test

1.6 Tests are approximate

Testing for normality etc is only approxi-
mate

Most of the tests used for diagnostics are only approximate.

The Kolmogorov-Smirnov test is derived under the assumption that the distribution is fully specified
under the null hypothesis. However, the residuals in OLS arecomputed after fitting a model and hence
they are not independent.

Similarly when plottinge2 againstx.

Note that exact tests exist, but these simple approximate tests are often adequate.

2 Further diagnostics in SLR

2.1 Outliers and influential cases

It is in particular important to search for
outliers or influential cases in the x or y-
measurements.
Typically use residuals and/or hat matrix:

ŷ = Xβ̂ = X(X′X)−1X′y = Hy

Methods for this will be introduced.

An important part of verifying a model is to search for outliers or influential cases in the x or y-
measurements.
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Methods for this will be introduced.

Recall that in the regression problem withE [y] = Xβ (andX of full rank), the least squares estimator
is β̂ = (X′X)−1X′y and the predicted values of they-vector are given bŷy = Xβ̂ = X(X′X)−1X′y. The
case of simple linear regression involves anX-matrix of dimensionsn×2 but most of this tutorial also
applies to more general cases (multiple regression, i.e. more than onex-variable).

The matrixH = X(X′X)−1X′ therefore transforms they-vector into the predicted valuesŷ = Hy and
is therefore termed thehat matrix . The hat matrix is symmetrix,H′ = H and it is a projection so that
H2 = H.

The residuals are correspondingly obtained withe = (I −H)y whereI −H is also symmetric and a
projection matrix. It is therefore easy to see that the exactvariance-covariance matrix of the observed
residuals is given withΣe = σ2(I −H) and in particular the variance of the i’th observed residualis

V (ei) = σ2(1−hii).

Naturally, this is not the same asV (εi) = σ2 since theei are functions of severaly-measurements and
thus severalε’s through the hat matrix.

Example: Some examples of deviations from assumptions can be set up e.g. withset.seed(19) # make sure we an repeat these resultsalpha<-1 # fix the true intereptbeta<-2 # fix the true slopesigma<-0.5 # fix the true standard deviatoinn<-10 # the base sample sizex.base<-1:n # set the base x-valuesy.base<-alpha+beta*x.base+rnorm(10,sd=sigma) # set the base y-valuespar(mfrow=(2,2))y<-y.basex<-x.baseplot(x,y)fm.base<-lm(y~x)#summary(fm.base)abline(fm.base)title("(a)")# Outlier in xy<-y.basex<-x.basex[n℄<-2*x[n℄fm<-lm(y~x)plot(x,y)abline(fm,ol="red")abline(fm.base)title("(b)")# Outlier in y at endy<-y.basex<-x.basey[n℄<-2*y[n℄fm<-lm(y~x)plot(x,y)abline(fm,ol="red")abline(fm.base)title("()")
12



# Outlier in y in entery<-y.basex<-x.basey[floor(n/2)℄<-2*y[floor(n/2)℄fm<-lm(y~x)plot(x,y)abline(fm,ol="red")abline(fm.base)title("(d)")
The hat matrix can now be set up directly using matrix algebrain R by first setting up the X matrix and
then using the usual formulas withy<-y.basex<-x.baseone<-rep(1,n)X<-bind(1,x)H<-X%*%solve(t(X)%*%X)%*%t(X)
Upon which H contains the following diagonal elements> round(diag(H),2)[1℄ 0.35 0.25 0.18 0.13 0.10 0.10 0.13 0.18 0.25 0.35
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Figure 6: Effects of some outlier types on simple linear regression.

2.2 Diagnostics based on residuals

Diagnostics for residuals include tests for
normality and constancy of variance.
Semistudentized residuals (ei/

√

(MSE))
are commonly used but
studentizedei/

√

(MSE)(1−hii)
would obviously be better.

Diagnostics for residuals include tests for normality and constancy of variance.

Semistudentized residuals (ei/
√

(MSE)) are commonly used. This refers toei being an observation of
εi, which has varianceσ2 andMSE estimatesσ2.

