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1 Introduction to nonlinear statistical models

1.1 The assumptions - and what goes wrong

y ∼ n
(
Xβ,σ2I

)

may be wrong.

Simple variance exceptions are easy to handle:

• Vyi = uiσ
2 where ui are known

• Σy = σ2B where B is known

• Σy may contain “a few” unknown parameters

1.1.1 Details

The assumption

y ∼ n
(
Xβ,σ2I

)

consists of several components: Normality, independence, linearity in the mean and equal variances.

The following sections give some examples of cases where general violations of these assumptions are

handled using general nonlinear models.

Consider first the simplest deviations, namely of the variance structure:

• If Vyi = uiσ
2 where ui are known, then we can define w1 = 1/ui and maximum likelihood is

equivalent to minb ∑i wi (yi − x′iβ)
2

where x′i is the i’th row of X. This is the traditional weighted

linear regression.

• If Σy = σ2B where B is known, then we can write B−1 = LL′ where L is lower triangular and

define a new regression problem with ỹ = L′y, X̃ = L′X and it follows that E ỹ = X̃β, V ỹ = . . .=
σ2I so ordinary least squares can be used to estimate the parameters and for uncertainty estimation

in the revised regression problem.

• If Σy contains “a few” unknown parameters, then these can be estimated as a part of maximum

likelihood estimation of all parameters.

1.2 Maximum likelihood

The MLE is usually a good estimator

Applies to very many estimation problems

Need to specify the complete likelihood function

Can take into account dependence, different variances, non-normality, nonlinear response etc

1.2.1 Details

the likelihood approach involves...
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1.2.2 Examples

Example: Consider maximum likelihood estimation of the mean of the gamma density.

. . .

⇒ µ̂ = ȳ

Example: Consider a model for the growth of fish.

The data set at http://notendur.hi.is/gunnar/kennsla/alsm/data/set121.dat contains measurements of indi-

vidual fish, collected by the Marine Research Institute (http://www.hafro.is). The data include a column

(aldur) containing the age of fish and the column (le) containing the length of the same fish.

The von Bertalanffy growth model can be fitted using the R commands

dat<-read.table("http://notendur.hi.is/~gunnar/kennsla/alsm/data/set121.dat",header=T)

le<-dat$le

a<-dat$aldur

fm<-nls(le~Linf*(1-exp(-K*(a-t0))),start=list(t0=0,Linf=80,K=0.25))

summary(fm)

Once the above commands have been issued, the summary command can be used:

> summary(fm)

Formula: le ~ Linf * (1 - exp(-K * (a - t0)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

t0 -0.23160 0.23739 -0.976 0.331683

Linf 91.22292 14.47924 6.300 8.72e-09 ***

K 0.15672 0.04414 3.550 0.000595 ***

---

Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.788 on 97 degrees of freedom

Number of iterations to onvergene: 3

Ahieved onvergene tolerane: 6.375e-07

A different test can also be used to investigate whether t0 = 0:

> fmR<-nls(le~Linf*(1-exp(-K*(a))),start=list(Linf=80,K=0.25))

> anova(fm,fmR)

Analysis of Variane Table

Model 1: le ~ Linf * (1 - exp(-K * (a - t0)))

Model 2: le ~ Linf * (1 - exp(-K * (a)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 97 753.78

2 98 762.33 -1 -8.557 1.1012 0.2966

Note that the F-test and t-test are not the same in the nonlinear case. Both depend on linearity assump-

tions but in different ways.

6



1.3 Nonlinear least squares

Common model:

Eyi = g(xi,β), 1 ≤ i ≤ n

Common estimation method:

minβ ∑
i

(yi = g(xi,β))
2

Also need to estimate uncertainty. Use Hessian or bootstrap.

1.3.1 Detail

A common nonlinear model to predict yi-values is to assume some functional relationship:

Eyi = g(xi,β), 1 ≤ i ≤ n

where β is a vector of unknown parameters.

