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Introduction

The following gives a review of:

Scatter plots

Correlation

Simple linear regression - SLR

Inference in SLR
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Scatter plot

Scatter plot
Scatter plots are used to investigate the relationship between two numerical
variables.

The value of one variable is on the y-axis (vertical) and the other on the
x-axis (horizontal).

When one of the variable is an explanatory variable and the other one is a
response variable, the response variable is always on the y-axis and the
explanatory variable on the x-axis.
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The equation of a straight line

The equation of a straight line
The equation of a straight line describes a linear relationship between two
variables, x and y. The equation is written

y = β0 + β1x

where β0 is the intercept of the line on the y-axis and β1 is the slope of
the line.
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Linear relationship

Linear relationship
We say that the relationship between two variables is linear if the equation
of a straight line can be used to predict which value the response variable
will take based on the value of the explanatory variable.

There can be all sorts of relationship between two variables. For example,
the relationship can be described with a parabola, an exponential function
and so on. Those relationship are referred to as nonlinear.
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Linear/nonlinear relationship
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Sample correlation coefficient

Sample coefficient of correlation
Assume that we have n measurements on two variables x and y.
Denote the mean and the standard deviation of the variable x with x̄ and
sx and the mean and the standard deviation of the y variable with ȳ and sy.

The sample coefficient of correlation is

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
.

Warning: The correlation only estimates the strength of a linear
relationship!
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Correlation and causation

Causation is when changes in one variable cause changes in the
other variable.
There is often strong correlation between two variables although there
is no causal relationship.
In many cases, the variables are both influenced by the third variable
which is then a lurking variable.
Therefore, high correlation on its own is never enough to claim that
there is a causal relationship between two variables!
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Informal regression

Input: Have data as (x, y)-pairs

Suppose a scatterplot indicates a linear relationship

Loosely: Want to "fit a line" through the data

Next: Evaluate the fit
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Formal regression

Consider fixed numbers, xi

Random variables: Yi ∼ N(β0 + β1xi, σ
2)

or: Yi = β0 + β1xi + εi

where εi ∼ N(0, σ2) is a random error term, independent and identically
distributed (i.i.d.)

We collect some data on (yi, xi) and use the data to estimate β0 and β1.
We can then predict Y using

ŷi = b0 + b1xi

Then
ei = yi − ŷi

is the ith residual - the difference between the ith observed response and
the prediction.
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The linear regression model

The linear regression model
The simple linear regression model is written

Y = β0 + β1x+ ε

where β0 and β1 are unknown parameters and ε is a normally distributed
random variable with mean 0 and variance σ2.

The aim of the simple linear regression is first and foremost to estimate the
parameters β0 and β1 with the measurements on the two variables,
x and Y .

The most common estimation method is through least squares.
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Which line?
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The least squares method
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The least squares method

Least squares estimation technique minimizes:

S =
∑

(yi − (b0 + b1xi))
2

Maximum likelihood estimation assumes a probability distribution for
the data and maximizes the corresponding likelihood function.

In the case of normal distributions the two methods results in the same
estimates - we will use least squares.
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The least squares regression line

Let the mean and standard deviation of the x variable with x̄ and sx and
the y variable with ȳ and sy and their correlation coefficient with r.

Let b0 denote the estimate of β0 and b1 denote the estimate of β1. Then
b0 and b1 are given with the equation

b1 =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
= r

sy
sx

and

b0 = ȳ − b1x̄.

These are the least squares estimates of the coefficient of a regression line
through the data points (x, y).
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Prediction

We often want to use our regression model to predict the outcome of our
response variable for some value(s) of the explanatory variable.

Prediction
We can predict the value of Y for some value of x using

ŷh = b0 + b1 · xh
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Interpolation

Interpolation
If the regression model is used to predict a value of Y for some value of x
which is similar to the x-values that were used to estimate the model is
referred to as interpolating.
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Extrapolation

Extrapolation
Extrapolating is using the regression model to predict a value of Y for
some value of x which is far from the x-values that were used to estimate
the model.

It can be very questionable to extrapolate!
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Estimating dispersion

A point estimate of σ2, the variance of the y-measurements, is obtained
with

s2 =

∑
i (yi − (b0 + b1xi))

2

n− 2

The predicted value of y at a given x is often denoted by ŷ = b0 + b1x and
therefore

s2 =

∑
i(yi − ŷi)2

n− 2

Commonly σ̂2 is used in place of s2.
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Estimating dispersion

We will commonly use the notation

SSE =
∑
i

(yi − (b0 + b1xi))
2

and
MSE = SSE/(n− 2)

so s2 = MSE.
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Correlation and explained variation

Recall the the correlation coeffficient r is always between −1 and 1.

