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Data

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the
savings ratio (aggregate personal saving divided by disposable income) is
explained by per-capita disposable income, the percentage rate of change in
per-capita disposable income, and two demographic variables: the percentage of
population less than 15 years old and the percentage of the population over 75
years old. The data are averaged over the decade 1960-1970 to remove the
business cycle or other short-term fluctuations.

library(faraway) # you need to install the package first
data(savings)

The dataframe contains the following columns:

sr savings rate - personal saving divided by disposable income
pop15 percent population under age of 15
pop75 percent population over age of 75
dpi per-capita disposable income in dollars
ddpi percent growth rate of dpi
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Diagnostics

Regression model building is often an iterative and interactive process.

The first model we try may prove to be inadequate.

Regression diagnostics are used to detect problems with the model and
suggest improvement.

This is a hands-on process.
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Residuals and leverage

Recall that ŷ = X(XTX)−1XTy = Hy where H is the hat matrix.

Now,

ε̂ = y− ŷ = (I −H)y

= (I −H)Xβ+ (I −H)ε

= (I −H)ε

and var[ε̂] = (I −H)σ2 assuming var[ε] = σ2I.

hi = Hii are called leverages and are useful diagnostics.
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Leverages

Leverage is a measure of how far away the independent variable values
of an observation are from those of the other observations.

Large values of hi are due to extreme values in X.

High-leverage points are those observations, if any, made at extreme
or outlying values of the independent variables such that the lack of
neighboring observations means that the fitted regression model will
pass close to that particular observation.

An average value for hi is p/n and a ”rule of thumb” is that leverages
of more than 2p/n should be looked at more closely.
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Outliers
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Studentized residual

We saw earlier that
var[ε̂i] = (1− hi)σ2

This suggests the use of

ri =
ε̂i

σ̂
√

1− hi
which are called studentized residuals

If the model assumptions are correct var[ri] = 1

Studentized residuals are sometimes preferred in residual plots as they
have been standardized to have equal variance.
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An outlier test

An outlier is a point that does not fit the current model.

We need to be aware of such exceptions.

An outlier test is useful because it enables us to distinguish between
truly unusual points and residuals which are large but not exceptional.

(UI) Estimation 8 / 43



Outliers
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An outlier test

We exclude point i and recompute the estimates to get β̂(i) and σ̂2(i) where
(i) denotes that the ith observation has been excluded.

Hence
ŷ(i) = xT

i β̂(i)

If ŷ(i) − yi is large, i is an oultlier.

How large is large?
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Jackknife residuals

Let us define the jackknife (or externally studentized or leave one out
studentized or crossvalidated) residuals as

ti =
ε̂i

σ̂(i)
√

1− hi
= ri

√
n− p− 1

n− p− r2i

If the model is correct and ε ∼ N(0, σ2I), ti follows a t-distribution with
(n− p− 1) degrees of freddom.
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Jackknife residuals

Since ti ∼ t(n−p−1) we can calculate a p-value to test whether case i
is an outlier.

However, we are likely to want to test all cases (residuals) so we must
adjust the level of the test accordingly.

We can use Bonferroni correction (conservative method): adjust the α
level as α/n.
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Outliers
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What should be done about outliers

Check for a data entry error first - these are relatively common.

Examine the physical context - why did it happen? Sometimes, the
discovery of an outlier may be of singular interest. Some scientific
discoveries spring from noticing unexpected aberrations.

Exclude the point from the analysis but try reincluding it later if the
model is changed. The exclusion of one or more points may make the
difference between getting a statistical significant result or having
some unpublishable research.

To avoid any suggestion of dishonesty, always report the existence of
outliers even if you do not include them in your final model.
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Influential observations

An influential point is one whose removal from the dataset would
cause a large change in the fit.

An influential point may or may not be an outlier and may or may not
have large leverage but it will tend to have at least one of those two
properties.

Some measures of influence, where the subscripted i indicates the fit
without case i are

Change in the coefficients β̂− β̂(i)

Change in the fit ŷ− ŷ(i)

These are hard to judge in the sense that the scale varies between
datasets.
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Cook’s distance

A popular alternative to the measures above is the Cook’s distance (Cook
statistics) defined as:

Di =
1

p
r2i

hi
1− hi

An index plot of Di can be used to identify influential points.
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Cook’s distance
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Residual plots

Outliers and influential points indicate cases that are in some way
individually unusual but we also need to check the assumptions of the
model.