A very common estimation method is nonlinea least squares:

minβ ∑
i

(yi = g(xi,β))
2 .

This leaves the question of how to estimate the uncertainty in the parameters.
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2 Generalized linear models

2.1 The linear model - different formulation

2.1.1 Details

The traditional linear model with independent y1,y2, ...,yn can be written as follows

1. yi ∼n(µi,V [yi])

2. µi = ηi

3. V [yi] = σ2

where ηi = x′iβ.

2.2 The generalized linear model

2.2.1 Details

The generalized linear model with independent y1,y2, ...,yn can be defined by

1. y1,y2, ...,yn come from a member of the exponential family of distributions.

2. g(µi) = ηi for some monotone function g, where ηi = x′iβ and V [yi] may be a function of µi.

The function g is the link function and ni is the linear predictor. (The link function links the mean to

the linear predictor.)

The traditional linear model is a special case of this generalized linear model.

The exponential family consists of distributions with density (pdf or pnf) of the form

f (y;θ,φ) = e

yθ− b(θ)

a(φ)
+ c(y,φ)

(∗)

where a, b and c are functions which make this a density. Commonly, a(φ) = φ
w

where w > 0 is known

and φ =V [yi] = σ2.

2.2.2 Examples

Example 1 - The Gaussian Density

Consider the usual linear model

y ∼ n(Xβ,σ2I)
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Here, yi ∼n(µi,σ
2) where µi = x′iβ are independent and g= identity. We need to verify that the Gaussian

density is of the form (*), that is,

f (y;θ,φ) = e

yθ− b(θ)

a(φ)
+ c(y,φ)

This Gaussian density is

f (y;µ,σ) =
1√
2πσ

e
− (y− µ)2

2σ2

=
1√
2πσ

e
− y2 − 2µy+ µ2

2σ2

= exp

(

yµ− 1
2
µ2

σ2
−
(

y2

2σ2
+

1

2
ln(2πσ2)

))

which is of the form (*) if we set

φ = σ2,

θ = µ,

a(φ) = φ, b(θ) = 1
2
θ2 and

c(y,φ) =−
(

y2

2φ +
1
2

ln(2πφ)
)

.

Example 2 - The Γ-Density

First write the gamma density in the form

f (y;µ,r) =
yr−1e

−ry

µ

Γ(r)
(

µ
r

)r with y > 0

If e.g. y1,y2, ...,yn are independent with this density and µi = E[yi] = g(x′iβ), then this is a GLM since

the density is from the exponential family:

f (y;µ,r) = exp

(
y/µ− ln(µ)

1/r
+(r− 1) ln(y)− ln(Γ(r))+ r ln(r)

)

which is of the form (*) with

θ = 1
µ
,

φ = r,

a(φ) = 1
φ ,

b(θ) =− ln(θ) and

c(y,φ) = (φ− 1) ln(y)− ln(Γ(φ))+φ ln(φ).

Here g(µ) = 1
µ

is called the canonical link, but it is much more common to use g(µ) = ln(µ), e.g. in

fisheries or other ecological applications.

Example 3
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Consider estimating the mean under the gamma assumption. So assume we have independent y1,y2, ...,yn

with density

yr−1e−ry/µ

Γ(r)
(

µ
r

)r with y > 0

The maximum likelihood estimator for µ is obtained by maximizing the likelihood function:

L(µ,r) =
n

∏
i=1

yr−1
i e−ryi/µ

Γ(r)
(

µ
r

)r

or maximizing

ln(L(µ,r)) =−n· ln
(

Γ(r)
1

rr

)

− nr· ln(µ)+ (r− 1)
n

∑
i=1

ln(yi)−
r

µ

n

∑
i=1

yi

and now we solve

0 =
d

dµ
ln(L(µ,r)) =−nr

µ
+

r
n

∑
i=1

yi

µ2

⇒ nµ =
n

∑
i=1

yi

and we obtain

µ̂ = y

Note that here Eyi = µ(= αβ), so µ̂ is unbiased.

