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Factors and levels
A factor is a classification (categorical) variable such
as a farm, gender, color and so forth. The possible
values which a factor can take on are called levels.
For example color may be red, blue, green and so
forth.
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Classification variables - two
groups

When comparing two means the basic model is
yi = β1 + ei, i = 1, . . . n

yi = β2 + ei, i = n + 1 . . . m

Note that the X-matrix can be of arbitrary form. In
particular one can define classification variables:
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i.e. y = Xβ + e is equivalent to the above model,
which concerns estimation or comparisons of two
means.
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Classification variables - another
representation

One could also write

yi = µ + ei 1 ≤ i ≤ n

yi = µ + β + ei n + 1 ≤ i ≤ n + m

and H0 : µ1 = µ2 becomes H0 : β = 0.
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Simple analysis of variance
Several groups

y1j = µ1 + e1j j = 1, . . . , J1

y2j = µ2 + e2j j = 1, . . . , J2

...

yIj = µI + eIj j = 1, . . . , JI ,

with a total of n = J1 + . . . + JI measurements.
In addition to simple comparisons of two means, i.e.
tests of H0 : µ1 = µ2 with data of the form

yi = µ1 + ei i = 1, . . . , n

yi = µ2 + ei i = n + 1, . . . , n + m

it is also of interest to compare several means.
Thus we want to consider data from several (I)
groups.

y = µ + e j = 1, . . . , J
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Developing matrix notation
Want
y = Xβ + e

-prefer independent columns...
The models are set up using matrix notation,
- usually omit those columns in X which would make
them linearly dependent (also set the corresponding
elements of the β-vector to zero without further esti-
mation).
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Different versions of the same
model

The model can be written in different ways, e.g.

y1j = µ + α1 + e1j , j = 1, . . . , J1

y2j = µ + α2 + e2j , j = 1, . . . , J2

...

yIj = µ + αI + eIj , j = 1, . . . , JI .

Here, µ is an overall mean but αi is the deviance of
each group from the overall mean.
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Deviations from overall mean in
matrix form

This model can be written using matrix notation as:
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Null hypotheses, several means
The null hypothesis
H0 : µ1 = µ2 = . . . = µJ

is the same as
H0 : α1 = . . . = αI = 0.
The alternative hypothesis Ha is simply that H0 is not
correct.
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Dependent column vectors of X
Note now that the columns of X are dependent so
that (X′X)−1 does not exist. Therefore columns
must be dropped or some other conditions set in order
to find a solution.
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Point estimates
One solution...

µi = µ + αi

X

i

αi = 0

Ji = J

µ̂i = ȳi.

α̂i = ȳi. − ȳ..
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The sum of squares is well-
defined

SSE =
X

ij

(yij − ŷij)
2 =
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We also know that
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so the following variation is explained by the model
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Components of sums of squares
The residuals add up and so do the sums of squares:

yij − ȳ.. = (yij − ȳi.) + (ȳi. − ȳ..)
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One-way anova
The ANOVA table becomes

df SS MS F

Model I − 1 SSR =
PI

i=1
Ji(ȳi. − ȳ..)2 MSR = SSR/(I − 1) F = MSR/

Error n − I SSE =
PI

i=1

PJi

j=1
(yij − ȳi.)

2 MSE = SSE/(n − I)

Total n − 1 SSTOT =
PI

i=1

PJi

j=1
(yij − ȳ..)2

We will reject H0 if F > FI−1,n−I,1−α
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