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1 Sufficient statistics

1.1 Data Reduction

Let {X},, beiid.
If T:R™ — R is a function such that T'(X) is a random variable then T'(X) is a statistic.

1.1.1 Handout

Data reduction

Let X1, ..., X,, beii.d. random variables with a common c.d.f., Iy, where the parameter
f is unknown, but in some parameter set § € ©. We commonly have 6 € R, sometimes
0 € RP and © may even be a discrete set. Write X for the random vector

X = (X1,., X,)T: Q= R

If t : R" — R is a function such that T'=t o X = ¢(X) is also a random variable, then
T = t(X) is called a statistic.

Note that we may be sloppy with the notation, alternatively using T, t(X) or T'(X) for
the same thing.

For a given set of data = (x1,...,z,)7 one might consider just using 7'(x) and then
“forgetting” the original values, thus reducing the data set. To do this one needs to know that
the resulting number 7'(x) in some sense contains all the information about the parameter
that is in the original data set. This section will make these concepts specific.

1.2 Sufficiency

T(X) is called a sufficient statistic if the distribution of X, conditionally on T'(X) is a
constant function of 6
The definition implies that if 7' = T'(X) is sufficient then fx|r(x|t) does not contain 6.

1.2.1 Handout

We want to define a concept to represent the notion that T'(X) is a sufficient statistic for
6. This concept should mean that information about € is completely contained in T'(X), i.e.
X does not give any information once we know 7'(X).

Note that the only link between the data and the parameter is through the probability
distribution. Thus, for a given data set (x), all the information about § € © is contained in
the joint density (or p.m.f.) of the data set, i.e. in fy(x).

Definition 1 7'(X) is a sufficient statistic if the distribution of X, conditionally on 7'(X),
is a constant function of 6.

Remark 1.1. Recall that the probability measure Py is indexed by 6 € ©.
e Basically the definition implies that if 7' = T'(X) is sufficient, then the function
fxr(x[t)
does not contain 6. In other words, Py[X € A|T(X) =t] is a constant in 6.

e For a discrete r.v.X, assume Py[T(X) =t] > 0, to obtain

Py[X = 2| T(X) = 1] = )




e Note that that {X = z} is a subset of {T(X) = T'(z)} and hence F[X = z,T(X) =
t] = Pp|X = z).

e Now, assume t = T'(z) and we want to investigate whether

Py[X = a]
B[T(X) = T(x)]

Pp[X = 2|T(X) = T(x)] =

is a constant in 6.

For a discrete r.v. X this is given by

po(z)
qo(T'(x))

where py is the p.m.f. of X and ¢y is the p.m.f. of T'(X)

w(T)= > po(x)

x:T(z)=t

By[X = 2[T(X) = T(z)] =

We have shown the following for a discrete random variable, but state it for the general
case:

Theorem 1.1 If fy is the (joint) p.d.f. of X and gy is the p.d.f. of T'(X), then T'(X) is
sufficient for 6 if q”(ﬁT‘g» is a constant in 6 for every z € R" (or z € X()).

Example 1 Consider random variables X, ..., X, ~ b(1,p) iid; § = p
An obvious candidate for a sufficient statistic is T'(X) := > | X; ~ b(n,p).
Here we have P[X; = x;] = p(1 — p) and we obtain

polw) _ Ilipi'(l-—p) ™ p=Ti(l —p)n = 1

WT@) ~ ()P @ 1 —p)r 7@ — (F)pom(l— o (5

We thus see that T'(X) is a sufficient statistic since this last fraction does not involve 6
and is thus a constant in 6.

