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1 Tests of hypotheses including multiple comparisons in

the linear model

1.1 On distributions

If y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

and ψ are estimable functions, then

then ψ̂ ∼ n
(
ψ,Σψ̂

)
,
||y−Xβ̂||2

σ2 ∼ χ2
n−r and these two quantities are independent.

1.1.1 Details

Let y
︸︷︷︸

n×1

∼ n( X
︸︷︷︸

n×p

β
︸︷︷︸

p×1

,σ2 I
︸︷︷︸

n×n

)

and assume rank(X) = r ≤ p.

The interest will be in obtaining some joint confidence statement on a vector, ψ=(ψ1, . . . ,ψq)
′,

where each ψi = c′iβ is an estimable function. Write ψ̂ = (ψ̂1, . . . , ψ̂q)
′ for the least squares

estimates with ψ̂i = c′iβ̂ where β̂ is any LS estimate and one can therefore also write ψ̂i = a′iy
for unique ai ∈ sp(X).
The above can be written more concisely as ψ = Cβ using obvious definitions. It follows

that

ψ̂ = Ay = Cβ̂ ∼ n(Cβ,σ2AA′)

and the variance-covariance matrix of the estimates can be written in several equivalent

ways:

V [ψ̂] = Σψ̂ = σ2AA′ = σ2C
(
X′X

)−1
C′,

where the last equality only holds if X is of full rank (r = p). The formulations are equi-

valent but vary quite a bit in usefulness on a case-by-case basis.

This leads to the following theorem.

Theorem 1.1. ψ̂ ∼ n
(
ψ,Σψ̂

)
,
||y−Xβ̂||2

σ2 ∼ χ2
n−r and these two quantities are independent.

1.1.2 Handout

Proof: See stats545.3

1.2 Confidence ellipsoids

Pβ

î

(ψ̂−ψ)′B−1 (ψ̂−ψ)≤ qs2Fq,n−r,1−α

ó

= 1−α

This is an example of simultaneous inference: a single statement on a multivariate

estimable function using a single α-level.

1.2.1 Details
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Theorem 1.2. Under the above assumptions and definitions,

(ψ̂−ψ)′B−1 (ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
∼ Fq,n−r

Noting that the denominator is the usual estimator, s2 of σ2, it follows that the following

probability statement holds and can be used to obtain a confidence ellipsoid for ψ.

Pβ

î

(ψ̂−ψ)′B−1 (ψ̂−ψ)≤ qs2Fq,n−r,1−α

ó

= 1−α

These intervals are very general and lead to several important special cases.

1.2.2 Handout

It is of interest to derive confidence regions, R(y)⊆ R
n such that

Pβ [ψ ∈ R(y)] = 1−α ∀β ∈ R
p.

Assume (without loss of generality) that rank(C) = q and note that q ≤ p.

Now, ψ = Cβ ∈R
q and the estimates can be written ψ̂ = Ay for an appropriate choice of A

so Eψ̂ = ψ and V ψ̂ = σ2B with B = AA′. Next note that

Cβ = ψ = Eψ̂ = AXβ ∀β

so that C=AX and hence q= rank(C)= rank(AX)≤ rank(A)≤ q where the last inequality

follows from A being a q× n matrix. But this implies that rank(A) = q and it is a know

result from linear algebra that rank(B) = rank(A). Since B is a q×q matrix, it follows that

B is nonsingular.

Hence

ψ̂ ∼ n
Ä

ψ,σ2B
ä

.

Now, for any ν-dimensional multivariate normal random vector Z with positive definite

variance-covariance matrix ΣZ and mean vector µZ, it will be considered known that

(Z−µZ)
′Σ−1

Z (Z−µZ)∼ χ2
ν.

This result easily follows from decomposing Σ−1
Z into LL′ where L is a lower triangular

matrix and defining U = L(Z−µZ). Then the components of U will be i.i.d. n(0,1) and

therefore

(Z−µZ)
′Σ−1

Z (Z−µZ) = ||U||2 ∼ χ2
ν.

