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1 Su�
ient statisti
s

1.1 Data Redu
tion

Let {X}n be i.i.d.

If T : Rn → R is a fun
tion su
h that T (X) is a random variable then T (X) is a statisti
.

1.1.1 Handout

Data redu
tion

Let X1, ...,Xn be i.i.d. random variables with a 
ommon 
.d.f., Fθ, where the parameter

θ is unknown, but in some parameter set θ ∈ Θ. We 
ommonly have θ ∈ R, sometimes

θ ∈ R
p
and Θ may even be a dis
rete set. Write X for the random ve
tor

X = (X1, ..,Xn)
T : Ω → R

n.

If t : Rn → R is a fun
tion su
h that T = t ◦X = t(X) is also a random variable, then

T = t(X) is 
alled a statisti
.

Note that we may be sloppy with the notation, alternatively using T , t(X) or T (X) for
the same thing.

For a given set of data x = (x1, ..., xn)
T
one might 
onsider just using T (x) and then

�forgetting� the original values, thus redu
ing the data set. To do this one needs to know that

the resulting number T (x) in some sense 
ontains all the information about the parameter

that is in the original data set. This se
tion will make these 
on
epts spe
i�
.

1.2 Su�
ien
y

T (X) is 
alled a su�
ient statisti
 if the distribution of X, 
onditionally on T (X) is a

onstant fun
tion of θ
The de�nition implies that if T = T (X) is su�
ient then fX|T (x|t) does not 
ontain θ.

1.2.1 Handout

We want to de�ne a 
on
ept to represent the notion that T (X) is a su�
ient statisti
 for

θ. This 
on
ept should mean that information about θ is 
ompletely 
ontained in T (X), i.e.
X does not give any information on
e we know T (X).

Note that the only link between the data and the parameter is through the probability

distribution. Thus, for a given data set (x), all the information about θ ∈ Θ is 
ontained in

the joint density (or p.m.f.) of the data set, i.e. in fθ(x).

De�nition 1 T (X) is a su�
ient statisti
 if the distribution of X, 
onditionally on T (X),
is a 
onstant fun
tion of θ.

Remark 1.1. Re
all that the probability measure Pθ is indexed by θ ∈ Θ.

� Basi
ally the de�nition implies that if T = T (X) is su�
ient, then the fun
tion

fX|T (x|t)

does not 
ontain θ. In other words, Pθ[X ∈ A|T (X) = t] is a 
onstant in θ.

� For a dis
rete r.v.X, assume Pθ[T (X) = t] > 0 , to obtain

Pθ[X = x|T (X) = t] =
Pθ[X = x, T (X) = t]

Pθ[T (X) = t]
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� Note that that {X = x} is a subset of {T (X) = T (x)} and hen
e Pθ[X = x, T (X) =
t] = Pθ[X = x]).

� Now, assume t = T (x) and we want to investigate whether

Pθ[X = x|T (X) = T (x)] =
Pθ[X = x]

Pθ[T (X) = T (x)]

is a 
onstant in θ.

For a dis
rete r.v. X this is given by

Pθ[X = x|T (X) = T (x)] =
pθ(x)

qθ(T (x))

where pθ is the p.m.f. of X and qθ is the p.m.f. of T (X)

qθ(T ) =
∑

x:T (x)=t

pθ(x)

We have shown the following for a dis
rete random variable, but state it for the general


ase:

Theorem 1.1 If fθ is the (joint) p.d.f. of X and qθ is the p.d.f. of T (X), then T (X) is

su�
ient for θ if

pθ(x)
qθ(T (x)) is a 
onstant in θ for every x ∈ R

n
(or x ∈ X(Ω)).

Example 1 Consider random variables X1, ...,Xn ∼ b(1, p) iid; θ = p
An obvious 
andidate for a su�
ient statisti
 is T (X) :=

∑n
i=1Xi ∼ b(n, p).

Here we have P [Xi = xi] = p(1− p) and we obtain

pθ(x)

qθ(T (x))
=

∏n
i=1 p

xi
i (1 − p)1−xi

(
n

T (x)

)
pT (x)(1− p)n−T (x)

=
p
∑

xi(1− p)n−
∑

xi

(
n∑
xi

)
p
∑

xi(1− p)n−
∑

xi
=

1
(

n∑
xi

)

We thus see that T (X) is a su�
ient statisti
 sin
e this last fra
tion does not involve θ
and is thus a 
onstant in θ.