Example 2 Consider Gaussian random variables, X1, ..., X;, ~ n(u,0?), with known o2

but unknown location parameter 6 =
Here, the obvious candidate for a sufficient statistic is 7'(X) := X = 2 3™ | X;.
The joint p.d.f. is given by

H R N B 5 > B
2o (2m)n/2gn
The density function for 7'(X) is easy to obtain since it is known that X ~ n(u, %2)
and thus

1 _(@-w?

gu(T(X)) = g,u(l') = me 202 /n




Note that the quadratic term involving the x and the unknown can be rewritten:

n n

S (wi—w?=> (m+2)+ (T —p)’
=1 i=1
=> (@m-2P2+2@E—p))_ (z:— ) +n@— p)
i=1 =1
=3 (@i~ 2 + (@ — )
=1

which implies

=L T;i—T 2 n /-
fulz) _ @t o2 20— (7 p)? U A » I
gu(T(2)) me—@—ﬂ)2/202/" ~ /n2m)n 2o

Since this ratio does not involve u, 1" is a sufficient statistic.

Example 3 Let © be the collection of all c.d.f.s of continuous random variables and let
Xi1,..., Xp ~ F € © beiid. Then the order statistic, (X(y), ..., X)), is sufficient.

The search for sufficient statistics is made easier by the following theorem.

Theorem 1.2 T'(X) is a sufficient statistic if and only if there exist functions gy and h
such that the joint p.d.f. of X can be written in the form

fo(x) = go(T (x))h(x)

Proof. Suppose X is discrete.
(1) Let T'(X) be sufficient. Then we can define
90(t) := po[T'(X) = 1]
h(w) = polX = 2|T(X) = {
and these functions satisfy the conditions.

(2) Next assume that the functions gy and h exist and let gy be the mass function of T'(X).
Take an arbitrary point € R™ and let ¢t = T'(X). Consider

folw) _ goT@Dh() _ go(T@Dh(e) _ go(T@)hx) _ go(T(x)h(a)
q0(T'(z)) q0(T'(z)) qs(t) oyr)=t o) Xyr=t 90(T(y))h(y)
o obtain
oo WTEDhE)  h()
90(t) Zy;T(y):t h(y) zy;T(y)zt h(y)
which is a constant in 6 and hence T'(X) is sufficient. O



Example 4 Xi,..., X,, ~ n(u,0?) iid, 0 = (u,0?)
T(X) := (X, S?) is sufficient:

1 Si (@im)? 1 i (T @i nGE—p?)
- Uz =1 \Zi _°= o2 \2ui=1 \Ti —
fuo? (27T)n/20.ne : (27T)n/20.ne :
1 _(n—l%S2_n(i—£L)2
—_— 20 20
(27r)n/20-n6
= go(T(x))
Example 5 Let Xq,..., X, bei.i.d. observations from the discrete uniform distribution

on 1,...,0. The pmf is then

0 otherwise.

F(alf) = {% z=1,2,...,0

The joint pmf of X7,..., X, is then

0" xz;e{l,...,0tfori=1,...,n
f(XI9)={ (oocoll

0 otherwise.

Denote the set of natural numbers as N and let Ny = {1,2,...,60}. We can rewrite the
joint pmf of X1,..., X, as

F(x(6) = 07" T Iy (),
i=1

where [ is the indicator function. Defining 7'(x) = max; x; we can rewrite

HING () = (HIN x; ) In, (T(x)).

Thus the joint pmf factors into

f(x0) = 67" Iy (T (%)) (H IN(:Ez')) :
=1

By the factorization theorem, T'(X) = max; X; is a sufficient statistic for 6.

1.3 Minimal Sufficient Statistics
1.3.1 Handout

Definition 2 Let X,, ~ Fy be independent and 7': R™ — R such that 7'(X) is a random
variable. T'(X) is a minimal sufficient statistic if for every sufficient statistic 7" there exists
a function k such that T(x) = k(T"(x)), x € R" (x € X(Q)).




Theorem 1.3 If T is such that, for x,y € R”, the ratio ;zg;; is constant as a function of
6 if and only if T'(x) = T'(y), then T'(X) is a minimal sufficient statistic for 6.

Proof: Define the sets Ay = {x : T'(z) =t} Thus if T'(x) = T(y) =t then x and y are both
elements in A;.

Define a function ~ such that ~(t) that picks some element of A;, for each t.

Note that (7(x)) is in the same set A; as x but is not necessarily equal to z.

The fraction K = #Eﬁ()x)) does not depend on 6 because of how we have defined ~. We
can now write the density as

_ RN (1C)
now we choose ¢(7T,6) = fo(7y(T(x)) and h(z) = K from above (which does not depend

upon ) Obtaining by theorem 1.2. that T is a sufficient statistic.