It is therefore seen that

(ψ̂−ψ)′
Ä

σ2B
ä−1

(ψ̂−ψ)∼ χ2
q. (1)

From above we know that this is independent of
||y−Xβ̂||2

σ2 ∼ χ2
n−r

from which we obtain the above theorem.
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1.3 Confidence interval for a single estimable function

For a single estimable function with estimator ψ̂ = c′β̂ = a′y,

σ̂2
ψ̂ = a′as2

and

A confidence interval for ψ: can be based on

(ψ̂−ψ)2 ≤ a′as2F1,n−r,1−α

or on

P
î

ψ ∈
î

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as
óó

= 1−α

1.3.1 Details

Consider a single (q = 1) confidence interval for a general estimable function. Write ψ =
c′β and note that rank(c) = 1 if c 6= 0. Our estimator for ψ is ψ̂ = c′β̂ and can be written

ψ = a′y for an appropriate a.

It follows that the variance of ψ̂ is

σ̂2
ψ̂ = a′as2

and a confidence interval for ψ can be based on

(ψ̂−ψ)2 ≤ a′as2F1,n−r,1−α

or on the following corresponding probability statement:

P
î

ψ ∈
î

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as
óó

= 1−α

1.3.2 Examples

Example 1.1. When it comes to computing a confidence interval for a single estimable

function, we have seen that we can simply compute the values using an interval of the

form
î

ψ̂− tn−r,1−α/2

√
a′as, ψ̂+ tn−r,1−α/2

√
a′as
ó

.

There are a few tricks to this.

First of all, since a′y = c′β, the variance can be obtained either from V [ψ̂] = a′aσ as is

done above, or by using the alternative formulation

V [β] = Σ
β̂
= σ2

(
X ′X

)−1

which gives

V [ψ̂] = σ2c′
(
X ′X

)−1
c

and the corresponding confidence interval for ψ is:

[

c′β̂− tn−r,1−α/2

»

c′ (X ′X)−1
cs,c′β̂+ tn−r,1−α/2

»

c′ (X ′X)−1
cs
]

.
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Example 1.2. In the case of a linear model involving parameters for two groups (factor

levels), µi and other parameters, possibly a large number of regression parameters, the

above result still holds.

The corresponding confidence interval for ψ = µ1 −µ2 is based on

[

c′β̂− tn−r,1−α/2

»

c′ (X ′X)−1
cs,c′β̂+ tn−r,1−α/2

»

c′ (X ′X)−1
cs

]

.

and reduces to

µ̂1 − µ̂2 ± tn−r,1−α/2sµ̂1−µ̂2
.

Notice how the degrees of freedom in the t-cutoff are the same as in the regression, i.e.

these are the degrees of freedom in s2 =MSE = SSE/(n−r) where n and r are, as always,

the number of rows in the X -matrix and the rank of the X -matrix.

Example 1.3. In many cases it is trivial to compute V [ψ̂] since the estimates are classical

and well known. For example there is no need to complicate the issue when looking at a

contrast of the form

ȳ1.−2ȳ2.+ ȳ3.

in the one-way layout with equal sample sizes J for each i. Here we see trivially that the

variance of ψ̂ is simply σ2(4/J) and the confidence interval becomes correspondingly

trivial to compute.

Example 1.4. In the fixed-replicate two-way layout with with interaction, the model is

yi jk = µi j + εi j = µ+αi +βi + γi j + εi jk

and the variance is estimated with s2 = SSE/(n− r) where

SSE = ∑
i, j,k

(
yi jk − ȳi j.

)2

and the degrees of freedom are given in the usual anova table by n− IJ = IJ(K − 1).
Hence

s2 =
∑i, j,k

(
yi jk − ȳi j.

)2

IJ(K−1)

To get a confidence interval for a single mean, this is based on µ̂i j = ȳi j. and we know the

variance of this is σ2
µ̂i j

= σ2/K and the veriance is therefore estimated using

sȳi j. = s2/K

and the confidence interval becomes

ȳi j.± t∗s2/
√

K

where t∗ is based on IJ(K−1) df, NOT K−1 df!!