Write SSE =
∑

(y− ŷ)2 (sum of squared errors, i.e. error after regression),
and SSTOT =

∑
(y − ȳ)2 (total sum of squares, i.e. before regression)

The explained variation
The explained variation, often called the coefficient of determination, is
calculated with

R2 = 1− SSE
SSTOT

Note:

R2 = 1−
∑

(y − ŷ)2∑
(y − ȳ)2

= . . . = r2
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SLR in R

It is easy to perform linear regression in R using the lm() function. For
simple linear regression the syntax is

fit <- lm(x ~ y, data=nameofdataset)

The results can then be looked at using the summary() function

summary(fit)
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Inference in the linear regression model

Recall that if we have n paired measurements (x1, y1), . . . , (xn, yn), the
regression model can be written as

Yi = β0 + β1xi + εi.

β0 is the true intercept (population intercept) that we do not know
the value of.
β1 is the true slope (population slope)
εi are the errors where ε ∼ N(0, σ2) and

σ̂2 =

∑
(y − ŷ)2

n− 2

β0 and β1 are therefore parameters, that we both want to estimate and
make inference on.
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Estimating slope and intercept accuracy

The standard error of the slope is:

σ̂2b1 =
σ̂2∑

(x− x̄)2

and the standard error of the intercept is:

σ̂2b0 =

(
1

n
+

x̄2∑n
i=1 (xi − x̄)2

)
σ̂2

where

σ̂2 =

∑
(y − ŷ)2

n− 2

(UI) SLR 28 / 35



Elements of inference in simple linear regression

Basic inference: Test hypotheses and generate confidence intervals for slope
and intercept.

Results on the estimators can be used to make inference on the true slope
and intercept.

The first question raised is whether there is any relationship between the x
and y measurements, i.e. whether the slope is zero. This can be phrased as
a general hypothesis test for the slope.

Although hypothesis tests are important, they give no information if the
hypothesis can not be rejected and hence confidence intervals tend to be
more informative in general.

Both hypothesis tests and confidence intervals can be derived for the
intercept as well as the slope, although inference for the intercept tends not
to be as commonly used.
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Testing hypotheses concerning the slope

Hypothesis test forβ1
The null hypothesis is:

H0 : β1 = β10

The test statistic is:
t =

b1 − β10
σ̂β̂1

If the null hypothesis is true the test statistic follows the t distribution with
n-2 degrees of freedom or t ∼ t(n− 2).

Alternative hypothesis Reject H0 if:
H1 : β1 < β10 t < −t1−α
H1 : β1 > β10 t > t1−α
H1 : β1 6= β10 t < −t1−α/2 or t > tα/2
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Confidence interval for β1

Confidence interval for β1
The lower bound of1− α confidence interval for β1 is:

b1 − t1−α/2,(n−2) · σ̂β̂1

The upper bound of 1− α confidence interval is:

b1 + t1−α/2,(n−2) · σ̂β̂1

where b1 is calculated the same way as usual, n is the number of paired
measurements and t1−α/2,(n−2) is found in the t-distribution table.
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Confidence interval for β0

Confidence interval for β0
The lower bound of a 1− α confidence interval for β0 is:

b0 − t1−α/2,(n−2) · σ̂β̂0

The upper bound of 1− α confidence interval is:

b0 + t1−α/2,(n−2) · σ̂β̂0

where b0 is calculated the same way as usual, n is the number of paired
measurements and t1−α/2,(n−2) is in the table for the t-distribution.
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Confidence interval for a point on the regression line

Confidence interval for a point on the regression line

The lower bound of 1− α confidence interval for Ŷh is:

(b0 + b1xh)− t1−α/2,(n−2) · syh

The upper bound of 1− α confidence interval is:

(b0 + b1xh) + t1−α/2,(n−2) · syh

where b0 and b1 are calculated the same way as usual, n is the number of
paired measurements, t1−α/2,(n−2) is found in the t-distribution table and

syh =

√√√√σ̂2

(
1

n
+

(xh − x̄)2∑
j(xj − x̄)2

)
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Predicting a new observation

Notice, that as a prediction for a future point, includes two sources of
variation or error, first due to the measurement errors in the original data
through variation in the parameter estimates and secondly through the
future measurement errors at this point.
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Prediction interval for a new observation

Prediction interval for a new observation

The lower bound of 1− α prediction interval for Ŷh is:

(b0 + b1xh)− t1−α/2,(n−2) · spred

The upper bound of 1− α prediction interval is:

(b0 + b1xh) + t1−α/2,(n−2) · spred

where b0 and b1 are calculated the same way as usual, n is the number of
paired measurements, t1−α/2,(n−2) is found in the t-distribution table and

spred =

√√√√σ̂2

(
1 +

1

n
+

(xh − x̄)2∑
j(xj − x̄)2

)
.
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