Now let S(X) be another sufficient statistic. By theorem 1.2. we obtain fy(z) =
92(5,0)ha ().
Then, if S(z) = S(y),
fo() _ g2(S,0)ha(x) _ ho(x)
fo(y) — 92(S:0)ha(y) — ha(y)
which does not depend on € implying T'(xz) = T'(y) by assumption.
If T(z) = T'(y) whenever S(z) = S(y), then T is a function of S. Therefore, T is a function
of any sufficient statistic S.

Now we have shown that T is both a sufficient statistic and a function of any other
sufficient statistic. Thus T is a minimal sufficient statistic. q.e.d.

Example 6 (X,S?) is a minimal sufficient statistic for (u,0?) in a normal distribution
(both unknown).

From example 4, we have that (X, S?) is sufficient for (u,0?). Let X1,.., X, ~ N(u,0?)
and Y7, .., Y, ~ N(u,c?). The ratio of the likelihoods is

_ (”—1)53( _ n(f—u)Q

1 n 2
1 — 357 2i=o(Ti—) 1
2n)n2om © 2ot @02 © 2° 2°
1 =507 Dimo(wi—m)? . _(-DSY ngop?
(27r)n/2o-n 7(271_)”/2071 e 202 202

Clearly, this ratio is independent of y and o2 only if X =Y and S% = S%. (X, S?) is
therefore minimally sufficient.

1.4 Ancillary statistics
1.4.1 Handout

Definition 3 S(x) is an ancillary statistic if the distribution of S(X) is a constant in
(“free of 67).




Example 7 If X;,...,X,, ~ N(6,1) are i.i.d., we know that

Z;=X;—0~N(0,1)
and X =2+4+6~ N(,1/n)
where X = 1% | X,
And we know that if we define
X = median(Xy,..., X,)
Z = median(Zy, ..., Zy,)

then X has a distribution with parameter 6, but the distribution of Z has nothing to do
with 6. 5
On the other hand, if R = X — X then

R=272-7

since

Z =median(Z1, ..., Zy,)
= median(X; — 0,...,X,, — 0)
= median(Xy,...,X,) — 0

But since the distribution of Z and Z is “free of 67, so is the distribution of R. R is a
random variable and is therefore an ancillary statistic.

Note that Z; are not proper random variables: The X; are of course random variables so
they are of the form X, :  — R whereas Z; is a function of both w and @, i.e. is a function
of the form Z; : @ x © — R.

Example 8 Assume that Xi,..., X, are independent random variables with a c.d.f. of
the form
Py[X; <z|=I(z—-0),
i.e.
X1,...,Xpn ~ Fy with Fy(zx)=F(x —90).
Such a family is called a location family.
If we write Z; = X; — 0, then the c.d.f. of Z; is given by:

P(Zi<z)=P(Xi -0 <2)
(X; <z+0)
((z+0)—10)

1(z)

P
F

which is a constant in 6.
We thus see that R = X — X = Z — Z is an ancillary statistic.




Example 9 Let Xy,...,X,, ~U(0,0+ 1) be ii.d.
Define Z; ~ U(0,1) i.i.d.
Then X,y — X(1) has the same distribution as Z(,) — Z(j) is ancillary.

Example 10 Suppose X, ..., X, ~ F, where Fy(z) = F (%) , o >0, ascale fam-

ily. Statistics of interest in relation to ¢ include the usual standard deviation and the
median absolute deviation (MAD):

S=ik Y (% - X)

M = median(|X; — X|)

Note that M/S is an ancillary statistic [Write V; = % etc.]

Example 11 (Location scale family) Xi,..., X, ~ F,, iid, F,,(z) = F (*3£) and
show in each of the following cases that the random variable is ancillary.

