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Inference in MLR

@ If we want to make any confidence intervals or perform any hypothesis
tests we will need to assume some distributional form for the errors €.

@ The usual assumption is that the errors are independent and
identically normally distributed with mean 0 and variance o2, i.e.

e~ N(0,021)

@ It is possible to handle non-identity variance matrices provided we
know the form - see Chapter 5.
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Hypothesis tests to compare models

@ Given several predictors for a response we might wonder whether all are
needed.

@ Consider a large model, 2, and a smaller model, w, which consists of a
subset of the predictors that are in Q.

@ We will take w to represent the null hypothesis and Q to represent the
alternative.

@ If RSS, - RSSq is small, then w is an adequate model relative to Q. This
suggests that something like

RSS,, — RSSq
RSSq

would be a potentially good test statistic. You will see in later courses that
the same statistic arises from the likelihood ratio testing approach.
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Hypothesis tests to compare models

Now suppose that the dimension (no. of parameters) of €2 is ¢ and the
dimension of w is p.

If the null hypothesis is true the following holds (Cochran’s theorem):

R55. —RS8 2o g BO50 20

q—p P n—q !
and
(RSSy — RSSa)/(a—p)  n
RSSq/(n —q) pna
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The overall F-test

Are any of the predictors useful in predicting the response?

e Full model (Q): y = X3+ €, where X is a full rank n x p matrix.
o Null model (w): y = p + €, predict y by the mean.

If the null hypothesis is true the following holds:

(SSY — RSS)/(p — 1)
RSS/(n —p)

~ Fpin—p

Thus we would reject the null hypothesis if F' > F(i_q),—1n—p
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Hypothesis tests to compare models

@ Rejecting the null does not imply that the alternative model is the
best model.

o We don't know whether all the predictors are required to predict the
response or just some of them.

o Other predictors, not included in the model, might also be added (for
example quadratic terms in the existing predictors).

o Either way, the overall F-test is just the beginning of an analysis and
not the end.
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Performing the F-test in R

o Fit the larger model using 1m() and store it in an Im-object (fit.1)
o Fit the smaller model using 1m() and store it in an Im-object (fit.2)

@ Use the anova() function to perform the test (anova(fit.1,fit.2))
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Testing just one predictor

The null hypothesis for dropping one particular predictor, /3; from the model
would be Hy : 3; =0

The F-test can be set up in the following manner:

@ RSSq is the RSS for the model with all the predictors of interest
(p parameters).

@ RSS,, is the RSS for the model with all the above predictors except
predictor 1.

The F-statistic may be computed using the formula from above.
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Testing just one predictor

An alternative approach to test the hypothesis
Hy:3,=0

is to use a t-statistic:

~

BiA
se(B;)

The null hypothesis should be rejected if ¢ > ¢ _4 /2 ,—p-

ti =

The two approaches, using the F- and the t-test, are identical.
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Testing a pair of predictors

@ Except in special circumstances, dropping one variable from a
regression model causes the estimates of the other parameters to

change.

@ This means that we might find that after dropping some variable X
that a test of the significance of another variable X} shows that it
should be included in the model even though it was not significant
when X; was in the model.

@ Therefore: remove one variable at a time from the model.
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Testing the predictors

@ Variables where the p-value is less than « are said to be significant.

@ Variables where the p-value is greater than « are said to be
nonsignificant.

@ It is not clear cut when to remove a variable from the model:

o if p-value > 0.25 we usually remove the variable.
e if & < p-value < 0.25 we usually keep the variable.

o if p-value < a we keep the variable.

@ When performing more than one test we need to think about
multiplicity issues...

We will look more closely into model selection in Chapter 10.
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Concerns about Hypothesis Testing

e Sampling
e Power/lack of power
@ Inference depends on the correctness of the model

@ Statistical significance is not equivalent to practical significance
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Confidence intervals

e Confidence intervals provide an alternative way of expressing the
uncertainty in our estimates.

@ Closely linked to the tests that we have already constructed.

@ The confidence region provides a lot more information than a single
hypothesis test in that it tells us the outcome of a whole range of
hypotheses about the parameter values.

@ The confidence region tells us about plausible values for the
parameters in a way that the hypothesis test cannot. This makes it
more valuable.
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Confidence intervals

Confidence intervals constructed for each parameter individually take the
general form of

estimate =+ critical value X s.e. of esitmate

or specifically in this case

Bi + 75(1—&/2),77,—;76- (XTX)Z‘_Z‘l
These can be found using the confint () function in R.

Joint confidence intervals are sometimes used when the [3's are heavily
correlated.
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Confidence intervals for predictions - prediction intervals

@ Given a new set of predictors, g the predicted response can be fond
with g = z'3.

@ We need to distinguish between between predictions of the future
mean response and predictions of future observations.

@ Most times, we will want the latter case, the prediction interval, while
the first case, the confidence interval, is less common.
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Confidence intervals for predictions - prediction intervals

A 100 - (1 — «) % prediction interval is

@0 + t(l—a/2),n—p&\/1 + wg(XTX)_1$0

and a 100 - (1 — «)) % confidence interval is

go £ t(l—a/?),n—p&\/xg(XTX)_le
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|dentifiability

The least squares estimate is the solution to the normal equations:
XTXB=XTy
where X is an n X p matrix.
@ If XT X singular and cannot be inverted there will be infinitely many

solutions to the normal equations and 3 is at least partially unidentifiable.

@ Unidentifiability will occur when X is not of full rank, that is when its
columns are linearly dependent.

@ With observational data, unidentifiability is usually caused by some oversight.

@ We will look more into unidentifiability when we talk about ANOVAs.
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What can go wrong in MLR?

@ Source and quality of the data
@ Error component

@ Structural Component
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Interpreting Parameter Estimates

We have a multiple linear regression model:

§ = Bo+ Br1 + .. + Bp-nympo1)
what does (3, mean?

o /3 is the effect of 21 when all other variables included in the model
are held constant

@ In stead of focusing on the values of the parameters an alternative
approach is to recognize that the parameters and their estimates are
fictional quantities in most regression situations.

@ The "true" values may never be known (if they even exist in the first
place).

@ Instead, concentrate on predicting future values - these may actually
be observed and success can then be measured in terms of how good
the predictions were.
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