Studentized (ei/
√

(MSE)(1−hii) would be better since the variance ofei is notσ2 butσ2 (1−hii).
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Example: The base SLR example hasxi = i for i = 1, . . . ,n = 10 and we can set up theX-matrix in R
with> one<-rep(1,n)> X<-bind(one,x)
This is then used to compute thehii-values with> round(diag(X%*%solve(t(X)%*%X)%*%t(X)),2)[1℄ 0.35 0.25 0.18 0.13 0.10 0.10 0.13 0.18 0.25 0.35
and it is seen that there is considerable variation among thesehii-values since in this example the vari-
ance to the ends is more than three times the variance in the middle.

2.3 Outliers in y - consider deleted residuals

Outliers can be considered a particular de-
viation from normality
Can base analysis on the concept

Yh − (α̂+ β̂xh )

σ̂Yh−Ŷh

∼ tn−2

i.e. use the deleted residual:

di = yi − ŷi(i)

Outliers can cause havoc with all inference in linear regression. These atypicaly-values can stem from
instrument failure or non-normality of the process itself.For example, if a gamma distribution is a better
model than a Gaussian distribution, then outliers will be more frequent.

Recall that
Yh − (α̂+ β̂xh)

σ̂Yh−Ŷh

∼ tn−2

for a new measurement at a locationxh, where the divisor is the "appropriate divisor".

With this in hand it is a relatively straightforward task to develop a test for outliers by simply deleting
one observation at a time from the data set, refitting the regression line and evaluating the above ratio
(replacingn by n−1 in all computations to take into account the deletion of an observation.

This technique is referred to as the method of deleted residuals, where the deleted residual itself is
denoted

di = yi − ŷi(i)

and the parenthesis indicates a model fit without thei’th observation.

Note that the deleted residual is a linear function of the original y-vector and formulae are available to
compute these without refitting the regression linen times.
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2.4 Computing deleted residuals

In principle, compute deleted residuals or
studentized deleted residuals through fit-
ting model without i’th observations, com-
pute fitted, ˆyi(i) , and computedi = yi −
ŷi(i) , ti = di/sdi

.

Simpler

ti = ei

[

n− p−1

SSE(1−hii)− e2
i

]
1
2

Can use Bonferroni test with
t1−α/(2n),n−p−1

Consider deleted residuals or studentized deleted residuals through fitting model without i’th observa-
tions, compute fitted, ˆyi(i) and definedi = yi − ŷi(i).

Defineti = di/sdi to obtain

ti = ei

[

n− p−1

SSE(1−hii)− e2
i

]
1
2

Can now use Bonferroni test witht1−α/(2n),n−p−1

Notes: The deleted residuals are based on repeatedly fitting the same model but deleting dropping a
single observation each time. In principle this involves dropping observationi from both theX-matrix
and they-vector and fitting a model to this reduced data set. Assume the X-matrix is of full rank, as
well as the matrices with deleted rows.

Denote theX-matrix without thei’th observation byX(i) and the correspondingly reducedy-vector by

y(i). Using this reduced data set will result in a revised fitted parameter vector,̂β(i). The solution to the

normal equations for̂β(i) will give

β̂(i) = (X′
(i)X(i))

−1X′
(i)y(i)

and in order to derive the various equations of interest, expressions need to be obtained for this quantity.

To facilitate development of quantities it is useful to denote the rows ofX byx′i, so thatX′ = (x1
...x2

... . . .
...xn).

Now, some algebra can be used to see that

X′X− =
n

∑
i=1

xix′i

and hence
X′

(i)X(i) = X′X −xix′i

Further the following can be verified using simple matrix multiplication if A is a nonsingular matrix and
u, v are column vectors, all of matching dimensions:

(A +uv′)−1 = A−1− 1
1−v′A−1u

(A−1u)(v′A−1)

(c.f. Rao (1965), p. 33).

From this equations for ˆyi(i) and similar quantities can be derived, e.g.

yi − ŷi(i) =
ei

1−hii
.
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2.5 Autocorrelation

Autocorrelation refers to correlation be-
tweenYi andYi+1.
Only makes sense ifi is “time”.

