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1 Problem statement and estimators

1.1 Multiple linear regression problem

For y-observations, we want descriptive and predictive linear model of several variables

y = β1x1 +β2x2 + . . .+βpxp

or, rather yi = β1xi1 +β2xi2 + . . .+βpxip + ei

Formulate with matrices...

y = Xβ+ e

Note that intercept is implicit...

Statistical assumptions will be handled later!

1.1.1 Details

Consider the generic problem of fitting a model to data as a simple estimation problem.

Later we will add statistical assumption in order to draw formal conclusions, but in this

section we will only consider point estimation.

When collecting measurements of a dependent variable, i.e. y-observations, it is common

at the same time to have measurements of several independent x-variables.

In this case one needs a descriptive and predictive linear model of several (say p) variables,

i.e. a model of the form: y= β1x1+β2x2+ . . .+βpxp. In this notation there is no distinction

between a multiplier (β j) for a general x-measurement and the intercept. An “intercept”,

α, is implemented simply by setting x1 = 1 and α = β1.

In practise several y-measurements will be made, say n. This can be formulated in matrix

notation viz

y = Xβ+ e

where the n-vector y contains all the y-measurements and the n× p matrix contains all the

independent variables.

1.1.2 Examples

Example 1.1. When a straight line is not an appropriate model for explaining the

relationship between pairs of measurements, (xi,yi), it is possible to consider a quadratic

response function, i.e. define the model EYi = α+ βxi + γx2
i , i = 1, . . . ,n. Defining

xi1 = 1, xi2 = xi, xi3 = x2
i , this becomes a multiple linear regression model.

This example illustrates clearly how the multiple linear regression model refers to linea-

rity in the unknown parameters, not in the independent variables.
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Example 1.2. Consider the following data set (from Stefansson, Skuladottir and Peturs-

son) of indices from Icelandic waters. Here T=temperature, U=catch per unit effort of

(adult) shrimp, I=index of juvenile shrimp abundance, Y=catch of shrimp, B=biomass

of capelin, G=measure of growth of cod from age 4 to 5, S=biomass of spawning cod,

J=biomass of juvenile (immature) cod. This forms the ecosystem example to be used

several times in this tutorial.

t T U I Y B G S J

79 0.5 75.7 2313 1.1 3177 809 447 872

80 5.7 79.8 4747 3.1 2210 777 602 880

81 2.7 77.6 3217 2.1 1442 398 389 704

82 2.7 76.4 1909 1.7 1128 595 266 623

83 1.2 85.0 4368 6.1 2182 725 214 584

84 3.5 86.0 2418 12.2 3579 997 219 605

85 5.0 93.0 3930 12.2 3688 851 268 577

86 3.5 89.0 4943 17.1 3987 873 268 768

87 4.4 77.5 4309 24.6 3727 725 253 921

88 1.7 65.8 4089 20.7 2990 620 193 818

89 3.3 72.0 4994 18.1 2677 785 269 595

90 3.2 81.6 8180 19.4 2146 570 344 408

91 3.6 87.1 8406 26.1 2454 771 232 508

92 4.3 83.5 6376 27.4 3050 570 244 357

93 4.3 94.0 7192 30.1 3185 1004 224 358

94 4.7 104.6 9611 42.1 3119 675 276 292

95 0.3 87.6 9742 49.2 3700 857 380 189

For a data set such as this one several research questions are of interest. One such qu-

estion is what factors affect the growth of cod, the predator in the system. To model cod

growth as a function of the biomass of the two prey one can use the R formulation

G~U+B

and read the data with

read.table("http://tutor-web.net/stats/stats545.1/le
ture10/bore
ol-

dat.txt",header=T)

since it is available on the web. To store the data as an R object and give it a name, a

command of the form

m<-read.table("http://tutor-web.net/stats/stats545.1/le
ture10/

bore
ol-dat.txt",header=T)

is used.
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1.2 Geometric visualization of the multiple regression problem

1.2.1 Details

The least squares problem estimates parameters, β̂1, . . . , β̂p as those values of b1, . . . ,bp

which minimise the sum of squared deviations,

f (b1, . . . ,bp) :=
n

∑
i=1

(yi − (b1xi1 +b2xi2 + . . .+bpxip))
2

i.e. the estimates satisfy

f (β̂1, . . . , β̂p) = minb1,...,bp
f (b1, . . . ,bp).