7



1.4 Testing hypotheses for multiple estimable functions

H0 : ψ1 = ψ2 = . . .= ψq = 0 vs Ha : not H0

Reject H0 if

ψ̂′B−1ψ̂ > qs2Fq,n−r,1−α

1.4.1 Details

As another example, consider testing the hypothesis that several (linearly independent)

estimable functions are zero, i.e. test

H0 : ψ1 = ψ2 = . . .= ψq = 0 vs Ha : not H0

The simplest method to test this hypothesis is to reject H0 if ψ is not in the confidence set,

i.e.: Reject H0 if

ψ̂′B−1ψ̂ > qs2Fq,n−r,1−α

1.5 Multiple comparisons

P
[
ψ̂i −

√
qFq,n−r,1−ασ̂ψ̂i

< ψi < ψ̂i +
√

qFq,n−r,1−ασ̂ψ̂i
i = 1, . . . ,q

]
≥ 1−α

1.5.1 Details

The confidence ellipsoids are of course multiple comparisons in the sense that they provide

information about the entire vector of estimable functions under consideration. However it

is usually of greater interest to draw conclusions on the individual estimable functions, but

the inference should be simultaneous. To this end, the confidence ellipsoids are used as a

basis and the intervals are simply deduced from the ellipsoids as follows.

Theorem:

P
[
ψ̂i −

√
qFq,n−r,1−ασ̂ψ̂i

< ψi < ψ̂i +
√

qFq,n−r,1−ασ̂ψ̂i
i = 1, . . . ,q

]
≥ 1−α

Corollary: Let L := {ψ = ∑
q
1 hiψi : h1, . . . ,hq ∈ R}. Then

P
[
ψ̂−

√
qFq,n−r,1−ασ̂ψ̂ < ψ < ψ̂+

√
qFq,n−r,1−ασ̂ψ̂ ∀ψ ∈ L

]
= 1−α

1.5.2 Handout

Several interesting, useful and important methods can be derived from these confidence

sets. These sets are attributed to Scheffe and are called the S-sets or S-methods of obtaining

simultaneous confidence statements.

The proof of the theorem is not trivial and the reader is referred to Scheffe’s book.

1.6 Data-snooping

When q= 1 the S-method is the same as a t-test. When q> 1, conducting multiple t-tests

will ruin the error rate. The S-method permit multiple test:

Can use the S-method for data-snooping

May want to use a large α
Better than LSD: Know explicitly the error rate
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1.6.1 Details

Suppose we are interested in searching for significance or data-snooping. Normally this

is not permitted since usually the hypotheses to be tested need to be specified in advance.

However, the confidence sets discussed in this tutorial are all simultaneous and can th-

erefore be searched in arbitrary detail.

Suppose Ψ is a set of estimable functions, e.g. a set spanned by q estimable functions:

Ψ=
{

ψ = k1ψ1 + . . .+ kqψq

}
where ψi = c′iβ and c1, . . . ,cn are linearly independent. Then

from the earlier results we can assert

P
î

ψ̂−
√

qF∗σ̂ψ̂ ≤ ψ ≤ ψ̂+
√

qF∗σ̂ψ̂ ∀ψ ∈ Ψ
ó

= 1−α

and we are therefore allowed to search among all estimable functions within the set to find

significant effects.

The “trick” here lies in the cutoff-point, qF∗ = qFq,n−r,1−α, which takes into account the

dimension of the space.

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a

letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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2 Special cases of Scheffes confidence sets: Applications

to simple linear regression

2.1 The setup

yi ∼ n(α+βxi,σ
2), i = 1, . . . ,n

2.1.1 Handout

We will assume the model to be yi ∼ n(α+βxi,σ
2), independent and the xi are not all the

same, so the X-matrix is of full rank.

In this case the OLS estimators, α̂, β̂ are well known linear combinations of the y-values.

They can be written as

β̂ =

Å

α̂

β̂

ã

=

Å

a1
′y

a2
′y

ã

= Ay

for an appropriate choice of a1,a2 and A.

The variance-covariance matrix has been derived elsewhere as σ2AA′ = σ2 (X′X)−1
.

Since σ2 can be estimated with s2 = MSE, the variances and covariances of α̂ and β̂ can

easily be estimated.

2.2 The intercept

C.I. for α alone is the same as before.

2.2.1 Handout

The intercept alone is a simple linear function of the full parameter vector, i.e.

ψ = α = (1,0)

Å

α
β

ã

.

the corresponding estimate is

ψ̂ = α̂ = (1,0)

Å

α̂

β̂

ã

= a1
′y.

