## A basis for $V=\operatorname{span}(X)$

stats545.2 545.2 The multivariate normal distribution and projections in the linear model

Gunnar Stefansson

## September 5, 2022

## Subspaces

In the model $\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{e}$, assume $\operatorname{rank}(\mathrm{X})=r$ where X is $n \times p$ and $r \leq p$

Recall $\mathrm{X} \hat{\boldsymbol{\beta}}$ is a project so $\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}} \perp \mathrm{X} \hat{\boldsymbol{\beta}}$ so that $\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}} \in \mathrm{V}^{\perp}=\{v: v \perp$ $s p(\mathrm{X})\}$ and $\operatorname{dim}\left(\mathrm{V}^{\perp}\right)=n-r$.
If $r=p$, then:

$$
\begin{aligned}
& \underbrace{\hat{e}}_{n \times 1}=\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}}=\mathrm{y}-\mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} y \\
& =\left(\mathrm{I}-\mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}\right) \mathrm{y}=(\mathrm{I}-\mathrm{H}) \mathrm{y}
\end{aligned}
$$

and $\operatorname{rank}(\mathrm{I}-\mathrm{H})=\operatorname{dim}\left(\mathrm{V}^{\perp}\right)=n-p$
Assume $\operatorname{rank}(\mathrm{X})=r(\mathrm{X}$ is $n \times p$ and usually $p=r$ but $r<p$ is common also).
The model $\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{e}$ is estimated using the projection $\hat{\boldsymbol{\beta}}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y}$ onto the subspace $s p(\mathrm{X})$.
We have $\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}} \perp \mathrm{X} \hat{\boldsymbol{\beta}}$ svo $\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}} \in \mathrm{V}^{\perp}=\{v: v \perp s p(\mathrm{X})\}$ and $\operatorname{dim}\left(\mathrm{V}^{\perp}\right)=n-r$.

## A basis for the span of $X$

Orthonormal basis, $\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right\}$ for $\mathrm{R}^{n}$ :
Using Gram-Schmidt, first generate $\mathrm{u}_{1}, \ldots, \mathrm{u}_{r}$ which span $\operatorname{sp}\{\mathrm{X}\}$, with $\operatorname{rank}\{\mathrm{X}\}=r$ and the rest, $\mathrm{u}_{r+1}, \ldots, \mathrm{u}_{n}$ are chosen so that the entire set, $\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}$ spans $\mathrm{R}^{n}$.

$$
\begin{aligned}
\mathbf{X} \hat{\boldsymbol{\beta}} & =\hat{\zeta}_{1} \mathbf{u}_{1}+\ldots \hat{\zeta}_{r} \mathbf{u}_{r} \\
\mathbf{y} & =\hat{\zeta}_{1} \mathbf{u}_{1}+\ldots \hat{\zeta}_{r} \mathbf{u}_{r}+\hat{\zeta}_{r+1} \mathbf{u}_{r+1}+\ldots+\hat{\zeta}_{n} \mathbf{u}_{n}
\end{aligned}
$$

## Q-R decomposition

$$
\mathrm{Q}:=\left[\mathrm{u}_{1} \vdots \mathrm{u}_{2} \vdots \ldots \vdots \mathrm{u}_{n}\right]
$$

is the $Q$ in the $Q-R$ decomposition of $X=Q R$.
If

$$
z=\left(\hat{\zeta}_{1}, \hat{\zeta}_{2}, \ldots, \hat{\zeta}_{n}\right)
$$

then

$$
z=Q^{\prime} y
$$

and hence

$$
\begin{gathered}
E[z]=Q^{\prime} X \boldsymbol{\beta} \\
V[z]=Q^{\prime} \sigma^{2} I Q=\sigma^{2} I
\end{gathered}
$$

## Variances of coefficients

For each $i$ we obtain

$$
V\left[\hat{\zeta}_{i}\right]=\sigma^{2}
$$

## Expected values of coefficients

For $i=r+1, \ldots, n$ we obtain

$$
E\left[\hat{\zeta}_{i}\right]=0
$$

## Sums of squares and norms

$$
\operatorname{SSE}(F)=\|\mathrm{y}-\mathrm{X} \hat{\boldsymbol{\beta}}\|^{2}=\sum_{i=p+1}^{n} \hat{\zeta}_{i}^{2}
$$

Each $\hat{\zeta}_{i}$ is a coordinate in an orthonormal basis, $\hat{\zeta}_{i}=\mathrm{y} \cdot \mathbf{u}_{i}$. When $y_{i}$ are independent Gaussian random variables, $\hat{\zeta}_{i}$ also become independent. As a result, the sum of squares is related to a $\sigma^{2} \cdot \chi^{2}$-distribution in a natural way.

## Normality and independence of coeffients

Note that $\hat{\zeta}_{i}$ are linear combinations of the various $y_{j}$ since $\hat{\zeta}_{i}=\mathrm{u}_{i} \cdot \mathrm{y}$.
When the $y_{i}$ are independent Gaussian random variables, $\hat{\zeta}_{i}$ have zero covariance and are thus also independent.
Each $\hat{\zeta}_{i}$ is a coordinate in an orthonormal basis, $\hat{\zeta}_{i}=\mathrm{y} \cdot \mathrm{u}_{i}$. When $Y_{i}$ are independent Gaussian random variables, $\hat{\zeta}_{i}$ also become independent. As a result, the sums of squares are related to $\sigma^{2} \cdot \chi^{2}$-distributions in a natural way.

## Degrees of freedom

$\operatorname{SSE}(F)$ has $n-r$ degrees of freedom.

Copyright 2022, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