The least squares problem now becomes the same as minimizing the norm of a difference,

i.e. minimize

||y−Xb||2

over all vectors b.

Notice that Xb is a linear combination of the column vectors of the X-matrix. The set, V ,

of all such combinations forms a subspace of Rn, commonly denoted by span(X) or sp(X):

sp(X) := {Xb ∈ R
n : b ∈ R

p}

Geometrically the problem is therefore equivalent to finding a vector ŷ in the vector space

V , which is closest to y. From a geometric viewpoint this will be seen to be the orthogonal

projection of y onto sp(X).

The solution, ŷ, will be of the form of linear combinations of the columns of the X-matrix,

i.e. ŷ = Xβ̂ for some vector β̂ ∈R
p. The original data vector can now be written as the sum

of two vectors: y = ŷ+(y− ŷ) = Xβ̂+(y−Xβ̂), which will be seen to be orthogonal.

1.2.2 Examples

Example 1.3. Consider the ecosystem example from before. To set up the X matrix,

three columns are needed to reflect the intercept along with the shrimp biomass effect

and the capelin biomass.

To extract columns from the data from m, one can either refer to the columns by name or

number. Reference by number is done with
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> m[,
(3,6)℄

U B

1 75.7 3177

2 79.8 2210

3 77.6 1442

4 76.4 1128

...

but it is much simple to use column names, as in


ols<-m[,
("U","B")℄

with the dplyr package this becomes even easier:

library(dplyr)

sel
ols<-sele
t(mmm,U,I)

but this is not the entire X-matrix since the column of all ones is missing. This is easy to

add, however:

n<-length(m$U)

one<-rep(1,n)

X<-
bind(one,sel
ols)

y<-m$G

so X and y have thus been set up. To easily manipulate the vectors in the X-matrix one

can also extract them from the data frame:

U<-m$U

B<-m$B

In this example n = 17 so y ∈R
17 and the span of the columns of the X-matrix is now the

three-dimensional subspace of R17 spanned by the three vectors called “one”, “U” and

“B” in R.

1.3 Normal equations

Have

X′Xβ̂ = X′y

1.3.1 Details

Suppose y ∈ R
n, and V is a subspace of Rn.

An orthogonal projection of ŷ onto V is a vector, ŷ ∈V such that y− ŷ⊥V . Now consider

a vector, ŷ in V = span(X), which can then be written as ŷ = Xβ̂. Assume it is a projection,

so y− ŷ ⊥V .

Now, let ỹ = Xβ̃ be any other vector in V . Then

||y− ỹ||2 = ||(y− ŷ)+(ŷ− ỹ)||2 = ||y− ŷ||2+ ||ŷ− ỹ||2 ≥ ||y− ŷ||2

and we therefore see that such an orthogonal projection is the best one can do.

It also follows that that ŷ is unique since the only way ỹ can get as close is by having

||ŷ− ỹ||= 0, which only happens when they are equal.
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In conclusion, we have shown that an orthogonal projection of y ∈R
n onto V is the unique

element in V which is closest to y. We now need to find a way to compute the projection.

Next, since the residual vector, y− ŷ = y−Xβ̂, is orthogonal to each vector in V it must also

be orthogonal to each column vector of X, i.e. x′i

Ä

ŷ−Xβ̂
ä

= 0 and therefore X′
Ä

ŷ−Xβ̂
ä

=
0.

Thus, the following normal equations describe how to find the parameters of the ort-

hogonal projection, i.e. the parameters which give the best fit:

X′Xβ̂ = X′y.

In general there is no guarantee that these equations have a unique solution and this is

related to the rank of the X-matrix itself.

