Case study: Multispecies models for marine fish stocks stats545.5 545.5 Extending the linear model

Gunnar Stefansson

September 3, 2022

Gunnar Stefansson

Case study: Multispecies models for mari

September 3, 2022 1/8

Combining data sets raises issues

- Weight given to each
- Do they all indicate the same model?

:

Several data sets means several likelihood components

In ADAPT

$$\begin{split} \min_{N_{0,y},N_{a,0},q_{a}} \sum_{ay} w_{ay} \left(ln(I_{ay}) - ln(q_{a}N_{ay}) \right)^{2} \\ \text{w.r.t.} N_{a+1,y+1} &= \left(N_{ay} e^{-M/2} - C_{ay} \right) e^{-M/2} \end{split}$$

the weighting factors w_{ay} need to be specified, since age groups are like data sets.

Complex data means means the components are not even of same form!

Length distributions

Multinomial?

Test assumptions using samples of survey stations, picking n fish from each.

Variance should be from binomial.

Covariance from multinomial.

Conclusion: Assumption fails very badly.

Effect of wrong variance assumptions

Linear model theory: Minor issue, just affects variance estimates, parameter estimates are still unbiassed.

But: If the base model is wrong for a small part of the data, may create havoc! Example: Wrong weights in ADAPT

Weights on juveniles seem important - can drive entire assessment.

Likelihoods - Estimation procedure

Gadget is a statistical estimation model. Internal dynamics are complex so deterministic forward projections are used. Maximum likelihood estimation is used.

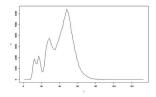


Figure: Length distributions are count data and are often assumed to come from a multinomial distribution, possibly with overdispersion.

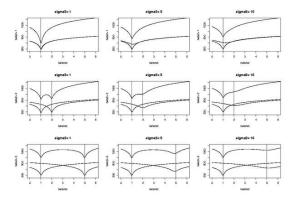
Estimation: (Negative log) likelihood functions Gaussian, weighted Multinomial

$$\min_{\theta \in \mathbb{R}^n} \sum_k w_k l_k(\theta)$$

Simple example of complexity problem

Take a simple problem

$$Y_{ij} \sim n(\alpha_i + \beta_i x_{ij}, \sigma_i^2), \quad j = 1, \dots, n_i \quad i = 1, 2,$$


but suppose we don't know the slopes are different, so fit

$$Y_{ij} \sim n(\alpha_i + \beta x_{ij}, \sigma_i^2), \quad j = 1, \ldots, n_i \quad i = 1, 2,$$

- A - The sec

< 冊 ▶ < ■

Simple example of complex problem

MLE is not always the ideal thing...

э

< A

Case study: Multispecies models for marine fish stocks

Copyright 2021, Gunnar Stefansson This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.