The variance, σ2
ψ̂, corresponding estimator, σ̂2

ψ̂ and estimate s2
ψ̂ of this particular estimable

function is well known.

Since this is a single estimable function we have q = 1. If the x-values are not all the same

then X has full rank so r = p = 2 and we obtain the same CI as before.

To actually derive the quantities we can either use the matrix version, define X as usual and

see that the estimate becomes

s2
ψ̂ = s2a1

′ (X′X
)−1

a1

where s2 = MSE.

Alternatively we can go from the usual elementary formulae

β̂ =
(x− x̄) (y− ȳ)

∑(x− x̄)2

10



and

α̂ = ȳ− β̂x̄

and rewrite first the top and then the bottom one as linear combinations of yi to find the

actual a1i-components of a1. From that we obtain σ2
ψ̂ = σ2 ∑a2

1i as the true variance, the

estimator follows by substituting σ̂2 for σ2 and the estimate is obtained using

s2 = MSE = ||y−Xβ||2 = ∑
Ä

yi − α̂− β̂xi

ä

.

Details are left to the reader.

2.3 The slope

C.I. for slope is the same as before

2.3.1 Handout

The slope alone is a simple linear function of the full parameter vector, i.e.

ψ = β = (0,1)

Å

α
β

ã

.

the corresponding estimate is

ψ̂ = β̂ = (0,1)

Å

α̂

β̂

ã

= a2
′y.

The variance, σ̂2
ψ̂, of this particular estimable function is well known.

Since this is a single estimable function we have q = 1. If the x-values are not all the same

then X has full rank so r = p = 2 and we obtain the same confidence intervals as before.

Details of the derivations are left to the reader.

the same CI as before.

2.4 A simultaneous confidence set for the slope and intercept

Confidence ellipse in the α-β plane

®

ψ :
(ψ̂−ψ)′B−1 (ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
≤ Fq,n−r,1−α

´

where

ψ =

Å

α
β

ã

2.4.1 Handout

Recall that the vector ψ = (α̂, β̂)′ is estimable in simple linear regression if the x-values

are not all the same. A simultaneous confidence set for ψ is based on the point estimate

ψ = (α̂, β̂)′ and the corresponding covariance matrix and the earlier result

(ψ̂−ψ)′B−1 (ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
∼ Fq,n−r (2)

11



where B is defined by

V [ψ̂] = σ2B,

and we also have

V [ψ̂] = σ2
(
X′X

)−1
.

It follows that in this case B = (X′X)−1
so in particular B−1 = X′X

Equation 2 provides a confidence set,

®

ψ :
(ψ̂−ψ)′B−1 (ψ̂−ψ)/q

||y−Xβ̂||2/(n− r)
≤ Fq,n−r,1−α

´

, (3)

which describes an ellipse in the (α,β)-plane.

In terms of the original SLR parameters, the 100(1−α′)% confidence set becomes

®

Å

α
β

ã

:

ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã′
X ′X
ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã

≤ qs2Fq,n−r,1−α′

´

.

This confidence set can be used to obtain simultaneous bound on the two parameters:

To find simultaneous confidence intervals for α and β, consider the following optimisation

problem:

min
α,β

β

w.r.t.
ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã′
X ′X
ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã

≤ qs2Fq,n−r,1−α′

This will find the smallest possible β within the simultaneous confidence set for α and β.

Repeating this for the four cases of minimising and maximising the values of α and β gives

confidence intervals for each of α and β, which hold simultaneously.

These simultaneous intervals are of course wider than the usual t-based intervals.

Note that here, qs2Fq,n−r,1−α′ is 2s2F2,n−2,1−α′ and this does not correspond to a t-interval.

There is more than one way to solve this. One is to use the Lagrange function

β+λ

®

ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã′
X ′X
ÅÅ

α̂

β̂

ã

−
Å

α
β

ãã

−qs2Fq,n−r,1−α′

´

,

differentiate w.r.t. α, β, λ and set all derivatives to zero.

Another method is to look at the ellipse itself, write α̂−α as a function of β̂−β and see

for which values of β there is a solution for α. The above ellipse needs to first be written

out, aka

n(α̂−α)2 +2∑
i

xi (α̂−α)
Ä

β̂−β
ä

+∑
i

x2
i

Ä

β̂−β
ä2

= qs2Fq,n−r,1−α′ .