1.4 The solution

Solution:

β̂ =
(

X′X
)−1

X′y

Prediction:

ŷ = Xβ̂ = X
(

X′X
)−1

X′y.

Estimated residuals:

ê = y− ŷ = y−Xβ̂ =
Ä

I −X
(

X′X
)−1

XT
ä

y.

1.4.1 Details

When the matrix X′X is invertible, the solution is well-known:

β̂ =
(

X′X
)−1

X′y.

It should be noted, however, that in actual implementations the point estimates can be

obtained using numerical techniques which do not require inverting the matrix. However,

the inverse is usually needed at a later stage.

The predicted values are

ŷ = Xβ̂ = X
(

X′X
)−1

X′y.

The estimated (or observed) residuals are

ê = y− ŷ = y−Xβ̂ =
Ä

I −X
(

X′X
)−1

X′
ä

y.

1.4.2 Examples

Example 1.4. Consider again the ecosystem data. The X matrix and y-vector are set up

as before. The slope, fitted values and errors can then be computed using matrix algebra:

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

one<-rep(1,n)
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X<-
bind(one,sel
ols)

X

one U B

1 1 75.7 3177

2 1 79.8 2210

3 1 77.6 1442

4 1 76.4 1128

5 1 85.0 2182

6 1 86.0 3579

7 1 93.0 3688

8 1 89.0 3987

9 1 77.5 3727

10 1 65.8 2990

11 1 72.0 2677

12 1 81.6 2146

13 1 87.1 2454

14 1 83.5 3050

15 1 94.0 3185

16 1 104.6 3119

17 1 87.6 3700

X<-as.matrix(X)

y<-m$G

b<-solve(t(X)%*%X)%*%t(X)%*%y

yhat<-X%*%b

ehat<-y-yhat

b

[,1℄

one 171.9236911

U 2.8758166

B 0.1157401

Example 1.5. A much better approach is to use the R functions for linear models to

compute these quantities:

lm(G~U+B,data=m)

Call:

lm(formula = G ~ U + B, data = m)

Coeffi
ients:

(Inter
ept) U B

171.9237 2.8758 0.1157

Naturally, the results are the same.
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1.5 Sums of squares and norms

Sum of squared errors

SSE = ||ê||2 = ∑
i

(yi − ŷi)
2
.

Denote SSE by SSE(F) or SSE(R) when comparing models.

1.5.1 Details

The sum of squared errors becomes

SSE = ||ê||2 = ||y− ŷ||2 =
n

∑
i=1

(yi − ŷi)
2
.

When comparing models, e.g. a large or “full” model and a smaller or “reduced” model,

the notation is usually extended to take into account the various models in question, notably

SSE(F) for the full model and SSE(R) for the reduced model.

1.6 Projection matrices

Projecton, “hat”, matrix onto V = sp(X):

H = X(X′X)−1X′

and onto V⊥ = sp(X)⊥:

I−H = I−X(X′X)−1X′

1.6.1 Details

The matrix H = X(X′X)−1X′ is a projection matrix (i.e. H2 = H), projecting Rn onto the

subspace V := sp(X) . Conversely, I−H = I−X(X′X)−1X′ is the projection matrix onto

V⊥ = sp(X)⊥, respectively.

The matrix H is usually termed the “hat matrix”, since it transforms y into ŷ.

Note 1.1. The diagonal elements, hi j, of the hat matrix play a very important role in regressi-

on diagnostics: If a certain data point has a high value on the diagonal, then this means that

it “predicts itself”, i.e. is influential.

References Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. 1996. App-

lied linear statistical models. McGraw-Hill, Boston. 1408pp. Copyright 2021, Gunnar

Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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2 General properties of linear projections of vectors of

random variables

2.1 Linear combinations of independent random variables

c a column vector

Y a vector of independent random variables

Same σ, expected values may differ, E[Y] = µ

Then

E
[

c′Y
]

= c′µ

V
[

c′Y
]

= c′cσ2

2.1.1 Details

Suppose c a column vector and Y a vector of independent random variables with a common

variance, σ2, but possibly different expected values. Then the mean and variance of the

linear combination, c′Y, are given by

E
[

c′Y
]

= c′µ

V
[

c′Y
]

= c′cσ2

These results are trivial to ascertain since the components, Yi, are independent and hence

e.g.

