General properties of linear projections of vectors of random variables

stats545.1 545.1 Point estimation and variances in the linear model

Gunnar Stefansson

September 3, 2022

Linear combinations of independent random variables

c a column vector
Y a vector of independent random variables
Same σ, expected values may differ, $E[\mathrm{Y}]=\boldsymbol{\mu}$
Then

$$
\begin{gathered}
E\left[c^{\prime} Y\right]=c^{\prime} \boldsymbol{\mu} \\
V\left[c^{\prime} Y\right]=c^{\prime} c \sigma^{2}
\end{gathered}
$$

Covariance between linear combinations of independent random variables

a, b column vectors
Y a vector of independent random variables
Same σ, expected values may differ, $E[\mathrm{Y}]=\boldsymbol{\mu}$
Then

$$
\operatorname{Cov}\left[a^{\prime} Y, b^{\prime} Y\right]=a^{\prime} b \sigma^{2}
$$

Linear projections of independent random variables

A an $n \times n$ matrix
Y a vector of n independent random variables, mean $\mu, V\left[Y_{i}\right]=\sigma^{2}$.
Then

$$
\begin{gathered}
E[\mathrm{AY}]=\boldsymbol{\mu} \\
V[\mathrm{AY}]=\mathrm{AA}^{\prime} \sigma^{2}
\end{gathered}
$$

$V c^{\prime} Y$ and $V A Y=>$ repeated $\operatorname{Cov}(\hat{\alpha})$ and $\operatorname{Cov}(\hat{\beta})$

Linear combinations of dependent random variables

$a \in \mathbb{R}^{n}$ a vector
Y a vector of n random variables whose variances and covariances exist as a matrix, $\Sigma=\left(\sigma_{i j}\right)$ with $\sigma_{i j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$.
Then

$$
V\left[a^{\prime} \mathrm{Y}\right]=\mathrm{a}^{\prime} \Sigma \mathrm{a}
$$

Linear transformations of dependent random variables

A a matrix
Y a vector of random variables whose variances and covariances exist as a matrix, $\Sigma=\left(\sigma_{i j}\right)$ with $\sigma_{i j}=\operatorname{Cov}\left(Y_{i}, Y_{j}\right)$.
Then

$$
V[\mathrm{AY}]=\mathrm{A} \Sigma \mathrm{~A}^{\prime}
$$

$V c^{\prime} Y$ and $V A Y=>$ repeated $\operatorname{Cov}(\hat{\alpha})$ and $\operatorname{Cov}(\hat{\beta})$

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

