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1 Methods of Point Estimation

1.1 Point Estimation

A (point) estimator is a function of random variables, T = T (X1, ...,Xn), which is itself

also a random variable.

A point estimate is an outcome of the estimator t = T (x1, ...,xn) = T (X(u)).

1.1.1 Handout

A (point) estimator is a function of random variables, T = T (X1, ...,Xn), which is itself

also a random variable. A point estimate is an outcome of the estimator t = T (x1, ...,xn) =
T (~X(u)).
Many methods are used to derive estimators:

• Maximum likelihood

• Method of moment

• Minimum χ2

• Least squares

• Best Linear Unbiased Estimators (BLUE)

• and any other method one can come up with

1.2 Maximum Likelihood Estimators

1.2.1 Handout

Consider a collection of random variables X = (X1, ...,Xn) which have a distribution with

joint density fθ. For a given set of data x the likelihood function is defined by

Lx(θ) := fθ(x)

and if we set

θ̂(x) = argmax
θ∈Θ

Lx(θ)

then the estimator

θ̂ = θ̂(X)

is called the maximum likelihood estimator (MLE) for θ.

Example 1.1. Let X1, ...,Xn ∼U(0,θ) be i.i.d. Then fθ(xi) =
{

1/θ 0 ≤ x ≤ θ
0 otherwise

,

and the joint density is the product of these functions so the likelihood function is

Lx(θ) =
n

∏
i=1

fθ(xi) =
n

∏
i=1

1

θ
I[0,θ](xi)

Order the values x(1) ≤ ... ≤ x(n) so that when they are all positive, i.e. 0 ≤ x(1) ≤ x(n)
then

Lx(θ) =
1

θn
I[x(n),∞](θ).

We therefore see that the function has a maximum at x(n) so the MLE is θ̂ = X(n).
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We can now investigate Eθ̂,V θ̂ etc.

1.3 Method of Moments

1.3.1 Handout

Let X1, ...,Xn be i.i.d. If one is to estimate a single parameter θ, then we can consider the

relation

X̄ = Eθ(X1) =: g(θ)

as an equation where the parameter θ is the unknown. If the parameter is multivariate

θ ∈ Θ ⊆ R
p then one can set up a system of equations

1

n

n

∑
i=1

X
j

i = Eθ[X
j

1 ] j = 1, ..., p

and solve this for the elements of θ.

The resulting estimator is the method of moments estimators.

Example 1.2. Let X1, ...,Xn ∼U(0,θ) be i.i.d. Then EXi =
θ
2

and the method of moments

estimator solves the equation X̄ = θ
2

for θ as the unknown, i.e. θ̂ = 2X̄ .

Example 1.3. Let X1, ...,Xn ∼ Gamma(α,β) be i.i.d with density:

f (x|α,β) =
βα

Γ(α)
xα−1e−αx,x ≥ 0.

The first two moments then are:

µ1 = X̄ = E(X1)

=
α

β

µ2 =
¯

X2 = E(X2)

=Var(X)+(E(X))2

=
α

β2
+(

α

β
)2

=
α(α+1)

β2

From the first equation we have:

β =
α

µ1

Subtituting this into the second equation gives,
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µ2 =
α(α+1)

( α
µ1
)2

µ2 =
(α+1)µ2

1

α
µ2

µ2
1

=
(α+1)

α

α
µ2

µ2
1

−α = 1

α(
µ2

µ2
1

−1) = 1

α =
µ2

1

µ2 −µ2
1

Then

β =
µ2

1

µ2 −µ2
1

1

µ1

=
µ1

µ2 −µ2
1

So the method of moments estimators are,

β̂ =
X̄

σ̂2

α̂ =
X̄2

σ̂2

1.4 Comparing estimators

1.4.1 Handout

Example 1.4. Compare the estimators θ̂1 = X(n) and θ̂2 = 2X̄ for θ in U(0,θ).

• E[θ̂1] = EX(n). The c.d.f. of Xi is

P[Xi ≤ t] =
∫ t

0

1

θ
dt =

t

θ
if 0 ≤ t ≤ θ

The c.d.f. of X(n) is

F(t) = P[X(n) ≤ t] = P[X1 ≤ t, ...,Xn ≤ t] = P[X1 ≤ t] · · ·P[Xn ≤ t]

=
(

t

θ

)n

if 0 ≤ t ≤ θ

and the p.d.f. is

f (t) =
ntn−1

θn 0 ≤ t ≤ 1

0 e.w.
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so the expected value is

EX(n) =
∫ θ

0
t

n

θn
tn−1dt =

n

θn

1

n+1
tn+1

∣
∣
∣

θ

0
=

n

n+1

θn+1

θn
=

n

n+1
θ.