V
[

c′Y
]

= V

ñ

∑
i

ciYi

ô

= ∑
i

c2
i V [Yi]

= c′cσ2

A number of shortcuts have been used here and it may be useful to note them before moving

on to more complex examples. Although not mentioned, the random vector Y has a cor-

responding density f , which is a function of n variables satisfying

f (y1, . . . ,yn)≥ 0 for all y1, . . .yn

and ∫
. . .

∫
f (y1, . . . ,yn)dy1dyn = 1

(where we have assumed this is a continuous random vector).

In vector notation this becomes

f (y)≥ 0 for all y ∈ R
n

and ∫
f (y)dy = 1.

For any given i the marginal density for Yi is obtained by integrating out the other variables

fYi
(yi) =

∫
. . .

∫
f (y1, . . . ,yi−1,yi,yi+1, . . . ,yn)dy1 . . .dyi−1dyi+1 . . .dyn.
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If µi is the expected value of Yi, then this can be computed from either the univariate or

multivariate density:

µi = E [Yi] =
∫

yi fYi
(yi)dyi =

∫
. . .

∫
yi f (y1, . . . ,yn)dy1 . . .dyn.

The covariance between any two random variables Y1 and Y2 with joint density f and

means µ1, µ2 is

cov(Y1,Y2) := E [(Y1 −µ1)(Y2 −µ2)]

(assuming all relevant integrals exist).

We can now use the integral definitions to show (for n = 2) that

E [a1Y1 +a2Y2] = E [a1Y1]+E [a2Y2] = a1E [Y1]+a2E [Y2]

and so forth, for arbitrary n leading to

E
[

c′Y
]

= c′µ.

Correspondingly we obtain for the variance

V [a1Y1 +a2Y2] = E
î

((a1Y1 +a2Y2)−E [a1Y1 +a2Y2])
2
ó

= E
î

((a1Y1 −E [a1Y1] )+(a2Y2 −E [a2Y2]))
2
ó

= E
î

(a1 (Y1 −µ1)+a2 (Y2 −µ2))
2
ó

= E
î

a2
1 (Y1 −µ1)

2 +a2
2 (Y2 −µ2)

2 +2a1a2 (Y1 −µ1)(Y2 −µ2)
ó

= a2
1V [Y1]+a2

2V [Y2]+2a1a2cov(Y1,Y2).

This result is the basis for all the variance computations in this entire section.

2.2 Covariance between linear combinations of independent random

variables

a, b column vectors

Y a vector of independent random variables

Same σ, expected values may differ, E[Y] = µ

Then

Cov
[

a′Y,b′Y
]

= a′bσ2

2.2.1 Details

Suppose a, b are column vectors and Y a vector of independent random variables with a

common variance, σ2, but possibly different expected values. Then the covariance between

the linear combinations, a′Y and b′Y, is given by

Cov
[

a′Y,b′Y
]

= a′bσ2

This follows from looking at the linear combinations as sums of components and noting

that the covariance is a sum of all possible combinations, all of which are zero except where

the same Yi-combinations appear:
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Cov
[

a′Y,b′Y
]

= Cov

[

∑
i

aiYi,∑
j

b jYj

]

= ∑
i, j

Cov
[

aiYi,b jYj

]

= ∑
i, j

aib jCov
[

Yi,Yj

]

= ∑
i

aibiCov [Yi,Yi]+ ∑
i, j:i 6= j

aib jCov
[

Yi,Yj

]

= ∑
i

aibiV [Yi]

= a′bσ2

This result indicates that if the projection vectors, a and b are orthogonal, then the covari-

ance remains zero. Note also that strictly, independence of the original variables is not

required, but only zero covariance which is not the same condition in the general case.

In the case of two Gaussian random variables, it is, however, true that they have zero

covariance if and only if they are independent. This can be seen by observing the bivariate

Gaussian density function which neatly factors if and only if the covariance is zero.