An incorrect covariance structure can invalidate inference, since this affects the variance computations
of β̂, used when computing thet-statistics (orF) used for testing.

It should be noted, however, that the covariance structure was not used when deriving the result that the
estimators in linear regression are unbiased.

The term autocorrelation only has meaning when some sort of order exists among thex-variables. In
some cases there is an underlying time of year or day, which can be used for ordering, but in other cases
length or some other variable can be used. The first question that arises in this context is whether there
is a correlation betweenYi andYi+1.

Several tests for autocorrelation exist. Simple plots are useful, e.g. plotting ˆei againsti, followed
by simple linear regression of ˆei againsti. Alternatively one can plot ˆei vs êi−1 and investigate the
corresponding correlations. Either approach has the problem that the observed errors are correlated in
nature since they are computed based on the fitted values.

More advanced techniques are also available such as fitting aformal time series (or other) error struc-
ture to the residuals simultaneously with estimating the parameters, or implementing some two-stage
method.

2.6 Leverage values

Hat matrixH = X(X ′X)−1X ′ so ŷ = Hy

andê = (I−H)y with Σê = σ2(I−H) and

V (êi) = σ2(1−hii).
hii=leverage values.∑n

i=1 hii = p 0 ≤
hii ≤ 1. Averagehii is p/n so e.g. 2p/n is
“large”, or use rules of thumb such as 0.2
or 0.5 as “large” values.

The diagonal values of the hat matrix,hii are termedleverage values. Each of these indicate how
strongly the correspondingyi “predicts itself”.

Denote byx′i the i’th row of theX-matrix, soX ′ = [x1
...xp]. Sincehii is the element of the i’th row and

i’th column ofH = X(X′X)−1X′, it is formed from the left through the i’th row ofX and from the right
by the i’th column ofX′, which is the transpose of the i’th row ofX. It follows that

hii = x′i(X
′X)−1xi.

Now, X′X is always symmetric and sinceX is of rank p, X′X is also positive definite and so is the
inverse.

It follows thathii > 0.

Recall that 0≤V [êi] = σ2 (1−hii) and hencehii ≤ 1.

We have shown that
0≤ hii ≤ 1.

It is also true that
n

∑
i=1

hii = p.

16



The average value of thehii is thereforep/n so e.g. 2p/n is “large”, or use rules of thumb such as 0.2
or 0.5 as “large” values.

2.7 Influential observations, DFFITS

Influential observations:

DFFITSi =
Ŷi − Ŷi(i)
√

MSEihii
= ti

(

hii
1−hii

)
1
2

Influential observations:

DFFIT Si =
ŷi − ŷi(i)

√

MSE(i)hii
= ti

(

hii

1−hii

) 1
2

where

ti = êi

[

n− p−1

SSE(1−hii)− ê2
i

]
1
2

as before.

Note thatMSE(i) refers to estimation ofσ2 while leaving out thei’th observation.

{\bf Example:} Age and live weight of lambs. Project: Complete regression analysis with detailed
diagnostics.

\begin{verbatim} days weight 135 39 125 35 120 33 126 38 125 37137 38 133 36 140 41 130 38 129
36 123 34 132 40 129 38 121 34 126 35 137 44 121 34 137 41 130 39 137 43 \end{verbatim}

2.8 Cooks distance

Measures total effect ofi’th on all predic-
tions

Di =
∑ j

(

ŷ j − ŷi(i)

)2

pMSE

The DFFITS above only describe how a single observation affects the prediction of itself. Naturally one
could also consider how observationi affects the prediction of thej’th observation by looking at ˆy j(i). If
one were to carry this through and try to analyze how an observation affects the prediction of all other
observations, this would lead to a somewhat intractablen×n matrix.

Cook’s distance is a single measure describing how an individual observation affects all predictions,
thus summarizing the information into ann-vector.