A plot of ε̂ against ŷ is the most importand diagnostic plot.

If all is well, you should see constant variance in the vertical (ε̂)
direction and the scatter should be symmetric vertically about 0.

Things to look for are heteroscedascity (non-constant variance) and
nonlinearity (which indicates some change in the model is necessar).
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Residual plots
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Residual plots

You should also plot ε̂ against xi (for predictors that are both in and
out of the model).

Look for the same things except in the case of plots against predictors
not in the model, look for any relationship which might indicate that
this predictor should be included.
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Non-constant variance

There are two approaches to dealing with non-constant variance.

Weighted least squares is appropriate when the form of the
no-constant variance is either known exactly or there is some known
parametric form.

Alternatively, one can transform y to h(y) where h is chosen so that
var[h(y)] is constant.
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Non-linearity

In order to check if the systematic part (E[X] = Xβ) of the model is
correct we can look at

Plots of ε̂ against ŷ and xi

Plots of y against each xi

But what about the effects of other x on the y vs. xi plot?

Partial regression or Added variable plots can help isolate the effect of xi
on y.
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Partial Regression plot

1 Regress y on all x except xi, get residuals δ̂

this represents y with the other X-effect taken out.

2 Regress xi on all x except xi, get residuals γ̂

this represents xi with the other X-effect taken out.
3 Plot δ̂ against γ̂.

The slope of a line fitted to the plot is β̂i. Look for non-linearity and
outliers and/or influential points.
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Residual plots
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Assessing Normality

The test and confidence intervals we use are based on the assumption
of normal errors.

The residuals can be assessed for normality using a Q-Q plot.

The steps are:

1 Sort the residuals: ε̂[1] ≤ ...ε̂[n]

2 Compute ui = Φ−1
(

i
n+1

)
3 Plot ε̂[i] against ui. If the residuals are normally distributed an

approximately straight-line relationship will be observed.
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Q-Q plot
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What to do in cases of non-normality?

A transformation of the response may solve the problem - this is often
true for skewed errors.

Other changes in the model may help.

Accept non-normality and base the inference on the assumption of
another distribution or use resampling methods such as the bootstrap
or permutation tests. You don’t want to do this unless absolutely
necessary. Alternatively use robust methods which give less weight to
outlying points. This is appropriate for long tailed distributions.

For short-tailed distributions, the consequences of non-normality are
not serious and can reasonably be ignored.
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Correlated errors

We assume that the errors are uncorrelated but for temporally or spatially
related data this may well be untrue. For this type of data, it is wise to
check the uncorrelated assumption.

Plot ε̂ against time.

Use formal tests like the Durbin-Watson or the run test.

If you do have correlated errors, you can use GLS (Chapter 5). This does
require that you know Σ or more usually that you can estimate it. In the
latter case, an iterative fitting procedure will be necessary as in IRWLS.
Such problems are common in Econometrics.
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Diagnostics in R

fit <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings,na.action="na.exclude")
summary(fit)

##
## Call:
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = savings,
## na.action = "na.exclude")
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi -0.0003369 0.0009311 -0.362 0.719173
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
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Diagnostics in R

The fortify() method from the ggplot2 package gives us: ε̂ (.resid), hi
(.hat), ri (.stdresid) and Di (.cooks):

library(ggplot2) # you need to install first if you have not done that already
diag<-fortify(fit)
head(diag)

## sr pop15 pop75 dpi ddpi .hat .sigma .cooksd
## Australia 11.43 29.35 2.87 2329.68 2.87 0.06771343 3.843274 0.0008035888
## Austria 12.07 23.32 4.41 1507.99 3.93 0.12038393 3.844361 0.0008175997
## Belgium 13.17 23.80 4.43 2108.47 3.82 0.08748248 3.829661 0.0071546738
## Bolivia 5.75 41.89 1.67 189.13 0.22 0.08947114 3.844055 0.0007278744
## Brazil 12.88 42.19 0.83 728.47 4.56 0.06955944 3.805340 0.0140273514
## Canada 8.79 31.72 2.85 2982.88 2.43 0.15840239 3.845285 0.0003106199
## .fitted .resid .stdresid
## Australia 10.566420 0.8635798 0.23520105
## Austria 11.453614 0.6163860 0.17282943
## Belgium 10.951042 2.2189579 0.61085760
## Bolivia 6.448319 -0.6983191 -0.19245030
## Brazil 9.327191 3.5528094 0.96858807
## Canada 9.106892 -0.3168924 -0.09083873
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Diagnostics in R