2.3 Linear projections of independent random variables

A an n×n matrix

Y a vector of n independent random variables, mean µ, V [Yi] = σ2.

Then

E [AY] = µ

V [AY] = AA′σ2

2.3.1 Details

Let A be a q×n matrix and Y an n-vector of independent random variables with common

variance but possibly different expected values, then

E [AY] = Aµ

V [AY] = AA′σ2

This can be derived either by considering the componentwise composition of AY or by

writing A as a collection of row vectors and using the earlier results.

2.3.2 Examples

Example: Assuming that all expected values exist, it is easy to derive the covariance

Cov(X +Y,X −Y ), either directly or using the above formula, assuming V [X ] =V [Y ].
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2.4 Linear combinations of dependent random variables

a ∈ R
n a vector

Y a vector of n random variables whose variances and covariances exist as a matrix,

Σ =
(

σi j

)

with σi j =Cov(Yi,Yj).
Then

V
[

a′Y
]

= a′Σa

2.4.1 Details

Let a be an n-vector or n×1 matrix and Y an n-vector of random variables whose variances

and covariances exist as a matrix, Σ =
(

σi j

)

, where σi j =Cov(Yi,Yj).
This is a typical case when looking at linear combinations of estimates in regression, for

example estimating a new point on a regression line,

ˆE [Yn+1] = α̂+ β̂xn+1

As before, this can be derived by studying components.

2.5 Linear transformations of dependent random variables

A a matrix

Y a vector of random variables whose variances and covariances exist as a matrix, Σ =
(

σi j

)

with σi j =Cov(Yi,Yj).
Then

V [AY] = AΣA′

2.5.1 Details

Let A be an n×n matrix and Y a vector of random variables whose variances and covari-

ances exist as a matrix, Σ =
(

σi j

)

, where σi j =Cov(Yi,Yj).
This general situation occurs in regression analysis when measurements arrive in such a

fashion that they can not be assumed to be independent. Several such examples certainly

exist and the theory therefore needs to be properly developed.

This is also an important result when studying distributional properties of estimators, which

are typically already linear combinations of original variables and hence no longer in-

dependent.

The first step is to derive the variance of projections of such variables. As before, this can

be done by studying components or by looking at vector-wise linear combinations.

We obtain

V [AY] = AΣA′

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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3 Expected values and variances in multiple linear regressi-

on

3.1 Expected values in multiple linear regression

Expected values in multiple linear regression

If

E [y] = Xβ

and

β̂ =
(

X′X
)−1

X′y

then

E[β̂] = β

- only depends on mean structure

3.1.1 Details

The estimator in multiple linear regression β̂ = (X′X)−1X′y is unbiased.

This only depends on the assumption on the mean function, not on the variance structure,

nor the probability distribution around the mean. In particular, the estimator is still unbiased

even if the measurements are correlated.

3.1.2 Examples

Example 3.1. Sometimes an dependent variable does not vary in a simple linear fashion

as a function of two independent variables as in EYi = α+βxi +γwi. In particular, it may

become obvious that the response, as a function of x, does not have the same slope for

two different values of z. In this case an interaction model is required: yi = α+βxi +
γwi+δxiwi. Defining xi1 = 1, xi2 = xi, xi3 =wi, xi4 = xiwi, this becomes a multiple linear

regression model.
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3.2 Variances in multiple linear regression

If

V [y] = σ2I

and

β̂ =
(

X′X
)−1

X′y

then

V
î

β̂
ó

= V
î

(X′X)−1X′y
ó

=
Ä

(X′X)−1X′
ä

V [y]
Ä

(X′X)−1X′
ä′

= . . .

= σ2(X′X)−1
.

Depends on true variance structure - not on p.d.f.

3.2.1 Details

If X is of rank p, the estimator

β̂ = (X′X)−1X′y

in multiple linear regression has the variance-covariance matrix:

V
î

β̂
ó

=V
î

(X′X)−1X′y
ó

=
Ä

(X′X)−1X′
ä

V [y]
Ä

(X′X)−1X′
ä′

= . . .= σ2(X′X)−1
.

