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1 Probability spaces and random variables

1.1 Probability background
1.1.1 Handout

Definition 1 A probability space consists of a set, 2, the sample space (or population)
with a collection A of sets called events A which are subsets of Q (i.e. A C Qso.AC P(2))
and a probability measure which is a function

P:A—0,1]
satisfying the conditions 0 < P[A] < P[Q2] =1 and
4| => PlA]
i=1 i=1

for A; € A such that A;NA; =0if i #j

P

Note how it is implicitly assumed in this definition that A has the property h that the

countable union,
oo
A=A
i=1

is included in A if the individual sets are members. A collection of sets which has the
property that it contains {2, contains the complement of each member set and contains
countable unions of subset is call a o— algebra.

The Borel-algebra is the smallest collection of sets which contains the half-closed inter-
vals, [a,b[, for a,b € R,a < b (or appropriate subset of R) and is closed with respect to
countable unions and complements.

Note that the Borel-algebra does exist since (1) an intersection of o-algebras is also a o-
algebra and (2) P(Q2) is a o-algebra containing these intervals. It follows that the intersection
of all og-algebras containing the intervals is what we need and this defines the Borel-algebra.

Along with the definition of random variables below, these formalities suffice for this
course in mathematical statistics. Much more detail can be obtained in a course on measure
theory or theoretical probability.

Definition 2 If A and B are events with P[B] > 0, then the probability of A given B is

Pwm:ﬂ%¥1

That this is the only reasonably definition is best seen from a simple discrete example.

Example 1 Suppose we have a bag of marbles with two properties, colour and weight.
Each marble either green or yellow and either light or heavy.

If we pull a marble out of the bag while blindfolded we can check wether it is light or
heavy.




Denote the event of the marble being light B, so getting a heavy marble is B¢. Simi-
larly, denote the event of it being green A.

A typical question would be "what is the probability of a green marble given that it
is light: P(A|B).

The find the only reasonably definition for this quantity, introduce the notation n¢
for the number of marbles which are in a set C'. So ny are the green marbles, nanp are
the light-and-green marbles etc and write n for the total in the bag.

This fits nicely into a table and we find that if we know the marble is light (event A),
then we easily get

nans _ nans/n _ P(ANB)

A= ng ng/n  P(B)

Definition 3 If A and B are events then the A are independent B if

P|AN B] = P|A|P|B].

Note how this is equivalent to P(A|B) = P(A) when P[B] > 0, but this definition does
not require positive probability of P[B].

1.2 Random variables

1.2.1 Handout

Definition 4 A random variable is a function
X: Q=R
such that X ~1(B) € A if B € B, where B is the Borel-algebra over R so we can define

P[X € Bl = P[X"}(B)].

Definition 5 The cumulative distribution function (cdf) is the function F' defined by

F(z) := P[X < z].

Commonly an original sample space is not obvious but the possible outcomes of an experi-
ment are in R and we define
X =idgr

to obtain a random variable which has the desired probability distribution on R.



Definition 6 A random variable X is discrete if P[X = x] > 0 for a finite or countably

infinity collection of z-values, and

Y PlX=a]=1

z€eR

(so all the mass is at these countable points).
In this case the probability mass function of X is the function

p(z) == P[X = z].

Definition 7 X is a continuous random variable if there is a function f : R — R, such

that
PIX € 4] = /A f(@)do

for all events A.

It is understood that the integral is a regular Riemann integral and the non-negative

function f needs to be integrable.
The two definitions can be combined into one using either the Riemann-Stieltjes integral

or Lebesque integration.

Example 2 Consider two tosses of an unbiased coin. In this case the sample space is a

discrete collection which we can denote

QO = {kk, ks, sk,ss}

Where k indicate a result of heads, and s implies tails.
Define a random variable which counts the number of tails:

0 w=kk,
Xw)=4¢ 1 w=ksor sk,
2 w=ss.

If the coin being used is fair then P(w) = 1/4 for each w € Q. Thus we can compute the
chances of getting a certain amount of heads from our two tosses. If x is the number of

heads then

x | P[X =1
0 1/4
1 1/2
2 1/4

Example 3 The double-or-nothing game:

Xp = 2nX[0,2_”]

The reader should elaborate and show that this represents a fair double-or-nothing game:




e What is Q27
e What is P?

e Is it true that P[X,+1 = 2X,|X,, > 0] = 1/27 Rewrite this in several ways.