2.3 Estimation: MLEs and deviances

2.3.1 Details

Parameters in a GLM include both β and φ. The elements of β can be estimated using maximum

likelihood, but several approaches exist for this. The likelihood function is in general

L(µ;y) =
n

∏
i=1

e

yiθi − b(θi)

a(φ)
+ c(yi,φ)

,

where one needs to think of θi as an appropriate function of the expected value, µi.

If we define

l(µ,y) :=−2ln
(
L(µ;y)

)

as a natural quantity to be minimized, then we can also define the scaled deviance by

D∗(y,µ) := l(µ,y)− l(y,y)

and the deviance is

D(y;µ) := φD∗(y,µ)

We note that
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1. Minimizing D over β is equivalent to maximizing the likelihood function.

2. If a(φ) = φ
w

then D does not include φ.

For a given model, the deviance for the model is D(y, µ̂) where

µ̂i = g−1(η̂i) = g−1(x′iβ̂)

is the MLE, and this quantity only depends on the data - it does not involve unknown parameters
(

if a(φ) = ph
w

)

.

2.3.2 Examples

Examples of distributions covered by the exponential family include the normal, gamma, Poisson and

binomial. Common link functions include

Family Link function

Gaussian id

Gamma ln (or inverse)

Binomial logistic (or probit)

Poisson ln

Example 4

Consider predicting a value between zero and one. Within a small interval the probability might be

linear, but obviously an assumption of linearity will not hold across a wide range.

yi ∼b(n = 1, pi)

so Eyi = pi and Vyi = pi(1− pi).

A common link function is the logistic function

η = g(µ) = logit(p) := ln

(
p

1− p

)

= x′β

with inverse
1

1− e−x′β =
1

1+ e−η

Note that the data are NOT transformed.

The p.m.f. and likelihood

n

∏
i=1

p
yi
i (1− pi)

1−yi =
n

∏
i=1

(
pi

1− pi

)yi

(1− pi)
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where each yi is 0 or 1. Here

l(y,p) =−2ln
(
L(p;y)

)

=−2
n

∑
i=1

(yi ln(pi)+ (1− yi) ln(1− pi))

and φ = 1.

Numerical methods are available for finding these values.

By transforming the data one gets biased estimators, so the GLM estimation technique is generally

preferred.

Example 5 - Poisson

yi ∼P(λi) are independent and usually ln(λi) = x′iβ. Here

L(λ) =
n

∏
i=1

λ
yi
i e−λi

yi!

and

l(y,λ) =−2
n

∑
i=1

ln

(

l
yi
i e−λi

yi!

)

=−2
n

∑
i=1

(yi ln(λi)−λi− ln(yi!))

and

D(y, λ̂) = l(λ̂,y)− l(y,y)

=−2∑(yi ln(λ̂i)− λ̂i − yi ln(yi)+ yi)

=−2∑

(

yi ln
λ̂i

yi

+(yi− λ̂i)

)

and this needs to be minimized to find β̂, where λ̂i = ex′iβ.
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3 Likelihood ratio tests

3.1 The LRT

The likelihood ratio test of H0 : β = β0 vs Ha : β 6= β0

λ =
L(β̂0)

L(β̂)
.

The test rejects for large values of λ.

3.1.1 Handout

The likelihood ratio test of H0 : β = β0 vs Ha : β 6= β0 proceeds by computing the ratio between the

likelihood function values, at the two points, L(β0) and L(β̂). This is the ratio

λ =
L(β̂0)

L(β̂)
.

The test rejects for large values of Λ. Note that λ = λ(y1, . . . ,yn) is a function of the data so the rejection

region translates into a statement about the data.

λ(x) =

sup
θ∈Θ0

L(θ)

sup
θ∈Θ

L(θ)
=

L(θ0)

L(θ̂)
.