A consequence of this is that although numerical methods exist to estimate the coefficients,

the inverse is required in order to obtain the variance-covariance matrix.

Note 3.1. This depends on true variance structure - not on a Gaussian assumption.

3.2.2 Examples

Example 3.2. The one-way analysis of variance is the analysis of data with the model

y1 j = µ1 + e1 j j = 1, . . . ,J1

y2 j = µ2 + e2 j j = 1, . . . ,J2

...

yI j = µI + eI j j = 1, . . . ,JI,

i.e. measurements are made on each of I means, giving a total of n = J1 + . . .+ JI

measurements.

Assuming constant variance, the least squares estimators can be derived from the matrix

form of the linear model. The basic model is of the form:
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y =
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
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
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
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













y11

y12
...

y1J1

y21

y22
...

y2J2

...

...

...

yI1

yI2
...

yIJI






















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




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















=








































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1 0 0

1 0 0
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...
...

1 0 0

0 1 0

0 1 0
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...
...

0 1 0
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...
...

...
...

. . .
...

...
...

...

0 0 1

0 0 1
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...
...

0 0 1
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







µ1

µ2
...

µI











+ e

Here it is easy to evaluate the least squares estimators, their variances and covariances

from the matrix representation.

3.3 Covariances between parameter estimates

Var-cov matrices also have correlations between estimates.

Also get numerical estimates of the var-cov matrix as well as all correlations once an

estimate, σ̂2, of σ2 becomes available.

3.3.1 Details

The above derives the theoretical formulae for the variance-covariance matrix, i.e. the true

var-cov matrix. Naturally, this needs to be estimated based on data since it contains an

unknown parameter.

Numerical estimates of the variances and covariances are obtained once an estimate, σ̂2, of

σ2 becomes available.

Note 3.2. Note that the estimates of covariances become unbiased if estimate of σ2 are

unbiased.

3.3.2 Examples

Example 3.3. Take the case of simple linear regression, with X = [1
...x], β = (α,β)′ and

the model for the data is y = Xβ+ e. Here it is easy to derive the theoretical variances

and covariance of α and β.
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Example 3.4. Revisiting the ecology example, we can evaluate the standard errors,

compute t-statistics and the like with the following R commands

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

sel
ols<-m[,
("U","B")℄

n<-length(m$U)

one<-rep(1,n)

X<-
bind(one,sel
ols) # The X-matrix

y<-m$G # The y-ve
tor

p<-length(b) # The number of regressors

SSE<-sum((y-yhat)^2)

s2<-SSE/(n-p) # The estimate of sigma^2

varb<-s2*diag(XpXinv)

seb<-sqrt(varb) # The estimated s.e. of b

data.frame(Estimate=b,se=seb,t=b/seb,p=2*(1-pt(abs(b/seb),n-p)))

Estimate se t p

one 171.9236911 284.2704735 0.6047891 0.55499548

U 2.8758166 3.6162040 0.7952584 0.43973854

B 0.1157401 0.0404542 2.8610155 0.01257369

As usual, a much better approach is to use the built-in functions in R, in this case lm and

summary:

m<-read.table("http://www.hi.is/~gunnar/kennsla/alsm/alsmintro/

bore
ol.dat",header=T)

fm<-lm(G~U+B,data=m)

summary(fm)

Call:

lm(formula = G ~ U + B, data = m)

Residuals:

Min 1Q Median 3Q Max

-195.062 -87.215 4.916 72.809 193.117

Coeffi
ients:

Estimate Std. Error t value Pr(>|t|)

(Inter
ept) 171.92369 284.27047 0.605 0.5550

U 2.87582 3.61620 0.795 0.4397

B 0.11574 0.04045 2.861 0.0126 *

---

Residual standard error: 125 on 14 degrees of freedom

Multiple R-squared: 0.458, Adjusted R-squared: 0.3806

F-statisti
: 5.915 on 2 and 14 DF, p-value: 0.01374

Naturally, the answers are the same.
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