Example 4
X1, Xo,...: [0, 1] — {0, 1}
Split [0, 1] into the intervals
[E k+ 1[
2i7 90

where k =0,1,...2" — 1 and let

2 < Zii
X () ;:{ g F Sw<

1, otherwise.

Then X;, X; are independent pairs if i # j.

Definition 8 Let X and Y be two discrete random variables. The Conditional mass
function of X given a value of the random variable Y is given by
P[X:a:,Y:y] PXY(xay)

Pxjy(zly) = PIX = 2|Y = y] = PY=y] = Py

where the denominator is positive.

Definition 9 Let X and Y be two continuous random variables. The conditional density
of X given a value of the random variable Y is

Ixy(zly) = j;x(,yy))’ frix(yle) = é(zgj)) wherethedenominatorispositive.
Y X

Example 5 Given that ny(l, 1) == 0.5, ny(2, 1) == 0.1, ny(2, 2) ==
0.3, Pxy(1,2) =0.1, Py(1)=0.6 calculate the probability of X=1 given that Y=1.
We use the definition of the conditional mass function:

Pxy(1,1) 05

Pxy(1,1) = Pr(l) 06

5/6




1.3 Expected values
1.3.1 Handout

Definition 10 The ezpected value of a random variable X is

. fwf(w)dw
s = { L7

if this exists or more specifically if E[| X[ < oo, where f (p) is the density function
(mass function) of X.

Definition 11 The wariance of a random variable X,
Var[X] or V[X], is
Var[X] :=E[(X — p)j

when p = E[X] and all the integrals exist (and are finite).
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2 Generating functions

2.1 Characteristic and moment generating functions

2.1.1 Handout

Definition 12 The moment generating function (m.g.f.) of the random variable X is the
function

Mx(T) := E[e"¥]

defined for those values of ¢ where the expected value exists.

Definition 13 The characteristic function of (the distribution of) X is the function

ox(t) = E[e"]

Remark 2.1. ¢x always exists since
E[le] =E[] =1

and hence both the real and imaginary parts of the integral exis so that E[eitx} exists for
teR.

We will use the following result:
If X1,X5,... is a sequence of random variables with cumulative distribution functions
F,, and characteristic functions ¢,, such that ¢, (t) — ¢(¢) when [¢t| < € and ¢ corresponds
to the cumulative distribution function F' which is continuous at x, then F,(z) — F(x). In
other words,
P[X,, <z] = P[X < x| if ¢,(t) — o(t).

Example 6 If X ~ G(a, ) i.e. X has density

1
I(a)p*

(the gamma density, discussed in detail later) then

0 otz go—1, —z/B
Mx(t) = E[¥]= / - dx

. F(a)(m)a /°° xo‘_le m

T TR b TeEh)r
11

Bz -t (A-pt)

2 e™®/P 1 > 0.

fz) =




Proof. If M(t) = [ €' f(x) dx and if it is permissible to differentiate under the integral, then

M®) () = /emx"f( )dz and thus M (0) :/a:"f(a:) dxr = E[X"].

Note also that if it is permissible to take the summation outside the expected value, then
[o¢]

Ez(t

(e o]

X" 2 e[t o i
nl ]Z;E[H‘X]z s

n=0

so if E[X "] exists and is limited for all n, then this is a “well-behaved” function and M ™ (0) =
E[X™). O

Example 7 (a) The standard normal distribution. Let Z have the standard normal
distribution, i.e. Z ~ n(0, 1) with density

fQ=—=c" (eRr

The cumulative distribution function is

¢
FQO=—o= [ e™Pa cem

and the moment generating function is

1
\/_

_ \/2_/6—5(:62—2&0) i
™

Mz(t) = [ e ——=e 2 du

_ i / La—1? g
\/27r
= e%tz, teR.

We thus obtain -
My(t) = te2t” og My(t) =e2

and from the previous theorem it follows that
E[Z = My(0) =0 og E[Z7] = My(0)=1.