Theorem: (Asymptotic distribution of the LRT–simple H0) For testing H0 : θ = θ0 versus H1 : θ 6= θ0,

suppose x1, . . . ,Xn are i.i.d. f (x|θ), θ̂ is the MLE for θ (and f (x|θ) satisfies the regularity conditions

found in Miscellanea 10.6.2. in Casella and Berger). Then under H0, as n → ∞,

−2logλ(X)
D−→ χ2

1
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4 Case study: Fisheries

4.1 Biological systems are typically nonlinear

• Growth

• Mortality

...

•

so the models should be nonlinear

4.2 A relatively simple problem, ADAPT

The ADAPT assessment model

minN0,y,Na,0,qa ∑
ay

way (ln(Iay)− ln(qaNay))
2

w.r.t.Na+1,y+1 =
(

Naye−M/2 −Cay

)

e−M/2

where M is fixed and the catches, Cay are given as numbers by age and year.

But the weighting factors way need to be specified.

4.3 Gadget biological components

4.3.1 Details

Core: Parametric forward simulation model

• Consumption: Suitability functions

• Mortality: Due to predation or other natural or fishing

• Growth: Can depend on consumption. Several growth update implementations

• Migration: Through migration matrices

• Maturation: Move from immature to mature stock component

• Spawning: Lose weight and generate yearclass

• Symmetric: All species implemented in same way - fleet is also a predator

14



4.4 Data are typically not Gaussian

• Length distributions

• Survey indices

...

•

Data from a normal distribution are actually very rare in fishery science.

Obvious modifications to assumptions such as the multinomial typically does not improve anything.

4.5 Nonlinearity is not an issue per se

• Use nonlinear minimisation algorithms for estimation

• Can handle a lot of unknown parameters

• Can in principle estimate variances using Hessian matrices or bootstrap

4.6 Consider each data set

Look at single data sets and try to estimate true variances in each

Compare point estimates from each data set

Try to test formally whether results differ

4.7 Diagnostics for likelihood functions

Most likelihood functions can be verified, e.g. using Kolmogorov-Smirnov tests.

One should not be happy with a model which is rejected!
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4.8 Likelihoods - Assumption

Take 50 fish from each station - compare with binomial

4.8.1 Details

Take 50 fish from each station - compare with binomial

4.9 Parsimony and flexibility

If data sources indicate different outcomes then the model is wrong!

Data are just data - they are not wrong.

Example: Catchability may vary in time and fleets may increase their catchability.

Need to add parameters until model is appropriately flexible. Notably add time series parameters...
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5 Case study: Multispecies models for marine fish stocks

5.1 Combining data sets raises issues

• Weight given to each

• Do they all indicate the same model?

...

•

5.2 Several data sets means several likelihood components

In ADAPT

minN0,y,Na,0,qa ∑
ay

way (ln(Iay)− ln(qaNay))
2

w.r.t.Na+1,y+1 =
(

Naye−M/2 −Cay

)

e−M/2

the weighting factors way need to be specified, since age groups are like data sets.

Complex data means means the components are not even of same form!

5.3 Length distributions

Multinomial?

Test assumptions using samples of survey stations, picking n fish from each.

Variance should be from binomial.

Covariance from multinomial.

Conclusion: Assumption fails very badly.

5.4 Effect of wrong variance assumptions

Linear model theory: Minor issue, just affects variance estimates, parameter estimates are still unbi-

assed.

But: If the base model is wrong for a small part of the data, may create havoc!

5.4.1 Examples

Example: Wrong weights in ADAPT
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Weights on juveniles seem important - can drive entire assessment.

5.5 Likelihoods - Estimation procedure

Gadget is a statistical estimation model.

Internal dynamics are complex so deterministic forward pro-

jections are used.

Maximum likelihood estimation is used.

Length distributions are count data and are often

assumed to come from a multinomial distribution,

possibly with overdispersion.

5.5.1 Details

Estimation: (Negative log) likelihood functions

Gaussian, weighted

Multinomial

minθ∈Rn ∑
k

wklk(θ)

Note: Given θ, can simulate. Now search for estimate giving best fit to weighted likelihood function.