L. L
X-X
S
2. L
X-X
M
3.
Xmw =X
X-X
Solution:

1. Let Zy,...,7Z, ~ F. We get:

Puo [Xz' —

< w] =P,o [ Xi Sow+p]l=Fus(ow+p) = F(w) = P[Z; < w]

and thus

X, — X, —
(Zl,...,Zn)z( Ll “)

o g

in distribution. Therefore:

X-X oZ+p—0Z—-pu oZ-0Z Z-1Z
SX SJZ_;_M O'SZ MZ

where

SZ\/ni1 >_(Xi - X




2. Let Z1,...,2, ~ F. We get:

Puo [Xz' —

< w] — Py [Xi < 0wt ] = By o(ow+ ) = F(w) = P2 < u]

and thus

X) - Xn —
(Zl,...,Zn):< - Ma"'v “)

o g

in distribution. Therefore:

X—X_UZ+;L—UZ—,LL_JZ—UZ_Z—Z
M MUZ—{-,u O'MZ MZ

where My = median|X; — X|.
3. Let Z; be as in 1) and 2). We get:
X — X _ Zw — Zq)

X-X 7 -7

Definition 4 A statistic T/(X) is complete if the following holds for all functions g:

Eplg(T)] =0 forall #€©
=Plg(T)=0]=1 forall 60O

Example 12 Let Xi,...,X,, ~ Pois(\) be i.i.d. samples from a Poisson distribution and
T(X) = >, X; be a sufficient statistic based on the sample, X = [X;,... X,]. Since
T(X) is a sum of n i.i.d. Pois(\) variables it is distributed as T'(X) ~ Pois(nA). Thus,
for all functions g and all A > 0, if

then Py[g(t) = 0] = 1 for all A > 0. Thus, T(X) = Y ;" X; is a complete sufficient
statistic.

Theorem 1.4 (Basu) If 7'(X) is a complete and minimal sufficient statistic and S(X)
is an ancillary statistic, then 7(X) and S(X) are independent.

Proof. We give the proof only for discrete distributions.

Let S(X) be any ancillary statistic. Then P(S(X) = s) does not depend on 6 since S(X) is

ancillary. Also the conditional probability,
PSX)=s|TX)=t)=PXe{x:5x)=s}|T(X=1t)

10



does not depend on # because T'(X) is a sufficient statistic. Thus to show that S(X) and
T(X) are independent, it suffices to show that that

PSX)=s|T(X=t)=P(SX =35s)
for all possible value t € 7. Now,

P(S(X) =) = 3 = P(S(X) = s | T(X) = ) By(T(X) = 1)

ter
Furthermore, since ), Py(T'(X) =t) = 1, we can write
P(S(X) = 5) = 3 = P(S(X) = ) Py(T(X) = 1)
ter
Therefore, if we define the statistic
g9(t) = P(X) = s | T(X) = t) = P(S(X) = )
the above two equations show that
Eog(T) = > g(t)Py(T(X) =1) =0 for all §
ter

Since T'(X) is a complete statistic, this implies that g(¢) = 0 for all possible values t € 7 O

Example 13 Consider Xy,..., X, ~ N(u, 1_)
Suppose g is a function such that E,[g(X)] =0 Vu. Then we first obtain

oo 1 om)? _
/ g(:v)\/%_ne_( > dz = 0 Vi since X ~ N(u,1/n) (1)

If g is a step function then it is easy to see that (1) implies g = 0 and one can then
draw the conclusion that the result follows for all functions which can be approximated
by step functions.

Example 14 Let X ~ P(\). If

Exg(X)] =0 VA

i GANE
= Zg(aj) o= 0 VA
=0

:>§: (%) AP=0 VA
=0 ’

i.e. a function of the form h(A) = >"7" a, A" is the constant 0 V.
Such a series is an analytic fuction and it can only be uniformly zero if all the terms
are zero, i.e. a, =0 Vn og thus g(z) = 0 for 2 € N and hence Py\[g(X) = 0] = 1.

1.5 The Likelihood Principle
1.5.1 Handout

Likelihood functions

11



Definition 5 Let Xq,..., X, be random variables with a joint probability density func-
tion fp, so that fy(x) is defined for x € X(2) C R™ and 0 € ©.

Write X = (X1, ..., Xn) ~ fo.