Whichever method is chosen, the deduced confidence intervals should be of the form

α̂± σ̂α̂

»

qFq,n−r,1−α′

and

β̂± σ̂
β̂

»

qFq,n−r,1−α′

and it is worth repeating that these are simultaneous confidence intervals which will have

a joint confidence greater that 100(1-α′)%. It is also worth nothing, that although these

12



intervals are written here in terms of estimators, a strictly correct notation would be to use

the estimates instead, as in

a± sa

»

qFq,n−r,1−α′

and

b± sb

»

qFq,n−r,1−α′ .

Writing out this ellipse is also a useful start to compare the univariate (t-based) intervals,

the joint ellipse and the simultaneous (F-based) intervals. Writing an R script to draw this

is a good exercise for the reader, as is a simulation exercise to compare the actual coverage

probability of these various confidence sets.

2.5 Confidence band for the regression line

Simultaneous band for the entire regression line:

{

a+bx± s

√

2F2,n−2,1−α

®

1

n
+

(x− x̄)2

∑i (xi − x̄)2

´

: x ∈ R

}

2.5.1 Handout

The simultaneous confidence set for the two parameters in SLR can be used to obtain a

confidence band for the regression line.

The confidence band for the regression line is a simultaneous statement on all points in the

set

C = {α+βx : x ∈ R}
Now, the variance of the estimates α̂+ β̂x is well known and it is also clear that the above

confidence set is a subset of

L = {ψ = c1α+ c2β : c1,c2 ∈ R} .

This is the set of all linear combinations of the two-dimensional parameter vector (α,β)′,
which is an estimable function,

Ψ =

Å

ψ1

ψ2

ã

=

Å

α
β

ã

.

The above set, L , consists of all linear combinations of ψ1 and ψ2 and can be written as

L =

®

ψ =
2

∑
h=1

hiψi : h1,h2 ∈ R

´

.

This demonstrates that L is spanned by two estimable functions, ψ1 =α and ψ2 = β and L ,

as in the corollary earlier. It therefore has dimension q = 2 and one can use a corresponding

F-cutoff to obtain simultaneous confidence bounds for the entire regression line.

To derive the actual formulae, note that a generic point on the regression line, ψ = ψx =
α+βx (an element of L) is predicted with ψ̂ = α̂+ β̂x, which has variance

σ2
ψ̂ =V

ï

(1,x)

Å

α̂

β̂

ãò

= σ2(1,x)
(
X ′X

)−1
Å

1

x

ã

and as usual, this variance is estimated using

σ̂2
ψ̂ = s2(1,x)

(
X ′X

)−1
Å

1

x

ã

.

13



The confidence band for the entire regression line thus becomes

a+bx± s

 

2F2,n−2,1−α(1,x)(X ′X)−1

Å

1

x

ã

,

where a, b and s2 are the usual numerical estimates of the intercept, slope and residual

variance (MSE), respectively.

Note the several "tricks"here, where we know the appropriate variances and can use them

directly.

Note also that as in earlier examples, we do not need to use the matrix inverse since it is

not at all difficult to derive the variance of ψ̂ by rewriting it as a linear combination of the

yi:

α̂+ β̂x =
Ä

ȳ− β̂x̄
ä

+ β̂x = ȳ+(x− x̄) β̂

and now insert the two equations ȳ = 1
n ∑i yi,

β̂ = ∑
i

xi − x̄

∑ j

(
x j − x̄

)2
yi

to obtain

α̂+ β̂x =
1

n
∑

i

yi +(x− x̄)∑
i

xi − x̄

∑ j

(
x j − x̄

)2
yi = ∑

i

{

1

n
+(x− x̄)

xi − x̄

∑ j

(
x j − x̄

)2

}

yi.

The right hand side is a linear combination of independent yi, i.e. a′y and the variance

becomes σ2 ∑i a2
i .

The next trick is to note that when squaring the term in the curly brackets, the cross-product

involves ∑i(xi − x̄) = 0 so it goes away and the result becomes:

V
î

α̂+ β̂x
ó

= σ2 ∑
i







Å

1

n

ã2

+(x− x̄)2

(

xi − x̄

∑ j

(
x j − x̄

)2

)2






which simplifies easily to

V
î

α̂+ β̂x
ó

=

®

1

n
+

(x− x̄)2

∑i (xi − x̄)2

´

σ2
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3 The Bonferroni approach to multipe comparisons

3.1 The multiplicity issue

Consider testing k independent hypotheses, each at level α.