Example 2 Consider Gaussian random variables, X1, ...,Xn ∼ n(µ, σ2), with known σ2

but unknown lo
ation parameter θ = µ.
Here, the obvious 
andidate for a su�
ient statisti
 is T (X) := X̄ = 1

n

∑n
i=1 Xi.

The joint p.d.f. is given by

fµ(x) =
n∏

i=1

1√
2πσ

e−
(xi−µ)2

2σ2 =
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1 (xi−µ)2

The density fun
tion for T (X) is easy to obtain sin
e it is known that X ∼ n(µ, σ
2

n )
and thus

gµ(T (X)) = gµ(x) =
1√

2πσ/
√
n
e
− (x̄−µ)2

2σ2/n
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Note that the quadrati
 term involving the x and the unknown 
an be rewritten:

n∑

i=1

(xi − µ)2 =

n∑

i=1

((xi + x̄) + (x̄− µ))2

=

n∑

i=1

(xi − x̄)2 + 2(x̄− µ)

n∑

i=1

(xi − x̄) + n(x̄− µ)2

=
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

whi
h implies

fµ(x)

gµ(T (x))
=

1
(2π)n/2σn e

− 1
2σ2

∑
(xi−x̄)2 − n

2σ2 (x̄− µ)2

1
(2π)1/2σ/

√
n
e−(x̄−µ)2/2σ2/n

=
(2π)1/2σ√
n(2π)n/2σn

e−
1

2σ2

∑n
i=1 (xi−x̄)2

Sin
e this ratio does not involve µ, T is a su�
ient statisti
.

Example 3 Let Θ be the 
olle
tion of all 
.d.f.s of 
ontinuous random variables and let

X1, ...,Xn ∼ F ∈ Θ be i.i.d. Then the order statisti
, (X(1), ...,X(n)), is su�
ient.

The sear
h for su�
ient statisti
s is made easier by the following theorem.

Theorem 1.2 T (X) is a su�
ient statisti
 if and only if there exist fun
tions gθ and h
su
h that the joint p.d.f. of X 
an be written in the form

fθ(x) = gθ(T (x))h(x)

Proof. Suppose X is dis
rete.

(1) Let T (X) be su�
ient. Then we 
an de�ne

gθ(t) := pθ[T (X) = t]

h(x) := pθ[X = x|T (X) = t]

and these fun
tions satisfy the 
onditions.

(2) Next assume that the fun
tions gθ and h exist and let qθ be the mass fun
tion of T (X).
Take an arbitrary point x ∈ R

n
and let t = T (X). Consider

fθ(x)

qθ(T (x))
=

gθ(T (x))h(x)

qθ(T (x))
=

gθ(T (x))h(x)

qθ(t)
=

gθ(T (x))h(x)
∑

y:T (y)=t fθ(y)
=

gθ(T (x))h(x)
∑

y:T (y)=t gθ(T (y))h(y)
=

to obtain

gθ(T (x))h(x)

gθ(t)
∑

y:T (y)=t h(y)
=

h(x)
∑

y:T (y)=t h(y)

whi
h is a 
onstant in θ and hen
e T (X) is su�
ient.
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Example 4 X1, ...,Xn ∼ n(µ, σ2) iid, θ = (µ, σ2)
T (X) := (X̄, S2) is su�
ient:

fµ,σ2 =
1

(2π)n/2σn
e−

1
2σ2

∑n
i=1 (xi−µ)2 =

1

(2π)n/2σn
e−

1
2σ2 (

∑n
i=1 (xi−x̄)2+n(x̄−µ)2) =

1

(2π)n/2σn
e−

(n−1)S2

2σ2 −n(x̄−µ)2

2σ2

︸ ︷︷ ︸

=: gθ(T (x))

Example 5 Let X1, . . . ,Xn be i.i.d. observations from the dis
rete uniform distribution

on 1, . . . , θ. The pmf is then

f(x|θ) =
{

1
θ x = 1, 2, . . . , θ

0 otherwise.

The joint pmf of X1, . . . ,Xn is then

f(x|θ) =
{

θ−n xi ∈ {1, . . . , θ} for i = 1, . . . , n

0 otherwise.

Denote the set of natural numbers as N and let Nθ = {1, 2, . . . , θ}. We 
an rewrite the

joint pmf of X1, . . . ,Xn as

f(x|θ) = θ−n
n∏

i=1

INθ
(xi),

where I is the indi
ator fun
tion. De�ning T (x) = maxi xi we 
an rewrite

n∏

i=1

INθ
(xi) =

(
n∏

i=1

IN(xi)

)

INθ
(T (x)).

