Problem statement and estimators

stats545.1 545.1 Point estimation and variances in the linear model

Gunnar Stefansson

September 3, 2022

Multiple linear regression problem

For y-observations, we want descriptive and predictive linear model of several variables
$y=\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}$
or, rather $y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}+e_{i}$
Formulate with matrices...

$$
\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{e}
$$

Note that intercept is implicit...
Statistical assumptions will be handled later!
Example: When a straight line is not an appropriate model for explaining the relationship between pairs of measurements, $\left(x_{i}, y_{i}\right)$, it is possible to consider a quadratic response function, i.e. define the model $E Y_{i}=\alpha+\beta x_{i}+\gamma x_{i}^{2}, \quad i=1, \ldots, n$.

Example: Consider the data set (from Stefansson, Skuladottir and Petursson) of indices from Icelandic waters. Here $\mathrm{T}=$ temperature, $\mathrm{U}=$ catch per unit effort of (adult) shrimp, $\mathrm{I}=$ index of juvenile shrimp abundance, $\mathrm{Y}=$ catch of shrimp, $\mathrm{B}=$ biomass of capelin, $\mathrm{G}=$ measure of growth of cod from age 4 to 5 , $\mathrm{S}=$ biomass of spawning cod, J=biomass of juvenile (immature) cod,

Geometric visualization of the multiple regression problem

$$
\min _{b_{1}, \ldots, b_{p}} \sum_{i=1}^{n}\left(y_{i}-\left(b_{1} x_{i 1}+b_{2} x_{i 2}+\ldots+b_{p} x_{i p}\right)\right)^{2}
$$

i.e. minimize

Normal equations

Have

$$
X^{\prime} X \hat{\boldsymbol{\beta}}=X^{\prime} y
$$

The solution

Solution:

$$
\hat{\boldsymbol{\beta}}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

Prediction:

$$
\hat{y}=x \hat{\boldsymbol{\beta}}=x\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

Estimated residuals:

$$
\hat{e}=y-\hat{y}=y-X \hat{\boldsymbol{\beta}}=\left(1-X\left(X^{\prime} X\right)^{-1} X^{T}\right) y .
$$

... When the matrix is of full rank!

Sums of squares and norms

Sum of squared errors

$$
S S E=\|\hat{\mathrm{e}}\|^{2}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} .
$$

Denote SSE by $\operatorname{SSE}(F)$ or $\operatorname{SSE}(R)$ when comparing models.

Projection matrices

Projecton, "hat", matrix onto $\mathrm{V}=s p(\mathrm{X})$:

$$
H=X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

and onto $\mathrm{V}^{\perp}=s p(\mathrm{X})^{\perp}$:

$$
I-H=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

References Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. 1996. Applied linear statistical models. McGraw-Hill, Boston. 1408pp. Copyright 2021, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