Then, since

P[conclusion i is incorrect] = α

we obtain

P[conclusion i is correct] = 1−α,

and therefore

P[an error occurs] = 1−P[all correct] = 1−Πk
i=1P[conclusion i is correct] = 1−(1−α)k

3.2 LSD

Consider just doing a whole bunch of t-tests

This amounts to saying "There is something significant going on if there is anything

significant seen"

This is the method of Least Significant Difference and has a very large potential error

rate

3.3 Bonferroni confidence intervals

Bonferroni intervals:

Simple

Always work

Conservative

3.3.1 Details

In general, consider two events, A and B having the same probability, P[A] = P[B] = α′.
In the current situation, A is the event “confidence interval 1 is wrong” and B is the event

“confidence interval 2 is wrong”.

The probability of both confidence intervals being correct is

P[Ac∩Bc] = P[(A∪B)c]

= 1−P[A∪B]

= 1− (P[A]+P[B]−P[A∩B])

≥ 1−P[A]−P[B]

= 1−2α′

It follows that if two confidence statements are made, each with error rate α′ = α/2, or

confidence 100(1−α/2)%, then the overall confidence is at least 100(1−α)%, i.e. the

probability of any error is reduced to α.

3.3.2 Example

In the one-way layout one can use the Bonferroni method to compare all the means in a

pairwise manner. Since there are c= I(I−1)/2 comparisons, the corresponding confidence

intervals become:

15



ȳi.− ȳk.± t1−α/(2c),ab(n−1)s

…

2

n

where s2 is the usual estimate of variance, s2 = MSE.

In some cases, for example the two-way layout, there may be a very large number of

potential pairwise comparisons and not all may be of interest.

So suppose only a specific collection of c pairwise differences are of interest in the two-way

layout. In this case Bonferroni confidence intervals may be preferable to other methods:

ȳi j.− ȳkl.± t1−α/(2c),ab(n−1)

…

2MSE

n
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4 Tukeys confidence intervals

4.1 Pairwise multiple comparisons

Tukey’s method for pairwise comparisons works!

4.1.1 Details

When all pairwise comparisons are of equal importance, the interest is in being able to

make statements of the form

P[|X̄i− X̄ j| ≤ di j for all i, j]≥ 1−α

Usually, di j is taken proportional to the common standard deviation, s and written either as

qs/
√

n or ws/
√

1/ni +1/m j in the case of unequal sample sizes.

The function TukeyHSD in R and the procedure “proc glm” in SAS (with the Tukey option)

can be used for general, and valid, pairwise multiple comparisons.

4.2 Tukeys confidence intervals

The Tukey test is used in the one-way layout, when there is an interest in all pairwise

comparisons.

For equal sample sizes J in each cell, the simultaneous confidence intervals using

Tukey’s method in the one-way layout are as follows:

ȳi.− ȳ j.±q1−α,g,N−g ×
»

MSE/J

where q∗ = q1−α,g,N−g is the appropriate quantile from Tukey’s studentized range distri-

bution.

4.2.1 Details

If all pairwise comparisons are of interest in the two-way layout the following procedure

can be followed to calculate simultaneous 1−α confidence limit of the difference.

ȳi j.− ȳkl.±
1

√

(2)
q1−α,ab,ab(n−1)

…

MSE
2

n
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5 Simultaneous confidence intervals for all contrasts

5.1 Scheffes method
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6 Comparing confidence sets

6.1 Scheffe, Tukey and Bonferroni
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7 Applications

7.1 Background

This lecture is a placeholder for a collection of examples and applications of the theory

7.2 One regression line or two?

are two regression lines really the same?

two level factor...

the question generates 4 models

what comparisons can be made?

7.3 the lack of fit test

taken from Neter et al

the approach reverses the usual logic (do I need a line) to "is a line enough"

7.4 Smoothers

consider the cubic spline...

can be a linear model

can be used to test whether a line is appropriate

if the knots are chosen based on data then we have a GAM, not the usual linear model

other splines are normally used, but this is a simple introduction
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