Thus the joint pmf fa
tors into

f(x|θ) = θ−nINθ
(T (x))

(
n∏

i=1

IN(xi)

)

.

By the fa
torization theorem, T (X) = maxiXi is a su�
ient statisti
 for θ.

1.3 Minimal Su�
ient Statisti
s

1.3.1 Handout

De�nition 2 Let Xn ∼ Fθ be independent and T : Rn → R su
h that T (X) is a random

variable. T (X) is a minimal su�
ient statisti
 if for every su�
ient statisti
 T ′
there exists

a fun
tion k su
h that T (x) = k(T ′(x)), x ∈ R
n (x ∈ X(Ω)).
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Theorem 1.3 If T is su
h that, for x,y ∈ R
n
, the ratio

fθ(x)
fθ(y)

is 
onstant as a fun
tion of

θ if and only if T (x) = T (y), then T (X) is a minimal su�
ient statisti
 for θ.

Proof: De�ne the sets At = {x : T (x) = t} Thus if T (x) = T (y) = t then x and y are both

elements in At.

De�ne a fun
tion γ su
h that γ(t) that pi
ks some element of At, for ea
h t.
Note that γ(T (x)) is in the same set At as x but is not ne
essarily equal to x.

The fra
tion K = fθ(x)
fθ(γ(T (x)) does not depend on θ be
ause of how we have de�ned γ. We


an now write the density as

fθ(x) = fθ(γ(T (x))[
fθ(x)

fθ(γ(T (x))
]

now we 
hoose g(T, θ) = fθ(γ(T (x)) and h(x) = K from above (whi
h does not depend

upon θ) Obtaining by theorem 1.2. that T is a su�
ient statisti
.

Now let S(X) be another su�
ient statisti
. By theorem 1.2. we obtain fθ(x) =
g2(S, θ)h2(x).

Then, if S(x) = S(y),
fθ(x)

fθ(y)
=

g2(S, θ)h2(x)

g2(S, θ)h2(y)
=

h2(x)

h2(y)

whi
h does not depend on θ implying T (x) = T (y) by assumption.

If T (x) = T (y) whenever S(x) = S(y), then T is a fun
tion of S. Therefore, T is a fun
tion

of any su�
ient statisti
 S.

Now we have shown that T is both a su�
ient statisti
 and a fun
tion of any other

su�
ient statisti
. Thus T is a minimal su�
ient statisti
. q.e.d.

Example 6 (X̄, S2) is a minimal su�
ient statisti
 for (µ, σ2) in a normal distribution

(both unknown).

From example 4, we have that (X̄, S2) is su�
ient for (µ, σ2). Let X1, ..,Xn ∼ N(µ, σ2)
and Y1, .., Yn ∼ N(µ, σ2). The ratio of the likelihoods is

1
(2π)n/2σn e

− 1
2σ2

∑n
i=0(xi−µ)2

1
(2π)n/2σn e

− 1
2σ2

∑n
i=0(yi−µ)2

=

1
(2π)n/2σn e

− (n−1)S2
X

2σ2 −n(x̄−µ)2

2σ2

1
(2π)n/2σn e

− (n−1)S2
Y

2σ2 −n(ȳ−µ)2

2σ2

Clearly, this ratio is independent of µ and σ2
only if X̄ = Ȳ and S2

X = S2
Y . (X̄, S2) is

therefore minimally su�
ient.

1.4 An
illary statisti
s

1.4.1 Handout

De�nition 3 S(x) is an an
illary statisti
 if the distribution of S(X) is a 
onstant in θ
(�free of θ�).
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Example 7 If X1, . . . ,Xn ∼ N(θ, 1) are i.i.d., we know that

Zi = Xi − θ ∼ N(0, 1)

and X̄ = Z̄ + θ ∼ N(θ, 1/n)

where X̄ = 1
n

∑n
i=1 Xi.

And we know that if we de�ne

X̃ = median(X1, . . . ,Xn)

Z̃ = median(Z1, . . . , Zn)

then X̃ has a distribution with parameter θ, but the distribution of Z̃ has nothing to do

with θ.
On the other hand, if R = X̄ − X̃ then

R = Z̄ − Z̃

sin
e

Z̃ = median(Z1, . . . , Zn)

= median(X1 − θ, . . . ,Xn − θ)

= median(X1, . . . ,Xn)− θ

But sin
e the distribution of Z̄ and Z̃ is �free of θ�, so is the distribution of R. R is a

random variable and is therefore an an
illary statisti
.