Finally we have

Var(Z] = E[(Z — )] = E[Z” — 22 + 4] = E[Z7] — (7))’ =




(b) The general normal distribution. Let X := ¢Z + pu with Z ~ n(0,1). Then
clearly E[X] = 0E[Z + p = p and

Var[X] = E[X? — (E[X]?)
=E[(cZ + p)? — p?
= [222+20',U,Z+/L2] 1
o’E[Z?] + 20puE[Z) + p® — 1i°

02

The r.v. X is said to have a general normal distribution with expected value y
and variance o2, denoted X ~ n(u,c?). The moment generating function is

Mx(t) = IE[et(UZ"'N)] = E[e!7Z 1] = et”]E[e(t”)Z] = e"My(to), teR.
The c.d.f of the random variable is given by
FX(:c)=]P’(X§:c):IP’(GZ+,u§x)=P(Z§ %) =Fz(%E), zeR,

and its density is therefore

Example 8 Let Xi,...,X,, ~ Gamma(a, #) be independent with «, 3 > 0 so each X;
has the density
wa—le—x/ﬁ 0
sz (w) - P(a)/ga 9 T > bl
and moment generating function
1
M) = ———.
Y= T g

10



From the above theorem we see that

Mg (t) = (M(t/n))" = (1 - 55)_m -——

which implies that X ~ Gamma(na, 5/n). In addition

Mg x(t) = (M()" = (ﬁ) B ﬁ

which shows that > 7" ;| X; ~ Gamma(na, 3).
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3 On multivariate transforms

3.1 Background to some multivariate transformations
3.1.1 Handout

Before going further we need some results from calculus of several variables. First recall
that if the function
ng%Rna g::(gl""agn)/

is one-to-one and continuously differentiable then the Jacobian determinant of the transfor-
mation is given by

% gﬂ

Gg 1 1
J:‘a—x =|Vg1 - Vgu| = : Lo
991 .. Ogn

OTm O0Tm

For “convenient” regions R C R™ and a function f which is continuous on g(R) we have

/g T = /R £(g(u))]J]du.

We therefore see that if U is a random variable with X = g(U), then

fu(u) = fx(g(w))|J].

Example 9 Let X and Y be continuous and independent random variables and define
Z:=X+Y.If W:=X, and consider the transformation

0~ () =(1)

where J = |} 1| =1, and from the above we see that

Jw,z(w,¢) = fxy(w,{ —u)|J| = fxy(w, ¢ —u) = fx(w)fy(( —u).

Hence we see that the marginal density function of Z is given by

120 = | fwatw.Qydw = [~ @ (- wdu
This can be derived in several different ways, e.g.

Fz(C)

PZ <)
PX +Y <

[ L
[L
| i@

f(z,y)dz dy
f

x () fy (y) dz dy

(
fx(@)Fy(( — x)dx.

12



Example 10 Let X ~ Cauchy(0,1) with density

1 1
=—— R.
fx(@) w1+ 22’ e

For this random variable we see that

EX]=] —odr=2] — _dzr=
I e LT A e L
and hence the expected value E[X] is not defined.

We say that X has a general Cauchy-distribution with parameters p and o2,
denoted X ~ Cauchy(u, 0?), if it has the density

1 1

=————— zcR
Rl (R

fx(x)

Recall that if X7 and X5 are independent random variables and Var[X;] = Var[Xs] = o2,
then

X1+ Xl Var[Xy] + Var[Xy] o2
Var = -
2 4 2
and in general we have that if X1,..., X, are independent random variables and Var[X;] =
o2, then
X o+ X 2
Var[&} _o
n n
because:
X1+ 4 Xy RN N 12 o, o

Example 11 On the other hand if X;, Xy ~ Cauchy(0, 1) are independent, then
A1+ X2 -|2-X2 ~ Cauchy(0, 1)
Let’s derive the result:

Let X1, Xs ~ Cauchy(0,1) iid. and define Z := £14%2. The pdf of a X ~ Cauchy(0,1)
: _1_1
is fx(z) = —

It is known that E[X] = oo so the mgf for the Cauchy distribution doesn’t exist.
However the characteristic function does exist, defined by ¢x(t) = E[e®X], t € R.

If we can show that ¢z(t) = ¢x(t) then it follows that the variables have the same
distribution function, Fz(X) = Fx(X), and thus follow the same distribution i.e. Z ~
Cauchy(0,1).

