Analysis of variance one and two factors

(STATS545.4: Analyses of variance and covariance)

Gunnar Stefansson

Factors and levels

A factor is a classification (categorical) variable such as a farm, gender, color and so forth. The possible values which a factor can take on are called levels. For example color may be red, blue, green and so forth.

Classification variables groups When comparing two means the basic model is $y_i = \beta_1 + e_i, \ i = 1, \dots n$ $y_i = \beta_2 + e_i, \ i = n+1\dots m$ Note that the X-matrix can be of arbitrary form. In particular one can define classification variables: $X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{array}{c} 1 \\ 1 \\ n \\ n \\ n + 1 \\ n + 2 \end{array}$ 0 1 n+m

i.e. $y = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ is equivalent to the above model, which concerns estimation or comparisons of two

$$\begin{aligned} & \textbf{Classification variables - another}\\ & \textbf{presentation}\\ \text{One could also write}\\ & y_i = \mu + e_i \quad 1 \le i \le n\\ & y_i = \mu + \beta + e_i \quad n+1 \le i \le n+m \end{aligned} \\ & \textbf{and } H_0: \mu_1 = \mu_2 \text{ becomes } H_0: \beta = 0.\\ & \textbf{X} = \begin{bmatrix} 1 & 0\\ \vdots & \vdots\\ & \vdots & 0\\ 1 & 1\\ \vdots & 1\\ 1 & 1 \end{bmatrix}, \textbf{Z} = \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix} \end{aligned}$$

Simple analysis of variance Several groups $y_{1j} = \mu_1 + e_{1j} \quad j = 1, \dots, J_1$ $y_{2j} = \mu_2 + e_{2j} \quad j = 1, \dots, J_2$ $y_{Ij} = \mu_I + e_{Ij} \quad j = 1, \dots, J_I,$ with a total of $n = J_1 + \ldots + J_I$ measurements. In addition to simple comparisons of two means, i.e. tests of $H_0: \mu_1 = \mu_2$ with data of the form $y_i = \mu_1 + e_i \qquad \qquad i = 1, \dots, n$ $y_i = \mu_2 + e_i$ $i = n + 1, \dots, n + m$ it is also of interest to compare several means. Thus we want to consider data from several (I)groups.

Developing matrix notation

Want

 $\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{e}$

-prefer independent columns...

The models are set up using matrix notation,

- usually omit those columns in \mathbf{X} which would make them linearly dependent (also set the corresponding elements of the β -vector to zero without further estimation).

Different versions of the same model The model can be written in different ways, e.g. $y_{1j} = \mu + \alpha_1 + e_{1j}, \quad j = 1, \dots, J_1$ $y_{2j} = \mu + \alpha_2 + e_{2j}, \quad j = 1, \dots, J_2$ $= \mu + \alpha_I + e_{Ij}, \ j = 1, \dots, J_I.$ y_{Ij} Here, μ is an overall mean but α_i is the deviance of each group from the overall mean.

Deviations from overall meanin matrix form This model can be written using matrix notation as: 1 1 0 0 y_{11} 1 1 0 0 y_{12} : : : 1 1 0 0 y_{1J_1} $1 \quad 0 \quad 1$ 0 y_{21} μ 0 1 0 1 y_{22} α_1 ÷÷ α_2 $+\mathbf{e}$ $\mathbf{y} =$ = $1 \quad 0 \quad 1$ 0 $y_{2J_{2}}$: : α_I 0 0 1 1 y_{I1} 0 1 0 1 y_{I2} 1

0

0

Null h	ypothes	ses, s	eve	ral	m	ea	n	S		
The null hypot	hesis									
$H_0: \mu_1 = \mu_2$	$=\ldots=\mu_J$									
is the same as	3									
$H_0: \alpha_1 = \ldots$	$= \alpha_I = 0.$									
The alternativ	e hypothesis H_a i	s simply that	H_0 is n	ot						
correct.										

Dependent column vectors of X

Note now that the columns of X are dependent so that $(X'X)^{-1}$ does not exist. Therefore columns must be dropped or some other conditions set in order to find a solution.

The sum of squares is welldefined

$$SSE = \sum_{ij} (y_{ij} - \hat{y}_{ij})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_{i.})^2$$

where

$$\bar{y}_{i.} = \frac{1}{J_i} \sum_{j=1}^{J_i} y_{ij.}$$

We also know that

$$SSTOT = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_{..})^2$$

so the following variation is explained by the model

$$SSR = SSTQT - SSE = \ldots = \sum_{i:i} (\bar{y}_{i.} - \bar{y}_{..})^2 \sum_{i} J_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

Components of sums of squares:

$$y_{ij} - \overline{y}_{..} = (y_{ij} - \overline{y}_{i.}) + (\overline{y}_{i.} - \overline{y}_{..})$$

$$\sum_{ij} (y_{ij} - \overline{y}_{..})^2 = \sum_{ij} (y_{ij} - \overline{y}_{i.})^2 + \sum_{ij} (\overline{y}_{i.} - \overline{y}_{..})^2$$

• • • • • • •

•

•

.

One-way anova

The ANOVA table becomes

	df	SS	MS	F
Model	I-1	$SSR = \sum_{i=1}^{I} J_i (\bar{y}_{i.} - \bar{y}_{})^2$	MSR = SSR/(I-1)	F = MSF
Error	n-I	$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_{i.})^2$	MSE = SSE/(n-I)	
Total	n-1	$SSTOT = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (y_{ij} - \bar{y}_{})^2$		

We will reject H_0 if $F > F_{I-1,n-I,1-\alpha}$