Note that Zi are not proper random variables: The Xi are of 
ourse random variables so

they are of the form Xi : Ω −→ R whereas Zi is a fun
tion of both ω and θ, i.e. is a fun
tion
of the form Zi : Ω×Θ −→ R.

Example 8 Assume that X1, . . . ,Xn are independent random variables with a 
.d.f. of

the form

Pθ[Xi ≤ x] = I(x− θ),

i.e.

X1, . . . ,Xn ∼ Fθ with Fθ(x) = F (x− θ).

Su
h a family is 
alled a lo
ation family.

If we write Zi = Xi − θ, then the 
.d.f. of Zi is given by:

P (Zi ≤ z) = P (Xi − θ ≤ z)

= P (Xi ≤ z + θ)

= F ((z + θ)− θ)

= I(z)

whi
h is a 
onstant in θ.
We thus see that R = X̄ − X̃ = Z̄ − Z̃ is an an
illary statisti
.
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Example 9 Let X1, . . . ,Xn ∼ U(θ, θ + 1) be i.i.d.
De�ne Zi ∼ U(0, 1) i.i.d.
Then X(n) −X(1) has the same distribution as Z(n) − Z(1) is an
illary.

Example 10 Suppose X1, . . . ,Xn ∼ Fσ where Fσ(x) = F
(
Xi
σ

)

, σ > 0, a s
ale fam-

ily. Statisti
s of interest in relation to σ in
lude the usual standard deviation and the

median absolute deviation (MAD):

S =
√

1
n−1

∑(
Xi − X̄

)2

M = median(|Xi − X̃|)

Note that M/S is an an
illary statisti
 [Write Vi =
Xi
σ et
.℄

Example 11 (Lo
ation s
ale family) X1, . . . ,Xn ∼ Fµ,σ iid, Fµ,σ(x) = F
(x−µ

σ

)
and

show in ea
h of the following 
ases that the random variable is an
illary.

1.

X̄ − X̃

S

2.

X̄ − X̃

M

3.

X(n) −X(1)

X̄ − X̃

Solution:

1. Let Z1, . . . , Zn ∼ F . We get:

Pµ,σ

[
Xi − µ

σ
≤ w

]

= Pµ,σ [Xi ≤ σw + µ] = Fµ,σ(σw + µ) = F (w) = P [Zi ≤ w]

and thus

(Z1, . . . , Zn) =

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)

in distribution. Therefore:

X̄ − X̃

SX
=

σZ̄ + µ− σZ̃ − µ

SσZ+µ
=

σZ̄ − σZ̃

σSZ
=

Z̄ − Z̃

MZ

where

S =

√

1

n− 1

∑

(Xi − X̄)2.
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2. Let Z1, . . . , Zn ∼ F . We get:

Pµ,σ

[
Xi − µ

σ
≤ w

]

= Pµ,σ [Xi ≤ σw + µ] = Fµ,σ(σw + µ) = F (w) = P [Zi ≤ w]

and thus

(Z1, . . . , Zn) =

(
X1 − µ

σ
, . . . ,

Xn − µ

σ

)

in distribution. Therefore:

X̄ − X̃

M
=

σZ̄ + µ− σZ̃ − µ

MσZ+µ
=

σZ̄ − σZ̃

σMZ
=

Z̄ − Z̃

MZ

where MX = median|Xi − X̄|.

3. Let Zi be as in 1) and 2). We get:

X(n) −X(1)

X̄ − X̃
=

Z(n) − Z(1)

Z̄ − Z̃

De�nition 4 A statisti
 T (X) is 
omplete if the following holds for all fun
tions g:

Eθ[g(T )] = 0 for all θ ∈ Θ

⇒Pθ[g(T ) = 0] = 1 for all θ ∈ Θ

Example 12 Let X1, . . . ,Xn ∼ Pois(λ) be i.i.d. samples from a Poisson distribution and

T (X) =
∑n

i=1 Xi be a su�
ient statisti
 based on the sample, X = [X1, . . . Xn]. Sin
e

T (X) is a sum of n i.i.d. Pois(λ) variables it is distributed as T (X) ∼ Pois(nλ). Thus,

for all fun
tions g and all λ ≥ 0, if

Eλ[g(T (X))] = Eλ[g(t)] =

∞∑

t=0

g(t)
e−nλ(nλ)t

t!
= 0,

then Pλ[g(t) = 0] = 1 for all λ ≥ 0. Thus, T (X) =
∑n

i=1 Xi is a 
omplete su�
ient

statisti
.