Let’s begin with finding ¢x (¢):

ox() =B = [ o pxpto = [

o o w1+ 22

+oo ax 1 dz

(1)

We use contour integration to calculate this integral. Define a closed path v :=
<-R,R> x fr where Br is a half circle from R to —R in the upper plane H,. Let

ezt

9(z) = 5 :2 and integrate it along . So by the residue theory we get

Tox(t) = /g(z)dz = /<_R - g(z)dz—i—/ﬁ g(z)dz = 2mi Z Res(g, o) (2)

aj€H+

13



where a; are poles of g(z) in the upper half plane.
Let’s show that [, g(2)dz — 0as R — oo

‘ /B s < /B 19(2)]|dz]
R R
|€itz|
=/BR 11+ 22|
<[
_ Br |1+22|
1
< sup 7/ |dz|
lzj=r |11+ 22| Jg,
TR

—0as R — o

<
- R2-1

Since g(z) has poles of order 1 at oy =¢ € H; and ay = —i € H_. The residue at a;

is

N . . . el e~ 1t
Res(g, 2) - il_)ni(z - Z)g(Z) - EE(’Z - Z) (Z — 2)(2; + 2) 9 (3)
Note the |¢| since ¢t € R.
Take the limit of (2) as R — oo and get
—[tl
.€ _
wox(t) = 2%1? = e 1M
and so
dx(t) =e I (4)
Let’s find the characteristic function of Z:
¢Z(t) = ¢X1;X2 (t)
_ |:eit(X12+X2):| _ E [eit;(l eit§2:|

Thus we have shown that ¢x, (t) = ¢x,(t) =
Fx, = Fz and so Z ~ Cauchy(0,1).

More generally if X7, ..., X, ~ Cauchy(0, 1) then

Xi+...+ X,
n

~ Cauchy(0, 1).

Theorem 3.1 (Property of mean and variance of normals) Let Xi,...,X,, ~
n(u, %) be independent random variables and define

N 1 _
X = E ZXZ 0g SQ = m Z(XZ — X)2
=1 =1

then:

14



Proof. to be done... O
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4 The gamma, chi-square and t distributions

4.1 Gamma, chisquare and t

4.1.1 Handout

_Z
1

Example 12 Let o, 8 > 0 and x > 0. Then % is a probability density function:
1 /OO —i =& 6(1 /OO -1 —
_ % e Bdx = Yy e Ydy
L(a)B> Jo L(a)B> Jo
Ba
= I'a) =1
Tape

where we substitute y = % to get the first equality, and the second equality follows from
the definition of the gamma function.

Definition 14 The density of the gamma distribution s given by

xa—le—:c/,é’
T ¢ >0

I'() B

and moment generating function

M) = (1—B8)°, t < %.

In the case of o = v//2, B = 2 this is called a 2 - distribution with v degrees of freedom
and density
:L,V/Z—le—x/Z

W,$>O.

Example 13 The mean of the gamma distribution is given by

E(X):/Oooazf(a:)dm
00 xa—le—x/ﬁ
[ e
ooxae—z/ﬁ
|, T

041 / -
x%e P dx

F( )/Ba 0

Substitute z = uf, dr = fdu to get

1 o oo —U
7“0[)&&/0 u®B%% " Bdu
1

['()

o
/ u® Bt e U du
0

16



ﬁoc—l—l 0 o u
1"(04)50‘/0 u®e “du

This then simplifies and due to the fact
/ ue "du=T(a+1)
0

We get
BT (a+1)
IN()

Due to T'(a 4+ 1) = al'(«) We get E(X) = a8 as the mean of the gamma distribution.

Example 14 For Z% ~ n (0,1) it is easy to that Z*> ~ x3

Find the distribution of X = Z2, where

Lets begin with the cdf of X
Fx(a) = P(X <a) = P(Z2 < a) = P(—/3 < Z < /&)
From this we get
Fx(z) = Fz(—Vz) — Fz(V)
And finally we have:
1 = 1 —z 1 —1 1 —z 1

=1 —z =1
2

= 2 = —X
2 V2T 2 V2 25/21

This is the pdf of I‘(%, 2) and is called the chi-square distribution with 1 degree of freedom,
that is Z2 ~ x?

==
2

e

e Using the moment generating function we see that the sum of independent gamma
random variables (with the same (3) is a gamma-distributed random variable.

e We therefore also see that if z1, ..., 2z, ~ n(0,1) iid then

2 2 2
21+ T2, ™~ X

Example 15 If X ~ x2, then E[[X] = v. The probability density function of X is

fx (@) = cx(%_l)e_%z, if x > 0.
X 0, otherwise

where ¢ = 22T (%) and T'() is the gamma function.

