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Inference in MLR

If we want to make any confidence intervals or perform any hypothesis
tests we will need to assume some distributional form for the errors ε.

The usual assumption is that the errors are independent and
identically normally distributed with mean 0 and variance σ2, i.e.
ε ∼ N(0, σ2I)

It is possible to handle non-identity variance matrices provided we
know the form - see Chapter 5.
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Hypothesis tests to compare models

Given several predictors for a response we might wonder whether all are
needed.

Consider a large model, Ω, and a smaller model, ω, which consists of a
subset of the predictors that are in Ω.

We will take ω to represent the null hypothesis and Ω to represent the
alternative.

If RSSω - RSSΩ is small, then ω is an adequate model relative to Ω. This
suggests that something like

RSSω −RSSΩ

RSSΩ

would be a potentially good test statistic. You will see in later courses that
the same statistic arises from the likelihood ratio testing approach.
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Hypothesis tests to compare models

Now suppose that the dimension (no. of parameters) of Ω is q and the
dimension of ω is p.

If the null hypothesis is true the following holds (Cochran’s theorem):

RSSω −RSSΩ

q − p
∼ σ2χ2

q−p and
RSSΩ

n− q
∼ σ2χ2

n−q

and
(RSSω −RSSΩ)/(q − p)

RSSΩ/(n− q)
∼ Fq−p,n−q
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The overall F-test

Are any of the predictors useful in predicting the response?

Full model (Ω): y = Xβ + ε, where X is a full rank n× p matrix.

Null model (ω): y = µ+ ε, predict y by the mean.

If the null hypothesis is true the following holds:

(SSY −RSS)/(p− 1)

RSS/(n− p)
∼ Fp−1,n−p

Thus we would reject the null hypothesis if F > F(1−α),p−1,n−p
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Hypothesis tests to compare models

Rejecting the null does not imply that the alternative model is the
best model.

We don’t know whether all the predictors are required to predict the
response or just some of them.

Other predictors, not included in the model, might also be added (for
example quadratic terms in the existing predictors).

Either way, the overall F-test is just the beginning of an analysis and
not the end.
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Performing the F-test in R

Fit the larger model using lm() and store it in an lm-object (fit.1)

Fit the smaller model using lm() and store it in an lm-object (fit.2)

Use the anova() function to perform the test (anova(fit.1,fit.2))
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Testing just one predictor

The null hypothesis for dropping one particular predictor, βi from the model
would be H0 : βi = 0

The F-test can be set up in the following manner:

RSSΩ is the RSS for the model with all the predictors of interest
(p parameters).

RSSω is the RSS for the model with all the above predictors except
predictor i.

The F-statistic may be computed using the formula from above.

(UI) Inference 8 / 19



Testing just one predictor

An alternative approach to test the hypothesis

H0 : βi = 0

is to use a t-statistic:

ti =
β̂i

se(β̂i)

The null hypothesis should be rejected if t > t1−α/2,n−p.

The two approaches, using the F- and the t-test, are identical.
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Testing a pair of predictors

Except in special circumstances, dropping one variable from a
regression model causes the estimates of the other parameters to
change.

This means that we might find that after dropping some variable Xj

that a test of the significance of another variable Xk shows that it
should be included in the model even though it was not significant
when Xj was in the model.

Therefore: remove one variable at a time from the model.
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Testing the predictors

Variables where the p-value is less than α are said to be significant.

Variables where the p-value is greater than α are said to be
nonsignificant.

It is not clear cut when to remove a variable from the model:

if p-value > 0.25 we usually remove the variable.

if α < p-value < 0.25 we usually keep the variable.

if p-value < α we keep the variable.

When performing more than one test we need to think about
multiplicity issues...

We will look more closely into model selection in Chapter 10.
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Concerns about Hypothesis Testing

Sampling

Power/lack of power

Inference depends on the correctness of the model

Statistical significance is not equivalent to practical significance
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Confidence intervals

Confidence intervals provide an alternative way of expressing the
uncertainty in our estimates.

Closely linked to the tests that we have already constructed.

The confidence region provides a lot more information than a single
hypothesis test in that it tells us the outcome of a whole range of
hypotheses about the parameter values.

The confidence region tells us about plausible values for the
parameters in a way that the hypothesis test cannot. This makes it
more valuable.
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Confidence intervals

Confidence intervals constructed for each parameter individually take the
general form of

estimate± critical value× s.e. of esitmate

or specifically in this case

β̂i ± t(1−α/2),n−pσ̂

√
(XTX)−1

ii

These can be found using the confint() function in R.

Joint confidence intervals are sometimes used when the β̂’s are heavily
correlated.
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Confidence intervals for predictions - prediction intervals

Given a new set of predictors, x0 the predicted response can be fond
with ŷ0 = xT

0 β̂.

We need to distinguish between between predictions of the future
mean response and predictions of future observations.

Most times, we will want the latter case, the prediction interval, while
the first case, the confidence interval, is less common.
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Confidence intervals for predictions - prediction intervals

A 100 · (1 − α) % prediction interval is

ŷ0 ± t(1−α/2),n−pσ̂
√

1 + xT
0 (X

TX)−1x0

and a 100 · (1 − α) % confidence interval is

ŷ0 ± t(1−α/2),n−pσ̂
√
xT
0 (X

TX)−1x0
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Identifiability

The least squares estimate is the solution to the normal equations:

XTXβ̂ = XTy

where X is an n× p matrix.

If XTX singular and cannot be inverted there will be infinitely many
solutions to the normal equations and β̂ is at least partially unidentifiable.

Unidentifiability will occur when X is not of full rank, that is when its
columns are linearly dependent.

With observational data, unidentifiability is usually caused by some oversight.

We will look more into unidentifiability when we talk about ANOVAs.
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What can go wrong in MLR?

Source and quality of the data

Error component

Structural Component
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Interpreting Parameter Estimates

We have a multiple linear regression model:

ŷ = β̂0 + β̂1x1 + ...+ β̂(p−1)x(p−1)

what does β̂1 mean?

β̂1 is the effect of x1 when all other variables included in the model
are held constant
In stead of focusing on the values of the parameters an alternative
approach is to recognize that the parameters and their estimates are
fictional quantities in most regression situations.
The "true" values may never be known (if they even exist in the first
place).
Instead, concentrate on predicting future values - these may actually
be observed and success can then be measured in terms of how good
the predictions were.
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