Theorem 1.4 (Basu) If T (X) is a 
omplete and minimal su�
ient statisti
 and S(X)
is an an
illary statisti
, then T (X) and S(X) are independent.

Proof. We give the proof only for dis
rete distributions.

Let S(X) be any an
illary statisti
. Then P (S(X) = s) does not depend on θ sin
e S(X) is
an
illary. Also the 
onditional probability,

P (S(X) = s | T (X) = t) = P (X ∈ {x : S(x) = s} | T (X = t)
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does not depend on θ be
ause T (X) is a su�
ient statisti
. Thus to show that S(X) and
T (X) are independent, it su�
es to show that that

P (S(X) = s | T (X = t) = P (S(X = s)

for all possible value t ∈ τ. Now,

P (S(X) = s) =
∑

t∈τ
= P (S(X) = s | T (X) = t)Pθ(T (X) = t)

Furthermore, sin
e

∑

t∈τ Pθ(T (X) = t) = 1, we 
an write

P (S(X) = s) =
∑

t∈τ
= P (S(X) = s)Pθ(T (X) = t)

Therefore, if we de�ne the statisti


g(t) = P (X) = s | T (X) = t)− P (S(X) = s)

the above two equations show that

Eθg(T ) =
∑

t∈τ
g(t)Pθ(T (X) = t) = 0 for all θ

Sin
e T (X) is a 
omplete statisti
, this implies that g(t) = 0 for all possible values t ∈ τ

Example 13 Consider X1, . . . ,Xn ∼ N(µ, 1).
Suppose g is a fun
tion su
h that Eµ[g(X̄)] = 0 ∀µ. Then we �rst obtain

∫ ∞

−∞
g(x)

1√
2πn

e−
(x−µ)2

2n dx = 0 ∀µ sin
e X̄ ∼ N(µ, 1/n) (1)

If g is a step fun
tion then it is easy to see that (1) implies g = 0 and one 
an then

draw the 
on
lusion that the result follows for all fun
tions whi
h 
an be approximated

by step fun
tions.

Example 14 Let X ∼ P (λ). If

Eλ[g(X)] = 0 ∀λ

⇒
∞∑

x=0

g(x)
e−λλx

x!
= 0 ∀λ

⇒
∞∑

x=0

(
g(x)

x!

)

λx = 0 ∀λ

i.e. a fun
tion of the form h(λ) =
∑∞

0 anλ
u
is the 
onstant 0 ∀λ.

Su
h a series is an analyti
 fu
tion and it 
an only be uniformly zero if all the terms

are zero, i.e. an = 0 ∀n og thus g(x) = 0 for x ∈ N and hen
e Pλ[g(X) = 0] = 1.

1.5 The Likelihood Prin
iple

1.5.1 Handout

Likelihood fun
tions
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De�nition 5 Let X1, . . . ,Xn be random variables with a joint probability density fun
-

tion fθ, so that fθ(x) is de�ned for x ∈ X(Ω) ⊂ R
n
and θ ∈ Θ.

Write X = (X1, . . . ,Xn)
′ ∼ fθ.

Given a data ve
tor, x, the likelihood fun
tion is the fun
tion Lx(θ) := fθ(x), θ ∈
Θ.

Remark 1.2. Note that L and f are �the same� in the sense that if we write g(x, θ) := fθ(x)
and h(x, θ) := Lx(θ) then of 
ourse h(x, θ) = fθ(x) = Lx(θ) = g(x, θ), i.e. both 
an be

viewed as fun
tions with two arguments.

However, the point of the de�nition is to emphasize that the likelihood is a fun
tion

of the parameters for a �xed data set.

Example 15 X1, . . . ,Xn ∼ U(0, θ) iid.

fθ(x) = hθ(x1) · · · hθ(xn) =
{

1
θn 0 ≤ xi ≤ θ, i = 1, . . . , n

0 otherwise

hθ(t) =

{
1
θ 0 ≤ xi ≤ θ

0 otherwise

note hθ(t) =
1

θ
I[0,θ](t)

so fθ(x) =
1

θn

n∏

i=1

I[0,θ](xi)

⇒ fθ(x) =
1

θn
I[0,θ](x(n))I[0,∞[(x(1))

[0 ≤ xi ≤ θ for all i ⇔ x(1) ≥ 0 og x(n) ≤ θ℄

Lx(θ) =
1

θn
I[0,θ](x(n))I[0,∞[(x(1))