The rstudent() method gives us the Jackknife residuals (ti):

head(rstudent(fit))

## Australia Austria Belgium Bolivia Brazil Canada
## 0.23271611 0.17095506 0.60655220 -0.19037831 0.96790816 -0.08983197

Add jackknife residuals to diag dataframe

diag$.jack<-rstudent(fit) # add jackknife residuals to diag dataframe
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Index plot of residuals

p1<-ggplot(diag, aes(x=seq(1:length(.resid)),y=.resid))+geom_point()
p1<-p1+geom_hline(yintercept=0, col="red", linetype="dashed")
p1<-p1+xlab("Index")+ylab("Residuals")
p1
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Index plot of leverages

p<-length(coef(fit))
n<-length(fitted(fit))
p2<-ggplot(diag, aes(x=seq(1:length(.hat)),y=.hat))+geom_point()

p2<-p2+geom_hline(yintercept=2*p/n, col="red", linetype="dashed")
p2<-p2+xlab("Index")+ylab("Leverages")
p2
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Index plot of studentized residuals

p3<-ggplot(diag, aes(x=seq(1:length(.stdresid)),y=.stdresid))+geom_point()
p3<-p3+geom_hline(yintercept=0, col="red", linetype="dashed")
p3<-p3+xlab("Index")+ylab("Studentized residuals")
p3
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Index plot of jackknife residuals

p4<-ggplot(diag, aes(x=seq(1:length(.jack)),y=.jack))+geom_point()
p4<-p4+geom_hline(yintercept=0, col="red", linetype="dashed")
p4<-p4+xlab("Index")+ylab("Jackknife residuals")
p4
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Cooks distance

p5<-ggplot(diag, aes(x=seq(1:length(.cooksd)),y=.cooksd))+geom_point()
p5<-p5+xlab("Index")+ylab("Cooks distance")
p5
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Residual plots

p6<-ggplot(diag, aes(x=.fitted,y=.resid))+geom_point()
p6<-p6+stat_smooth(method="loess",se=F)+

geom_hline(yintercept=0, col="red", linetype="dashed")
p6<-p6+xlab("Fitted")+ylab("Residuals")
p6
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Locate point on the graph

p6 + geom_text(aes(label=ifelse(abs(.resid)>5,row.names(savings),"")),
hjust=-0.1)
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Residual plots

p7<-ggplot(diag, aes(x=pop15,y=.resid))+geom_point()
p7<-p7+stat_smooth(method="loess",se=F)+

geom_hline(yintercept=0, col="red", linetype="dashed")
p7<-p7+xlab("pop15")+ylab("Residuals")
p7
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Partial regression plot

d<-lm(sr~ pop75 + dpi + ddpi,savings)$res
m<-lm(pop15~pop75 + dpi + ddpi,savings)$res
pr<-data.frame(d=d,m=m)

p8<-ggplot(pr, aes(x=m,y=d))+geom_point()
p8<-p8+stat_smooth(method="lm",se=F)
p8<-p8+xlab("pop15 residuals")+ylab("savings residuals")
p8
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Partial residuals

savings$partPop15<-fit$res+fit$coef['pop15']*savings$pop15

p9<-ggplot(savings, aes(x=pop15,y=partPop15))+geom_point()
p9<-p9+stat_smooth(method="lm",se=F)
p9<-p9+xlab("pop15")+ylab("Savings (adjusted)")
p9

−25

−20

−15

−10

−5

30 40
pop15

S
av

in
gs

 (
ad

ju
st

ed
)

(UI) Estimation 41 / 43



Q-Q plot of studentized residuals

p10<-ggplot(diag, aes(sample = .stdresid)) + stat_qq()
p10 <- p10 + geom_abline(slope=1)
p10 <- p10 + ylab("Studentized residuals")
p10
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Histogram of residuals

p11<-ggplot(diag, aes(.resid)) + geom_histogram(binwidth=2)
p11 <- p11 + xlab("Residuals")
p11
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