Hence θ̂1 = X(n) is biased, i.e. expected value 6= θ.

• Eθ̂2 = E[2X̄ ] = 2EX̄ = 2θ
2
= θ.

Note that

EX2
(n) =

∫ θ

0
t2 n

θn
tn−1dt =

n

θn

∫ θ

0
tn+1dt =

n

θn(n+2)
tn+2

∣
∣
∣

θ

0
=

n

n+2
θ2

which gives

V X(n) =
n

n+2
θ2 −

Å

n

n+1
θ

ã2

= θ2

®

n

n+2
−

n2

(n+1)2

´

= θ2 n

(n+1)2(n+2)
.

On the other hand

V θ̂2 =V [2X̄ ] = 4V [X̄ ] =
4

n
V [X1] =

4

n

1

12
θ2 =

θ2

3n
.

So the unbiased estimator θ̂2 is better i.e. has lower variance.

Example 1.5. In the U(0,θ) example one can consider θ̂3 = n+1
n

X(n) which satisfies

Eθ̂3 = θ.

Let Xn ∼ n(µ,σ2) be independent.

Define

S2 :=
1

n−1
∑(Xi − X̄)2

so that
(n−1)S2

σ2
∼ χ2

n−1

and thus E[S2] = σ2 i.e. bσ2(S2) = 0 and

2(n−1) =V [
n−1

σ2
S2] = (

n−1

σ2
)2V [S2]⇒V [S2] = 2(n−1)

σ4

(n−1)2
=

2σ4

n−1

so that

MSE(S2) =
2σ4

n−1
+O2

(see definition of MSE, mean squared error, below).

On the other hand, for

σ̂2 =
1

n
∑(Xi − X̄)2 =

n−1

n
S2

7



we obtain

E[σ̂2] =
n−1

n
σ2

and

V [σ̂2] = (
n−1

n
)2V [S2] =

(n−1)2

n2

2σ4

(n−1)
=

2(n−1)σ4

n2

so that

bσ2(σ̂2) =
n−1

n
σ2 −σ2 =

−σ2

n

and therefore

MSE(σ̂2) =
2(n−1)σ4

n2
+(−

σ2

n
)2 =

2n−1

n2
σ4 =

2− 1
n

n
σ4 <

2

n−1
σ4 = MSE(S2)

so MSE(σ̂2)< MSE(S2).

Note: As a result of the above, it is of general interest to compare the existing estimators

of variance, which only differ in multipliers, using 1
n−1

or 1
n+1

.

1.5 Method of Least Squares

1.5.1 Handout

The method of least squares method gives the same result as maximum likelihood when

the data are assumed to come from a normal distribution. Naturally, this is not generally

the case.

The method of least squares can be used as a method of estimation even though the normal

distribution is not applicable. The method is then just used to get an estimator, which may

or may not be a good estimator compared to the MLE.

1.6 Linear Estimators

1.6.1 Handout

Linear estimators are estimators of the form ∑i aiXi.

The coefficients ai can be chosen to satisfy arbitrary requirements. Most commonly this

is unbiasedness and minimum variance, leading to the Best Linear Unbiased Estimators

(BLUE).

1.7 Minimum Chi-Squared

1.7.1 Handout

When the data (oi j) are available as frequency tables it may be natural to look at a model of

the expected frequencies ei j as a function of parameters and then predict the measurements

with the expectations ei j. A common measure of quality is

X2 = ∑
i, j

(
oi j − ei j

)2

ei j

and if there are unknown parameters in the model, they can be estimated by minimizing

X2.

8



1.8 Induced Likelihood Function

1.8.1 Handout

Suppose that Lx is a likelihood function. We are interested in evaluating a function of

parameter, i.e. evaluate τ(θ) but not necessarily θ .

Induced likelihood function for y = τ(θ) is the function L∗
x with

L∗
x(η) := sup

{θ:τ(θ)=η}

Lx(θ)

Theorem 1.1 If θ̂ is the MLE for θ then τ(θ̂) is the MLE for η = τ(θ).