If x(1) > 0 then x(n) > 0

Lx(θ) =
1

θn
I[x(n),∞[(θ)

Example 16 Let X = (X1, ...,Xn) be a sample of n i.i.d. Poisson random variables with

joint pdf f(x|λ). The likelihood fun
tion of λ given X = x is

L(λ|x) = f(x|λ) =
n∏

i=1

λxi

xi!
eλ =

λ
∑

xi

∏n
i=1 xi!

enλ

Likelihood prin
iple

The likelihood prin
iple states that inferen
e on θ should only be based on the relative

value of the likelihood fun
tion. In other words, if

Lx(θ) = κLy(θ), ∀θ ∈ Θ (κ is a 
onstant)
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then x og y should lead to the same inferen
e on θ.

Example 17 The likelihood fun
tion provides information on how "likely" a parameter

value is, given a set of data.

X ∼ Bin(n, p), θ = p

P [X = x] =

(
n

x

)

px(1− p)n−x, x = 0, . . . , n

L(p) =

(
n

x

)

px(1− p)n−x, 0 ≤ p ≤ 1

ln (L(p)) = ln

(
n

p

)

+ x ln p+ (n − x) ln (1− p)

d ln (L(p))

dp
=

x

p
− n− x

1− p
= 0

⇒ x(1− p) = p(n− x)

⇒ x− px = np− xp

⇒ p =
x

n

As is typi
al for the dis
rete 
ase we 
an interpret this as the value of p whi
h gives

the maximum probability to the measurements whi
h were obtained. This interpretation

is not 
orre
t in the 
ontinuous 
ase.

Example 18 Let X1, ...,Xn ∼ n(θ, σ2), iid. Both parameters are unknown and we would

like to �nd maximum likelihood estimators for θ and σ2
. The likelihood fun
tion is

L(θ;x) = f(x;θ) =

n∏

i=1

fxi(xi;θ)

=

n∏

i=1

1√
2πσ

exp

(

−(xi − θ)2

2σ2

)

=

(
1√
2πσ2

)n

exp

(

− 1

2σ2

n∑

i=1

(xi − θ)2

)

(The following material is 
overed in more detail in the next se
tion).

We take noti
e that it is more 
onvenient to maximize the natural logarithm (written

here as log due to 
onvention) of the fun
tion instead sin
e

logL(θ;x) = log
(

(2πσ2)−
n
2

)

− 1

2σ2

n∑

i=1

(xi − θ)2

= −n

2
log(2π) − n

2
log(σ2)− 1

2σ2

n∑

i=1

(xi − θ)2

Ne
essary 
onditions for a maximum of logL w.r.t. θ and σ2
are

∂ logL(θ;x)

∂θ
=

1

σ2

n∑

i=1

(xi − θ) = 0 (2)
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and

∂ logL(θ;x)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑

i=1

(xi − θ)2 = 0 (3)

Using (1) and (2) we 
an �nd MLE 
andidates. From (1) we get

θ =
1

n

n∑

i=1

xi

so a MLE 
andidate for θ is θ̂ = X̄ whi
h is the sample mean. Likewise (2) gives

σ2 =
1

n

n∑

i=1

(xi − θ)2

thus a MLE 
andidate for σ2
is σ̂2 = n−1

n
1

n−1

n∑

i=1
(Xi − X̄)2 = n−1

n S2
where we have

inserted the MLE 
andidate for θ. All that is now left to prove is that logL a
hieves its

maximum at θ̂ and σ̂2
.

Remember that

n∑

i=1
(xi − a)2 ≥

n∑

i=1
(xi − x̄)2 ∀a ∈ R so exp

(

− 1
2σ2

n∑

i=1
(xi − x̄)2

)

≥

exp

(

− 1
2σ2

n∑

i=1
(xi − a)2

)

∀a ∈ R. So now we only have to 
on�rm that logL a
hieves its

maximum w.r.t. σ2
. We look at the se
ond derivative

∂2 logL(θ;x)

∂(σ2)2
=

n

2

n2

(
n∑

i=1
(xi − x̄)2)2

− n3

(
n∑

i=1
(xi − x̄)2)3

n∑

i=1

(xi − x̄)2

=
1

2
n3K − n3K = −1

2
n3K ≤ 0

where K = (
n∑

i=1
(xi − x̄)2)−2

. Thus proving that logL indeed a
hieves its maximum at

(θ̂, σ̂2) and it is a global maximum sin
e it's the only 
riti
al point of logL whi
h goes to

0 at the ±∞ limits.
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