Di =
∑ j

(

ŷ j − ŷ j(i)

)2

pMSE
=

1
ps2 ||ŷ− ŷ(i)||2

Given deletion formulas, it is not too hard to see that

Di =
ê2

i

ps2

hii

(1−hii)2

and it is seen that this measure is large when either the residual êi is large or the influence measurehii

from the hat matrix is large.
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3 Validating multiple regression models: Model diagnostics

3.1 Introduction and overview

Diagnostics include: Same as in simple lin-
ear regression
Diagnostics for residuals (normality, y-
outliers, constancy of variance)
Identifying X-outliers: Hat matrix
Identifying influential cases
Multicollinearity
Later: Testing for lack of fit

Diagnostics include the same as in simple linear regression, but more are possible in the multiple re-
gression setting and more things can go wrong.

Partial regression plots: Regress onx1 and plot residual against residuals from regression ofx2 ontox1.
Provides indication of whetherx2 should be added and if so, how.

Diagnostics for residuals include tests for normality and constancy of variance. Semistudentized resid-
uals (êi/

√

(MSE)) are commonly used but studentized ( ˆei/
√

(MSE)(1−hii) (see below) would be
better.

It is in particular important to search for outliers or influential cases in the x or y-measurements.

Note: One should always plot the residuals against̂y as well as against each independent variable.

Identifying y-outliers: Hat matrixH = X(X ′X)−1X ′ so ŷ = Hy andê = (I −H)y with Σê = σ2(I −H)
andV (êi) = σ2(1−hii).

Further, consider deleted residuals or studentized deleted residuals through fitting model without i’th
observations, compute fitted, ˆyi(i), and computedi = yi − ŷi(i), ti = di/sdi , with

ti = êi

[

n− p−1

SSE(1−hii)− ê2
i

]
1
2

Can use Bonferroni test witht1−α/(2n),n−p−1

hii=leverage values.∑n
i=1 hii = p 0≤ hii ≤ 1. Averagehii is p/n so e.g. 2p/n is “large”, or use rules

of thumb such as 0.2 or 0.5 as “large” values.

Influential observations:

DFFIT Si =
ŷi − ŷi(i)√
MSEihii

= ti

(

hii

1−hii

)
1
2

Cook’s distance...

DFBETAS - influence on coefficients

Multicollinearity...

Later: Testing for lack of fit

See also section 10 in Neter et al.

See Belsley et al

See help(dffits) in R
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3.2 Partial regressions

Partial regression plots: Regress on allx1
and plot residual against residuals from re-
gression ofx2 ontox1. Provides indication
of whetherx2 should be added and if so,
how.

Partial regression plots: Regress on allx1 and plot residual against residuals from regression ofx2 onto
x1. Provides indication of whetherx2 should be added and if so, how.

3.3 DFBETAS

DFBETAS - influence on coefficients

The variance-covariance matrix of the estimated parametervector,β̂ = (X′X)−1X′y is given byΣβ̂ =

σ2(X′X)−1.

Denote byckk the diagonal elements of(X′X)−1 so the variance ofβk is given by

V [βk] = ckkσ2.

Use(i) to denote a fit without observationyi, 0≤ i ≤ n and letβ̂k be one of the parameters, 1≤ k ≤ p.

Define

DFBETASk(i) =
β̂k − β̂k(i)

√

MSE(i)ckk

as a measure of the influence of measurementi on coefficientk.

3.4 Multicollinearity

Multicollinearity...

Multicollinearity refers to the case when the columns of theX-matrix are “almost” linearly dependent
and thus theX′X-matrix is difficult to invert. This basically means that some independent variables can
be predicted based on the remaining set.

Commonly this simply reflects a poorly defined problem and sometimes it is possible to redefine the
regression problem in terms of a different set ofx-variables which are “less dependendent”, i.e. are less
correlated.

This situation arises in polynomial regression, whereyi is to be predicted based on a linear combination
of xi, x2

i , x3
i , etc. Naturally, if some of thex-values are larger than unity, then the raised values can

become arbitrarily large and this alone will cause problems. Hence the variables are at a minimum
scaled so that all raised values are limited to a reasonable magnitude. Simple scaling is not enough
however, since as higher powers are used theX-matrix with columns containing 1,xi, x2

i etc will become
increasingly more difficult. The obvious solution here is tomake the columns orthogonal by replacing
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the columns with an orthonormal basis. Since the basis spansthe same space as the columns of the
originalX-matrix, the projection (fitted values) will be the same.

