Distributions and expectations in the one-way layout

(STATS545.4: Analyses of variance and covariance)

Gunnar Stefansson

Distributions

It is of interest to consider the distributions of various quantities, not only under H_0 : $\mu_1 = \ldots = \mu_I$ but also when H_0 does not hold. Assume, therefore that

$$y_{ij} \sim n(\mu_i, \sigma^2), \ 1 \leq j \leq J_i, \ 1 \leq i \leq I,$$
 i.i.d.

 $ar{y}_{i.} \sim n(\mu_i, \sigma^2/J_i)$

In particular, y_{ij} independent with $Ey_{ij} = \mu_i$ and $Vy_{ij} = \sigma^2$. We then have $\bar{y}_{i.} = \frac{\sum_j y_{ij}}{J_i}$ with expected value $E[\bar{y}_{i.}] = \mu_i$ and variance $V[\bar{y}_{i.}] = \sigma^2/J_i$ and under normality the estimators $\bar{y}_{i.}$ have the obvious properties

The expected MSR
Can obtain
$$E[MSR] = \sigma^2 + \frac{\sum_i J_i (\mu_i - \mu)^2}{I - 1}$$
in one-way layout.