5.6 Simple example of complexity problem

Take a simple problem

Yi j ∼ n(αi +βixi j,σ
2
i ), j = 1, . . . ,ni i = 1,2,

but suppose we don’t know the slopes are different, so fit

Yi j ∼ n(αi +βxi j,σ
2
i ), j = 1, . . . ,ni i = 1,2,
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5.7 Simple example of complex problem
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6 Addding distributional assumptions: The multivariate normal

and related distributions

6.1 A theorem from calculus

6.1.1 Handout

To find a multivariate density of a transformed variable, recall from calculus that if g is a 1−1 function

g : Rn → Rn ∫
f (z)dz =

∫
f (g(y))|J|dy (∗)

whereJistheJacobiano f thetrans f ormationJ =
∣
∣
∣

dz
dy

∣
∣
∣ =

∣
∣
∣

∂g(y)
∂y

∣
∣
∣ and the integrals are over corresponding

regions.

If f is the density of Z, then the left-hand integral over a set A is P [Z ∈ A], and if Y = g(Z) we also

know that

P [Y ∈ B] = P [g(Z) ∈ g(A)] ,

but this left-hand side is the integral of the joint p.d.f. of Y over B, which must now be equal to the r.h.s.

og (*).

It follows that the joint pdf of Y is h with h(y) = f (g(y))|J|.

6.2 The multivariate normal distribution

6.2.1 Handout

Suppose Z1, ...,Zn are independent Gaussian with mean zero and variance one (i.e. Z1, ...,Zn ∼ n(0,1),
i.i.d.) so their joint density is

f (z) =
n

∏
i=1

1√
2π

exp
(
−z2

i /2
)
=

1

(2π)n/2
exp
(
−(1/2)zT z

)

and this is the density of the multivariate random variable Z = (Z1, . . . ,Zn)
′.

Let A be an invertible n× n matrix and µ ∈ ˘Rn and define a new multivariate random variable, Y =
AZ+ µ.

Some linear algebra gives

h(y) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(y− µ)T Σ−1(y− µ)

)

where Σ = AAT .

This leads to a natural definition of the multivariate normal distribution.

The n-dimensional random vector, Y is defined to have a multivariate normal distribution, denoted

Y ∼ n(µ,Σ) if the density of Y is of the form

h(y) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(y− µ)T Σ−1(y− µ)

)

where µ ∈ R
n and Σ is a symmetric positive definite n× n matrix.

It is left to the reader to prove that if Y ∼ n(µ,Σ) and B is an p× n matrix of full rank p (p < n), then

BY also has a multivariate normal distribution.
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6.3 Related distributions

6.3.1 Handout

If Z ∼ n(0,1) is standard normal, then we define the chi-squared distribution on one degree of freedom,

χ2
1 to be the distribution of U := Z2 and write

U ∼ χ2
1.

If U1, . . . ,Up are i.i.d. χ1, then we define χ2
p to be the distribution of their sum and write

p

∑
i=i

Ui ∼ χ2
p.

Finally, if U ∼ χ2
ν1

and V ∼ χ2
ν2

are independent, then we define the F distribution on ν1 and ν2

degrees of freedom to be the distribution of the ratio
U/ν1

V/ν2
and write

U/ν1

V/ν2
∼ Fν1,ν2

.
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7 Orthogonal projections in multiple regression

7.1 Background to projections

If a is a vector then we can write a general vector w in the

form w = x+ y where x = ka and a′y = a ·y = 0.

In the general case,

k =
w ·a
||a||2 ,

and for unit vectors a we obtain

k = w ·a.

y

x

a

w

7.1.1 Handout

If a is a vector then we can write a general vector w in the form w = x+ y where x = ka and a ·y = 0.

With this

w ·a = (x+ y) ·a
= (ka+ y) ·a= ka ·a+ y ·a

︸︷︷︸

=0

= k · ||a||2

i.e.

k =
w ·a
||a||2 ,

and therefore w = x+ y with

x =
w ·a
||a||2 a

and residual:

y = w− u ·a
||a||2 a.

