Orthogonal projections in multiple regression

stats545.2 545.2 The multivariate normal distribution and projections in the linear model

Gunnar Stefansson

September 5, 2022

Background to projections

If a is a vector then we can write a general vector w in the form $w=x+y$ where $x=k a$ and $a^{\prime} y=a \cdot y=0$.
In the general case,

$$
k=\frac{\mathrm{w} \cdot \mathrm{a}}{\|\mathrm{a}\|^{2}}
$$

and for unit vectors a we obtain

$$
k=\mathrm{w} \cdot \mathrm{a}
$$

Projections and bases

The Gram-Schmidt technique uses projections to iteratively build an orthonormal basis, $u_{1}, \ldots u_{r}$ which spans the same space as a sequence of arbitrary starting vectors, $a_{1}, a_{2}, \ldots a_{p}$.
In linear regression, the starting vectors are typically the columns of the X-matrix. r above is then the rank of the matrix.

Copyright 2022, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

