Analysis of variance one and two factors

(STATS545.4: Analyses of variance and covariance)

Gunnar Stefansson

Factors and levels

A factor is a classification (categorical) variable such as a farm, gender, color and so forth. The possible values which a factor can take on are called levels. For example color may be red, blue, green and so forth.

Classification variables - two

 groupsWhen comparing two means the basic model is
$y_{i}=\beta_{1}+e_{i}, i=1, \ldots n$
$y_{i}=\beta_{2}+e_{i}, i=n+1 \ldots m$

Note that the \mathbf{X}-matrix can be of arbitrary form. In particular one can define classification variables:

$$
X=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right] \begin{array}{r}
1 \\
1 \\
n+1 \\
n+m
\end{array}
$$

i.e. $y=\mathbf{X} \beta+\mathbf{e}$ is equivalent to the above model, which concerns estimation or comnarisons of two

Classification variables - another representation
 One could also write

$$
\begin{array}{lll}
y_{i}= & \mu+e_{i} & 1 \leq i \leq n \\
y_{i}= & \mu+\beta+e_{i} & n+1 \leq i \leq n+m
\end{array}
$$

and $H_{0}: \mu_{1}=\mu_{2}$ becomes $H_{0}: \beta=0$.

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & 0 \\
\vdots & \vdots \\
\vdots & 0 \\
1 & 1 \\
\vdots & 1 \\
1 & 1
\end{array}\right], \mathbf{Z}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

Simple analysis of variance

Several groups

$$
\begin{aligned}
y_{1 j} & =\mu_{1}+e_{1 j} \\
y_{2 j} & =\mu_{2}+e_{2 j} \quad j=1, \ldots, J_{1} \\
& \vdots \\
y_{I j} & =\mu_{I}+e_{I j} \quad j=1, \ldots, J_{I}
\end{aligned}
$$

with a total of $n=J_{1}+\ldots+J_{I}$ measurements.
In addition to simple comparisons of two means, i.e.
tests of $H_{0}: \mu_{1}=\mu_{2}$ with data of the form

$$
\begin{array}{lc}
y_{i}=\mu_{1}+e_{i} & i=1, \ldots, n \\
y_{i}=\mu_{2}+e_{i} & i=n+1, \ldots, n+m
\end{array}
$$

it is also of interest to compare several means.
Thus we want to consider data from several (I)
groups:

Developing matrix notation

Want
$\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}$
-prefer independent columns...
The models are set up using matrix notation,

- usually omit those columns in \mathbf{X} which would make them linearly dependent (also set the corresponding elements of the $\boldsymbol{\beta}$-vector to zero without further estimation).

Different versions of the same model

The model can be written in different ways, e.g.

$$
\begin{aligned}
y_{1 j} & =\mu+\alpha_{1}+e_{1 j}, \quad j=1, \ldots, J_{1} \\
y_{2 j} & =\mu+\alpha_{2}+e_{2 j}, \quad j=1, \ldots, J_{2} \\
& \vdots \\
y_{I j} & =\mu+\alpha_{I}+e_{I j}, \quad j=1, \ldots, J_{I} .
\end{aligned}
$$

Here, μ is an overall mean but α_{i} is the deviance of each group from the overall mean.

Deviations from overall mean in matrix form

This model can be written using matrix notation as:

Null hypotheses, several means

The null hypothesis
$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{J}$
is the same as
$H_{0}: \alpha_{1}=\ldots=\alpha_{I}=0$.
The alternative hypothesis H_{a} is simply that H_{0} is not correct.

Dependent column vectors of X

Note now that the columns of \mathbf{X} are dependent so that $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ does not exist. Therefore columns must be dropped or some other conditions set in order to find a solution.

Point estimates

One solution...

$$
\begin{gathered}
\mu_{i}=\mu+\alpha_{i} \\
\sum_{i} \alpha_{i}=0 \\
J_{i}=J \\
\hat{\mu}_{i}=\bar{y}_{i} .
\end{gathered}
$$

$$
\hat{\alpha}_{i}=\bar{y}_{i .}-\bar{y}_{.}
$$

The sum of squares is welldefined

$$
S S E=\sum_{i j}\left(y_{i j}-\hat{y}_{i j}\right)^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}
$$

where

$$
\bar{y}_{i .}=\frac{1}{J_{i}} \sum_{j=1}^{J_{i}} y_{i j} .
$$

We also know that

$$
S S T O T=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
$$

so the following variation is explained by the model

$$
\begin{gathered}
S S R=S S T Q T-S S E=\ldots=\sum_{i j}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} \sum_{i} J_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} \\
\ldots
\end{gathered}
$$

Components of sums of squares

The residuals add up and so do the sums of squares:

$$
y_{i j}-\bar{y}_{. .}=\left(y_{i j}-\bar{y}_{i .}\right)+\left(\bar{y}_{i .}-\bar{y}_{. .}\right)
$$

$$
\sum_{i j}\left(y_{i j}-\bar{y}_{. .}\right)^{2}=\sum_{i j}\left(y_{i j}-\bar{y}_{i .}\right)^{2}+\sum_{i j}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}
$$

One-way anova

The ANOVA table becomes

	df	SS	MS	F
Model	$I-1$	$S S R=\sum_{i=1}^{I} J_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}$	$M S R=S S R /(I-1)$	$F=M S R$
Error	$n-I$	$S S E=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}$	$M S E=S S E /(n-I)$	
Total	$n-1$	$S S T O T=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(y_{i j}-\bar{y}_{. .}\right)^{2}$		

We will reject H_{0} if $F>F_{I-1, n-I, 1-\alpha}$