Note that we have shown that this is the only possible solution to writing w = x+ y where x = ka and

a ·y = 0 but not that it is indeed such a solution. Obviously x is of the stated form and it is not hard to

see that a · y = 0 is indeed true for this solution. This orthogonal decomposition therefore both exists

and is unique.

7.2 Projections and bases

The Gram-Schmidt technique uses projections to iteratively build an orthonormal basis, u1, . . .ur

which spans the same space as a sequence of arbitrary starting vectors, a1, a2, . . .ap.

In linear regression, the starting vectors are typically the columns of the X-matrix. r above is then

the rank of the matrix.
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7.2.1 Handout

The Gram-Schmidt technique uses the projections of the previous section to iteratively build an or-

thonormal basis, u1, . . .ur which spans the same space as a sequence of arbitrary starting vectors,

a1, a2, . . .ap:

u1 :=
1

||a||a1

then for i = 1, . . . , p− 1

vi+1 := (ai+1 ·a1)a1 + . . .+(ai+1 ·ai)ai

with residual

ei+1 := ai+1 − vi+1

and next vector

ui+1 :=
1

||ei+1||
ei+1

If the starting vectors are linearly independent, then r = p, otherwise r < p (some of the proposed basis

vectors have turned out to be zero and are omitted).

It is often useful to expand the set of starting vectors, to a1, a2, . . .ap,e1, e2, . . .en, where the ei are the

usual unit vectors. The method will then result in a full basis for Rn, the first r of which span the same

space as the starting vectors.
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8 A basis for V=span(X)

8.1 Subspaces

In the model y = Xβ+ e, assume rank(X) = r where X is n× p and r ≤ p

Recall Xβ̂ is a project so y−Xβ̂ ⊥ Xβ̂ so that y−Xβ̂ ∈ V⊥ = {v : v ⊥ sp(X)} and dim(V⊥) = n− r.

If r = p, then:

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X′X)−1X′y

= (I−X(X′X)−1X′)y = (I−H)y

and rank(I−H) = dim(V⊥) = n− p

8.1.1 Details

Assume rank(X) = r ≤ p (X is n× p).

Parameters in the model y=Xβ+e are estimated with β̂= (X
′
X)−1X

′
y if the inverse exists or in general

with any β̂ which is such that ŷ = Xβ̂ is a projection onto the subspace sp(X).

By definition, a projection ŷ simply corresponds to a decomposition of the original vector into two

orthogonal components, i.e. writing y = ŷ+ ê. We have ê = y−Xβ̂ ⊥ ŷ = Xβ̂ so that y−Xβ̂ ∈ V⊥ =
{v : v ⊥ sp(X)} and dim(V⊥) = n− r.

ê
︸︷︷︸

n×1

= y−Xβ̂ = y−X(X
′
X)−1X

′
y

= (I−X(X
′
X)−1X

′
)y = (I−H)y

and rank(I−H) = dim(V⊥) = n− r

8.2 A basis for the span of X

Orthonormal basis, {u1, . . . ,un} for Rn:

Using Gram-Schmidt, first generate u1, . . . ,ur which span sp{X}, with rank{X} = r and the rest,

ur+1, . . . ,un are chosen so that the entire set, u1, . . . ,un spans Rn.

Xβ̂ = ζ̂1u1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . .+ ζ̂nun
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8.2.1 Details

The probability distributions can best be viewed by defining a new orthonormal basis, {u1, . . . ,un} for

Rn.

This basis is defined by first generating a set of r vectors u1, . . . ,ur which span the space defined by

sp{X}, and the rest, ur+1, . . . ,un are chosen so that the entire set, u1, . . . ,un spans Rn. This is obviously

always possible using the method of Gram-Schmidt. This gives the following sequence of spaces and

spans:

sp{X} = sp{u1, . . . ,ur}
Rn = sp{u1, . . . ,ur,ur+1, . . .un}

One can then write each of Xβ̂ and y in terms of the new basis as follows:

Xβ̂ = ζ̂1u1 + . . . ζ̂rur

y = ζ̂1u1 + . . . ζ̂rur + ζ̂r+1ur+1 + . . . ζ̂nun

where it is well-known that ζ̂i = ui ·y.