Given a data vector, x, the likelihood function is the function Ly(0) := fp(x), 6 €
©.

Remark 1.2. Note that L and f are “the same” in the sense that if we write g(x,0) := fp(x)
and h(x,0) := Lx(0) then of course h(x,0) = fg(x) = Lx(0) = g(x,0), i.e. both can be
viewed as functions with two arguments.

However, the point of the definition is to emphasize that the likelihood is a function
of the parameters for a fixed data set.

Example 15 X;,..., X, ~ U(0,0) iid.

L o0<z; <6, i=1,...,n
fo(x) = ho(x1) -+~ hg(an) =< ° -
0 otherwise
L o<z <0
o= {3 12725

0 otherwise
1

note hy(t) = 5[[079] (t)
1 n
so  fo(x) = o ]:[I[O’g] (x;)
i=1
1

= fo) = o loa (@m) ool (Z))

[0 <x; <0 foralli < x>0 o0g z(,) < 0]

1
Ly (0) = e—nf[o,e](ﬂﬁ‘(n))f[o,oo[(wa))

If Z(1) > (0 then T (n) >0 .
Lx(e) = e_nl[z(n),oo[(e)

Example 16 Let X = (X1, ..., X,,) be a sample of n i.i.d. Poisson random variables with
joint pdf f(x|A). The likelihood function of A given X = x is

Y PODL
LAx) = fxN) =]] FGA =T o’ A
i i—1 Li-

=1

Likelihood principle
The likelihood principle states that inference on 6 should only be based on the relative
value of the likelihood function. In other words, if

Ly(0) = kLy(#), VO €O (kisa constant)

12



then x og y should lead to the same inference on 6.

Example 17 The likelihood function provides information on how "likely" a parameter
value is, given a set of data.

X ~ Bin(n,p), 0=p
P[X =z = (Z)p (1—p)" =, z=0,...,n
n

In(L(p)) =In (Z) +zlnp+ (n—z)ln(1—p)
dln(L(p)) =« n-—=x

dp p 1-p
= z(1-p)=p(n— 1)
= T —pr=np—2ap
x
= p==
n
As is typical for the discrete case we can interpret this as the value of p which gives
the maximum probability to the measurements which were obtained. This interpretation
is not correct in the continuous case.

Example 18 Let X1,..., X,, ~ n(0,0?), iid. Both parameters are unknown and we would
like to find maximum likelihood estimators for @ and o2. The likelihood function is

(0 X fol IE“

H

175 exp( )

(The following material is covered in more detail in the next section).
We take notice that it is more convenient to maximize the natural logarithm (written
here as log due to convention) of the function instead since

n

log L(0;x) = log ((27702)_%) - % (z; — 6)*
0% &
——210(2)——10(2)_Ln( 9)2
= —5 log(27) — 5 log(o 552 Z;

Necessary conditions for a maximum of log L w.r.t. § and o2 are

— Z (2)

8logL 0;x)

13



and

M=—%+2(Tlg)gz(%—9)2:0 (3)

2
(o2
0 =1

Using (1) and (2) we can find MLE candidates. From (1) we get

n
12
n-
=1

~

so a MLE candidate for 6 is §# = X which is the sample mean. Likewise (2) gives

=1

n
thus a MLE candidate for o2 is 62 = "T_lﬁ 2( X)? = =162 where we have

inserted the MLE candidate for 6. All that is now left to prove is that log L achieves its

maximum at 0 and 6 0
n

Remember that Z(mZ —a)? > Y (z; — %) Va € R so exp (—#
=1 i=1

-

(2 — 33“)2> >

exp ( 202 Z (x; —a) ) VYa € R. So now we only have to confirm that log L achieves its

=1

maximum w.r.t. 2. We look at the second derivative
??log L(0;x) n n? n3 - 9
T LR D v S DI C )
(;(:Ez' —z)2)2 (Y (% —1T)?)3 i=t

=1

n
where K = (Y. (x; — 2)?)72. Thus proving that log L indeed achieves its maximum at
i=1
(é, 62) and it is a global maximum since it’s the only critical point of log L which goes to
0 at the oo limits.
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