The approach of replacing the original columns of theX-matrix by an orthogonal set is perfectly general
and is clearly applicable whenever the interest is either inprediction or in simply testing for significance.
If, however, the interest is in the parameter values themselves, then this is not sufficient.

3.5 Remedial measures

Need to improve model based on diagnos-
tics
Error distribution: Transform data?
Unequal variances: Weighting or transfor-
mation, possibly variance function of x-
variable(s)?
Outliers in y, or non-normality: Robust re-
gression?
Nonlinear mean response: Loess or other
smoothers (later) or polynomial?
Non-independence: Use variance-
covariance matrix?
May need to abandon LS and go to ML

Need to improve model based on diagnostics

Error distribution: Transform data?

Unequal variances: Weighting or transformation, possiblyvariance function of x-variable(s)?

Outliers in y, or non-normality: Robust regression?

Nonlinear mean response: Loess or other smoothers (later) or polynomial?

Non-independence: Use variance-covariance matrix?

May need to abandon LS and go to ML

Notes: Model diagnostics will typically identify some problem areas and thus the model needs to be
modified.

The investigation of the error distribution and the constancy of variances (homoscedasticity) are tightly
linked. The most common problem is probably of inflated variances with increased values of anx-
variable and this is commonly associated with a observed right-skewed distribution of the residuals,
which again corresponds to they-values having a right-skewed distribution, rather than Gaussian. The
solution in this case may be to log-transform (at least) they-values and perform a corresponding trans-
formation of the model. Notably this commonly replaced an additive model with a multiplicative model
and in many cases this is a reasonable approach. When lookingfor predictions on the original scale,
however, this method is problematic and a bias is introduced.

Alternatively a weighted regression may be used for taking into account heteroscedasticity alone. A lin-
ear transformation may possibly be appropriate to take intoaccount a correlation and variance structure
(see below).

A different class of models,generalized linear modelsor generalized additive modelsmay also be
used to take into account different error structures without resorting to transformation of the data.

When the analysis of residuals, leverage values, deleted residuals, DFFITS or DFBETAS identifies
outliers or influential observations some action is needed.It is not good practice to merely delete the
corresponding values. Usually the detection of such problem values requires investigation of the initial
data in order to find the source of the problem. In many real situations a data-entry problem can be
found in this manner and appropriately corrected. In other cases the data point will have to be deleted
since the investigation reveals that it is an impossible data point. The final resort will be to delete the
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data point simply because it is in discordance with the entire rest of the data set.

Robust regressionmay be used to avoid the problems of outliers, influential values and non-normality.

Naturally a residual plot may indicate nonlinearity in the mean response. This may possibly be resolved
using loess or other smoothers (e.g. generalized additive models) or polynomial regression?

In difficult situations a move from least squares estimationto maximum likelihood with a complex
mean-variance structure may be required. A special case of this is when the residuals are found to be
statistically dependent (below).

3.6 Correlated data

If Y are not independent,ΣY 6= σ2I then adjustments are needed.

The special case when the correlations are known is of particular significance. This case can be solved
and is also quite common. Assume therefore that the variance-covariance matrix can be written in the
form ΣY = σ2B with B>0.

Use Cholesky factorisation to writeB = T′T andT = U−1.

Now defineỸ = U′Y...

3.7 Further reading

Standard regression texts such as Neter et al (1996) all provide some methods for simple regression
diagnostics and the theoretical foundations for these can be found or derived in theoretical texts such as
Scheffe (1959).

More detailed treatment of diagnostics per se can be found inspecific texts on this topics, e.g. Belsey et
al (1980) which use theoretical results from linear algebrawhich can be found e.g. in Rao (1965).

Robust regression is handled in many textbooks, with several useful cases for robust and exploratory
analysis given in Hoaglin et al (1983).
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