17



By definition: E [X] = [;° zfx(z)dx

From that we get:

E[X]=¢((0-0)+ V/OO :E(%_l)e_%xdw)
0
=V OOC;L‘(%_I)Q_%x €T
E[X] /0 d

E[X]= V/ xfx(x)dx
0
By definition: [ fx(x)dz = 1 because fx(z) is a pdf. From that we get:

EX]=v

Example 16 If V ~ x, then Var[V] = 2v

Let X ~ x,, The probability density function of X is

()¢ tr, |
fX(:E):{cm e , if x> 0.

0, otherwise
where ¢ = 22T (%) and I'() is the gamma function.

We know that Var[X] = E [X?] — (E[X])?. Now:
E [XQ] :/ 22 fx(z)dx
0
= /00 e * e 2y
0

0
_ C/ xn/2+le—z/2d$
0

integration by parts:

(e}

= [—x"/QHQe—x/z] - 4F /000 <g + 1) zY22e% 24y,

=c(n+ 2)/ 2™/ 2dy
0

integration by parts:

=c(n +2) [—x"/226_x/2} - . + / gx"/2_126_x/2dx
0

r=

18




7’L+2 ( / n/2—1€—x/2d$)

(n+2)n / g2 1e=%2dy

=(n+2)n / fx(z

integral of the pdf over the support [0,00) equals 1:
=(n+2)n
=n’42n

E[X]* =n?

Now it’s clear to see that Var[X] =n? 4+ 2n — n? = 2n

Definition 15 If Z ~ n(0,1) and V ~ x2, then the distribution of the random variable

Z/\/V /v is termed the t-distribution with v degrees of freedom, denoted T' ~ t,,.

We can find the density of 7" by considering the function (U, V) — (T, W) with W := V|
thus obtaining the joint density of 7" and W and then integrating out W.

Definition 16 If U ~ x2 and V ~ x2, then the distribution of the random variable

U/I/l
V/I/Q
is termed the F-distribution with v1 and vy degrees of freedom. denoted F' ~ F,, ,,.
7Xn ~ 7’L(,U,, 02)

We have a general interest in drawing conclusions about u when Xj, ...
are independent but y, o2 are all unknown numbers. Such conclusions always build on the

fact that
_ 1 — o2
X::EZXiNn(u,;)
=1
so that B
X —p
~n(0,1
e nl0.)
and if .
> (X - X)?
S': Z:1
' n—1
then ( ) )
n—1)5
TNXi 1

19



which are independent of X, and hence

_ )7(_!9
X — Mmoo o/n ~ b1
= n_1-
S/\/ﬁ 2 (Xi*X)2/U2
= n—1

A consequence of this is that if 4 = po then the number ¢ := Sﬂﬁ/;liﬁ will in 95% of all
experiments be between 2,5% and 97,5% probability limits in the t-distribution.
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5 Linear combinations of random variables

5.1 General linear combinations
5.1.1 Handout

Recall that if X and Y are random variables with expected value
px =EX] and py =EY],
then the covariance of X and Y is defined by
Cov(X,Y) := E[(X — px)(Y — py)).

Special case: X =Y = Cov(X,Y) = Var[X] = 0% - if this expected value exists. Also
recall that if X and Y are independent, then Cov(X,Y’) = 0 since it is easy to see that

Fry (o) = fx(@)fy(y) = Cov(X,Y) = / / (& — 13y — ) fx (@) f (y)ddy = 0.

Proof. We now have

Cov (a’X,bY) = E[(Z a; X; — EZaz ) (Z b;Y; — EZbﬁ’})}
- B[(Taxi - Yarx) (Tov - Xoem)

n m
= E[{D_a(Xi— EX)}{D _b;(Y; - EY))}
i=1 j=1

= > Eo (X; — EX;)b; (Y; - EYj)

i=1 j=1

= Z Z aibjaij,

i=1 j=1

as required. O

Definition 17 The variance-covariance matriz of the random variables (or random vec-
tor) (Xi,...,Xp) is the matrix

¥ = (0ij) = (Cov(X;, X))

21



Corrollary 5.1 If X;,...X,, are s.t. Cov(X;,X;) = 0if i # j and a,b € R", then
Cov(a’X,b'X) = Y a;b0? [= (a'b)o? if 02 = o2 Vi].
i=1

Corrollary 5.2 If Xy,..., X,, are such that o;; = (5,~j02 and a,b € R are such that alb,
then Cov(a’X,b’X) = 0.

Corrollary 5.3 If (Xq,...,X,,)" is a vector r.v. with E[X] = u, Var[X] = Cov(X) = X
and a € R", then Ea’X = a’y and Va’X = a’Xa.

