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1 Addding distributional assumptions: The multivariate

normal and related distributions

1.1 A theorem from calculus

1.1.1 Handout

To find a multivariate density of a transformed variable, recall from calculus that if g is a

1−1 function g : Rn → Rn

∫
f (z)dz =

∫
f (g(y))|J|dy (∗)

whereJistheJacobiano f thetrans f ormationJ=
∣
∣
∣

dz
dy

∣
∣
∣=

∣
∣
∣

∂g(y)
∂y

∣
∣
∣ and the integrals are over cor-

responding regions.

If f is the density of Z, then the left-hand integral over a set A is P [Z ∈ A], and if Y = g(Z)
we also know that

P [Y ∈ B] = P [g(Z) ∈ g(A)] ,

but this left-hand side is the integral of the joint p.d.f. of Y over B, which must now be

equal to the r.h.s. og (*).

It follows that the joint pdf of Y is h with h(y) = f (g(y))|J|.

1.2 The multivariate normal distribution

1.2.1 Handout

Suppose Z1, ...,Zn are independent Gaussian with mean zero and variance one (i.e. Z1, ...,Zn ∼
n(0,1), i.i.d.) so their joint density is

f (z) =
n

∏
i=1

1√
2π

exp
Ä

−z2
i /2
ä

=
1

(2π)n/2
exp

(
−(1/2)zT z

)

and this is the density of the multivariate random variable Z = (Z1, . . . ,Zn)
′.

Let A be an invertible n× n matrix and µ ∈ ˘Rn and define a new multivariate random

variable, Y = AZ+µ.

Some linear algebra gives

h(y) =
1

(2π)n/2|Σ|1/2
exp

Å

−1

2
(y−µ)T Σ−1(y−µ)

ã

where Σ = AAT .

This leads to a natural definition of the multivariate normal distribution.

The n-dimensional random vector, Y is defined to have a multivariate normal distribution,

denoted Y ∼ n(µ,Σ) if the density of Y is of the form

h(y) =
1

(2π)n/2|Σ|1/2
exp

Å

−1

2
(y−µ)T Σ−1(y−µ)

ã

where µ ∈ R
n and Σ is a symmetric positive definite n×n matrix.

It is left to the reader to prove that if Y ∼ n(µ,Σ) and B is an p× n matrix of full rank p

(p < n), then BY also has a multivariate normal distribution.
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1.3 Related distributions

1.3.1 Handout

If Z ∼ n(0,1) is standard normal, then we define the chi-squared distribution on one degree

of freedom, χ2
1 to be the distribution of U := Z2 and write

U ∼ χ2
1.

If U1, . . . ,Up are i.i.d. χ1, then we define χ2
p to be the distribution of their sum and write

p

∑
i=i

Ui ∼ χ2
p.

Finally, if U ∼ χ2
ν1

and V ∼ χ2
ν2

are independent, then we define the F distribution on ν1

and ν2 degrees of freedom to be the distribution of the ratio
U/ν1

V/ν2
and write

U/ν1

V/ν2
∼ Fν1,ν2

.
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2 Orthogonal projections in multiple regression

2.1 Background to projections

If a is a vector then we can write a general vector w in

the form w = x+y where x = ka and a′y = a ·y = 0.

In the general case,

k =
w ·a
||a||2 ,

and for unit vectors a we obtain

k = w ·a.

y

x

a

w

2.1.1 Handout

If a is a vector then we can write a general vector w in the form w = x+y where x = ka

and a ·y = 0.

With this

w ·a = (x+y) ·a
= (ka+y) ·a = ka ·a+ y ·a

︸︷︷︸

=0

= k · ||a||2

i.e.

k =
w ·a
||a||2 ,

and therefore w = x+y with

x =
w ·a
||a||2 a

and residual:

y = w− u ·a
||a||2 a.

Note that we have shown that this is the only possible solution to writing w = x+y where

x = ka and a · y = 0 but not that it is indeed such a solution. Obviously x is of the stated

form and it is not hard to see that a ·y = 0 is indeed true for this solution. This orthogonal

decomposition therefore both exists and is unique.

2.2 Projections and bases

The Gram-Schmidt technique uses projections to iteratively build an orthonormal basis,

u1, . . .ur which spans the same space as a sequence of arbitrary starting vectors,

a1, a2, . . .ap.

In linear regression, the starting vectors are typically the columns of the X-matrix. r

above is then the rank of the matrix.
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2.2.1 Handout

The Gram-Schmidt technique uses the projections of the previous section to iteratively

build an orthonormal basis, u1, . . .ur which spans the same space as a sequence of arbitrary

starting vectors, a1, a2, . . .ap:

u1 :=
1

||a||a1

then for i = 1, . . . , p−1

vi+1 := (ai+1 ·a1)a1 + . . .+(ai+1 ·ai)ai

with residual

ei+1 := ai+1 −vi+1

and next vector

ui+1 :=
1

||ei+1||
ei+1

If the starting vectors are linearly independent, then r = p, otherwise r < p (some of the

proposed basis vectors have turned out to be zero and are omitted).

It is often useful to expand the set of starting vectors, to a1, a2, . . .ap,e1, e2, . . .en, where

the ei are the usual unit vectors. The method will then result in a full basis for Rn, the first

r of which span the same space as the starting vectors.
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3 A basis for V=span(X)

3.1 Subspaces

In the model y = Xβ+ e, assume rank(X) = r where X is n× p and r ≤ p

Recall Xβ̂ is a project so y−Xβ̂ ⊥ Xβ̂ so that y−Xβ̂ ∈ V⊥ = {v : v ⊥ sp(X)} and

dim(V⊥) = n− r.