It is important to note that the same coefficients ζ̂i are obtained for 1 ≤ i ≤ r. This follows from

considering the coefficient of y in the basis and noting that y = Xβ̂+ ê where the residual vector ê is

orthogonal to all column vectors of X and therefore also to ui for 1 ≤ i ≤ r. Therefore,

ζ̂i = ui ·y = ui ·Xβ̂

8.3 Q-R decomposition

Q :=

[

u1

...u2

... . . .
...un

]

is the Q in the Q-R decomposition of X = QR.

If

z =
(

ζ̂1, ζ̂2, . . . , ζ̂n

)

then

z = Q′y

and hence

E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I

8.3.1 Details

Q := [u1u2 . . .un] is the Q in the Q-R decomposition of X.

Q has important properties, e.g. Q′Q = I so Q−1 = Q′.
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If

z =
(

ζ̂1, ζ̂2, . . . , ζ̂n

)

then

z = Q′y and y = Qz

and hence

E [z] = Q′Xβ

V [z] = Q′σ2IQ = σ2I

8.4 Variances of coefficients

For each i we obtain

V

[

ζ̂i

]

= σ2

8.4.1 Details

For each i we trivially obtain

V
[

ζ̂i

]

= σ2

8.5 Expected values of coefficients

For i = r+ 1, . . . ,n we obtain

E
[

ζ̂i

]

= 0

8.5.1 Details

The expected values of the coefficients, ζ̂i depend on which space these correspond to. Define

ζi = E
[

ζ̂i

]

and by linearity we obtain

ζi = E [ui ·y] = ui · (Xβ) .

Now note that we have defined the basis vectors in three sets. The first is such that they span the same

space as the columns of Z. The second set complements the first to span the X and the last set comple-

ments the set to span all of Rn. The basis vectors are of course all orthogonal and each basis vector is

orthogonal to all vectors in spaces spanned by preceding vectors.

For i = r+ 1, . . . ,n we obtain

E
[

ζ̂i

]

= ui · (Xβ) = 0

since Xβ is trivially in the space spanned by the column vectors of X and is therefore a linear combina-

tion of u1, . . . ,ur and ui is orthogonal to all of these.
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8.6 Sums of squares and norms

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=p+1

ζ̂2
i

8.6.1 Details

It is now quite easy to see how to form sums of squared deviations based on the new orthonormal basis,

since each set of deviations corresponds to a specific portion of the space.

SSE(F) = ||y−Xβ̂||2 =
n

∑
i=r+1

ζ̂2
i

8.7 Normality and independence of coeffients

Note that ζ̂i are linear combinations of the various y j since ζ̂i = ui ·y.

When the yi are independent Gaussian random variables, ζ̂i have zero covariance and are thus also

independent.

8.7.1 Details

Note that ζ̂i are linear combinations of the various y j since ζ̂i = ui ·y. The ζ̂i have zero covariance and

when the yi are independent Gaussian random variables, the ζ̂i are also independent.

This final result uses the fact that Gaussian random variables which have zero covariance are also inde-

pendent. The fact that they have zero covariance is easy to establish, but the corrollary of independence

is a result from multivariate normal theory.

The normal theory is fairly simple in this case:

z =
(

ζ̂1, ζ̂2, . . . , ζ̂n

)

= Q′y

and

y ∼ n
(
Xβ,σ2I

)

.

It follows that z is multivariate normal and from the earlier derivations of the mean and variance we

have

z ∼ n
(
Q′Xβ,σ2I

)
.
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8.8 Degrees of freedom

SSE(F)has n− r degrees of freedom.

8.8.1 Details

SSE(F) has n− r degrees of freedom.
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