Corrollary 5.4 Cov(a’X,b’X) = a’Xb.

Corrollary 5.5 X vector r.v., EX = u, VX = X. Ais an nxn matrix, then E[AX] = Au
og Var[AX] = AZAT.

5.2 Linear combinations of Gaussian random variables

5.2.1 Handout

Theorem 5.2 Let Xi,..., X, ~ n(0,1) be independent, let X = (Xq,...,X,,)" and let
Y be the r.v. 'Y := PX + pu where P is a matrix with rank(P) = n and p € R™.
Then the distribution of Y is a multivariate normal distribution, or multivariate Gaussian
distribution, given with the multivariate density

1

- o 2y-w'E T )
(2m)n/2| =172

fly)=

where ¥ = PP’. This is denoted Y ~ n(u, X) (or Y ~ MV N (u, X)).

Proof. Since X1, ..., X,, ~n(0,1) iid, the joint density is given as the product

n

X) = - X:) = 1 —x7/2 _ 1 - 2}/2
fX( )—iI;[lei( 1)—1;[1\/%6 - (27T)n/2€ :

2

The inverse of the function x -y = Px+ pisy — x = P Yy — u) = g(y) with Jacobian
determinant J = |§—Z| = |P~}| so the density of Y is

) = fx@@W)IJ| = fx (P y — w)|P7!.
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Since ¥ = |PP’| = |P|?> > 0 we see that

fy) = me—w*(y—mrw*(y—un
T n

L

(27T)n/2|2|1/26

(since (P~1YP~1 = (P)"'P~! = (PP')™' = ¥7!) - and in particular, this is in fact a
density). O

—(y—w)'="y—p)

= f(y) =

Remark 5.1. Some comments

e The univariate normal is a special case

o If 3 is diagonal (i.e. Cov(Y;,Y;) = 0if i # j), then the random variables are indepen-
dent.

Proof. All of this follows from the definition of a multivariate normal distribution. U

Remark 5.2. The properties of the common t-test now follow from a collection of results
based on the above. First let

€1 = %1, V = Span{é:)

and expand this (using e.g. a Gram-Schmidt process) to obtain &3, ..., &, which form an
orthonormal basis for V. Thus &, ..., &, form an orthonormal basis for R?. Write X =

é@ - &; - the coordinates of X in the basis (&;) are Ciy ooy G where ¢ = X - & so that
1. G=X & = ﬁ;Xi=\/ﬁX and
2. é@gFX—CHQ=X—\/H.Xﬁ1=X—X1.
3. Cov(éi, é]) =0 if i # j and they are Gaussian so they are independent.
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4. (C1y .y Cn) = PX ~n(Pp,0®PP') with P = [¢]...€/) and PP’ = 1.

5. BG =X & = (u1)-& =0if i >2

6. 3 (X; — X)? =| X — X1) |P=|| S0y & |P= S, &2

i=1
7. For i > 2 we see that {; ~ n(0,02) and these are independent so % ~ n(0,1) are also
independent
e )
8. =~ x2%_; and independent of ¢; ~ n(y/nu,o?) and we obtain
Y(Xi=X)? | V2
X : n=1 % independent
o~ n(0,1)
thus ~
X—
. o/v/n ~t 4
> (Xi—X)?/o?
i=1
n—1

Remark 5.3. Note that if X1,...,X, ~ n(u,0?) iid, then EX = y and ES? = o2, where

X=21" X;,8%=_-L3", X, - X)2 But we also see that e.g.

1 — 1 — 1
EX:E[—E XZ-]:—E EX;, = —np=pu,
n n n
=1 =1

which holds independently of any assumptions of normality - and the r.v.s do not have to
be independent, i.e.: If Xy, ..., X, are random variables with EX; = p, then EX = p.

Remark 5.4. Next note that if Xq,..., X, are independent random variables with expected
value u variance o, then':

E [i(m - )‘()2] =E [i X? - n)‘(2]
= Z E[X?] — nE[X?]

n
=3 (0 + p?) = n(o% + %)
i=1

o2
= no’ + n,u2 —n— — n,u2
n

=(n— 1)02.

We have shown: If X;,..., X, are independent with EX; = u, VX; = 02, then EX = 4
and ES? = ¢2.
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'"Where we use 0% = o> /n if the X; are independent and a general formula: o = E[X?] — 2, inverted to
give the very useful version, E[X?] = ¢ + u? for a random variable with this expected value and variance.
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