If r = p, then:

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X′X)−1X′y

= (I−X(X′X)−1X′)y = (I−H)y

and rank(I−H) = dim(V⊥) = n− p

3.1.1 Details

Assume rank(X) = r ≤ p (X is n× p).

Parameters in the model y =Xβ+e are estimated with β̂= (X
′
X)−1X

′
y if the inverse exists

or in general with any β̂ which is such that ŷ = Xβ̂ is a projection onto the subspace sp(X).

By definition, a projection ŷ simply corresponds to a decomposition of the original vector

into two orthogonal components, i.e. writing y = ŷ+ ê. We have ê = y−Xβ̂ ⊥ ŷ = Xβ̂ so

that y−Xβ̂ ∈ V⊥ = {v : v ⊥ sp(X)} and dim(V⊥) = n− r.

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X
′
X)−1X

′
y

= (I−X(X
′
X)−1X

′
)y = (I−H)y

and rank(I−H) = dim(V⊥) = n− r

3.2 A basis for the span of X

Orthonormal basis, {u1, . . . ,un} for Rn:

Using Gram-Schmidt, first generate u1, . . . ,ur which span sp{X}, with rank{X}= r and

the rest, ur+1, . . . ,un are chosen so that the entire set, u1, . . . ,un spans Rn.

Xβ̂ = ζ̂1u1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . .+ ζ̂nun

3.2.1 Details

The probability distributions can best be viewed by defining a new orthonormal basis,

{u1, . . . ,un} for Rn.

This basis is defined by first generating a set of r vectors u1, . . . ,ur which span the space

defined by sp{X}, and the rest, ur+1, . . . ,un are chosen so that the entire set, u1, . . . ,un
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spans Rn. This is obviously always possible using the method of Gram-Schmidt. This

gives the following sequence of spaces and spans:

sp{X} = sp{u1, . . . ,ur}
Rn = sp{u1, . . . ,ur,ur+1, . . .un}

One can then write each of Xβ̂ and y in terms of the new basis as follows:

Xβ̂ = ζ̂1u1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . . ζ̂nun

where it is well-known that ζ̂i = ui ·y.

It is important to note that the same coefficients ζ̂i are obtained for 1 ≤ i ≤ r. This follows

from considering the coefficient of y in the basis and noting that y = Xβ̂+ ê where the

residual vector ê is orthogonal to all column vectors of X and therefore also to ui for 1 ≤
i ≤ r. Therefore,

ζ̂i = ui ·y = ui ·Xβ̂

3.3 Q-R decomposition

Q :=

ï

u1
...u2

... . . .
...un

ò

is the Q in the Q-R decomposition of X = QR.

If

z =
Ä

ζ̂1, ζ̂2, . . . , ζ̂n

ä

then

z = Q′y

and hence

E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I

3.3.1 Details

Q := [u1u2 . . .un] is the Q in the Q-R decomposition of X.

Q has important properties, e.g. Q′Q = I so Q−1 = Q′.

If

z =
Ä

ζ̂1, ζ̂2, . . . , ζ̂n

ä

then

z = Q′y and y = Qz

and hence

E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I
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3.4 Variances of coefficients

For each i we obtain

V
î

ζ̂i

ó

= σ2

3.4.1 Details

For each i we trivially obtain

V
î

ζ̂i

ó

= σ2

3.5 Expected values of coefficients

For i = r+1, . . . ,n we obtain

E
î

ζ̂i

ó

= 0

3.5.1 Details

The expected values of the coefficients, ζ̂i depend on which space these correspond to.

Define

ζi = E
î

ζ̂i

ó

and by linearity we obtain

ζi = E [ui ·y] = ui · (Xβ) .

Now note that we have defined the basis vectors in three sets. The first is such that they

span the same space as the columns of Z. The second set complements the first to span the

X and the last set complements the set to span all of Rn. The basis vectors are of course all

orthogonal and each basis vector is orthogonal to all vectors in spaces spanned by preced-

ing vectors.

For i = r+1, . . . ,n we obtain

E
î

ζ̂i

ó

= ui · (Xβ) = 0

since Xβ is trivially in the space spanned by the column vectors of X and is therefore a

linear combination of u1, . . . ,ur and ui is orthogonal to all of these.

3.6 Sums of squares and norms

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=p+1

ζ̂2
i

3.6.1 Details

It is now quite easy to see how to form sums of squared deviations based on the new

orthonormal basis, since each set of deviations corresponds to a specific portion of the

space.

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=r+1

ζ̂2
i
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3.7 Normality and independence of coeffients

Note that ζ̂i are linear combinations of the various y j since ζ̂i = ui ·y.

When the yi are independent Gaussian random variables, ζ̂i have zero covariance and

are thus also independent.

3.7.1 Details

Note that ζ̂i are linear combinations of the various y j since ζ̂i = ui · y. The ζ̂i have zero

covariance and when the yi are independent Gaussian random variables, the ζ̂i are also in-

dependent.

This final result uses the fact that Gaussian random variables which have zero covariance

are also independent. The fact that they have zero covariance is easy to establish, but the

corrollary of independence is a result from multivariate normal theory.

The normal theory is fairly simple in this case:

z =
Ä

ζ̂1, ζ̂2, . . . , ζ̂n

ä

= Q′y

and

y ∼ n
Ä

Xβ,σ2I
ä

.

It follows that z is multivariate normal and from the earlier derivations of the mean and

variance we have

z ∼ n
Ä

Q′Xβ,σ2I
ä

.

3.8 Degrees of freedom

SSE(F)has n− r degrees of freedom.

3.8.1 Details

SSE(F) has n− r degrees of freedom.
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