Proof. Let η̂ denote the value that maximizes L∗(η|x). We must show that L∗(η̂|x) =
L∗[τ(θ̂|x]. Now, as stated above, the maxima of L and L∗ coincide, so we have:

L∗(η̂|x) = sup
η

sup
{θ:τ(θ)=η}

L(θ|x) = sup
θ

L(θ|x) = L(θ̂|x)

where the second equality follows because the iterated maximiazation is equal to the unconditi-

onal maximization over θ, which is attained at θ̂. Furthermore

L(θ̂|x) = sup
{θ:τ(θ)=τθ̂}

L(θ|x) = L∗[τ(θ̂)|x].

Hence, the string of equalities shows that L∗(η̂|x) = L∗(τ(θ̂)|x) and that τ(θ̂) is the MLE

of τ(θ).
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2 The quality of estimators

2.1 Quality of estimators

2.1.1 Handout

Let W be an estimator for a parameter θ.

We define the mean squared error with

MSE := E[(W −θ)2].

The bias is

bθ(W) := E[W ]−θ

and we note that

MSE = E[(W −θ)2] = E[(W −EW +EW −θ)2]

= E[(W −EW )2]+E[(EW −θ
︸ ︷︷ ︸

bθ(W )

)2]+2E[(W −EW )(EW −θ)]

= V [W ]+bθ(w)
2

2.2 Best estimators (UMVUE)

2.2.1 Handout

Definition 2.1. W is the best unbiased estimator or the minimum variance unbiased

estimator (MINVUE) or the uniformly minimum variance unbiased estimator (UMVUE)

for τ(θ) if Eθ[W ] = τ(θ) and for all other estimators W ∗ with Eθ[W
∗] = τ(θ) we have

Vθ[W ]≤Vθ[W
∗].

Example 2.1. X1, . . . ,Xn ∼ p(λ). Then we know

µ : EXi = λ

and

σ2 : VXi = λ

therefore

EλX̄ = µ = λ

so that

EλS2 = σ2 = λ

and we thus have two unbiased estimators.

The question is, which one should be used and obviously one should compare VλX̄ vs

VλS2 ? Or can one find a, 0 ≤ a ≤ 1 s.t.

Vλ[aX̄ +(1−a)S2]

improves both?
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Note: Vλ[aX̄ +(1−a)S2] = a2VλX̄ +(1−a)2VλS2 +2a(1−a)Covλ(X̄ ,S2)

2.3 Best linear unbiased estimators (BLUE)

2.3.1 Handout

Certain estimators can be derived from scratch using a definition of optimality.

If Y1, . . . ,Yn as independent random variables one can consider estimators of the form

W =
n

∑
i=1

aiYi

and choose the coefficients (a∗1, . . . ,a
∗
n) =: a∗ so that

E ∑a∗i Yi = τ(θ)

V ∑a∗i Yi = min
a

V ∑aiYi

Example 2.2. Y1, . . . ,Yn ∼ n(µ,σ2) iid τ(θ) = µ

W = ∑aiYi

EW = µ = E ∑aiȲi = µ

⇒∑aiµ = µ

(∗∗∗)
⇒ ∑ai = 1 (*)

VW
(∗∗)
= ∑aiσ

2

We thus want

min
a1,...,an

∑a2
i

m.t.t ∑ai = 1

L = ∑a2
i +λ(∑ai −1)

0 =
∂

∂ai

L = 2ai +λ ⇒ ai =
−λ

2

i.e. all the ai are the same and (∗) implies ai =
1
n

and hence Ȳ is the BLUE for n(µ,σ2).

Note: We assumed independence in (∗∗), and identical distributions in (∗ ∗ ∗) but not

normality, and hence Ȳ is BLUE for µ if Y1, . . . ,Yn are i.i.d. with expected value µ

and a common finite variance σ2.
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3 The Cramer-Rao inequality

3.1 The Cramer-Rao inequality

3.1.1 Handout

Theorem 3.1 (The Cramer-Rao inequality) Assume that X = (X1, . . . ,Xn)
′ ∼ fθ where

fθ is a density function and that the random variable W (X) is such that

d

dθ
Eθ[W(X)] =

∫
X(Ω)

∂

∂θ
W (x) fθ(x)dx (*)

and that Vθ[W(X)]< ∞.

Then

Vθ[W (X)]≥

Ä

d
dθEθ[W (X)]

ä2

Eθ

[
¶

∂
∂θ

ln fθ(X)
©2

]

Note: It is worth noting that

(1) the condition (*) is quite useless but can be shown to hold for very many distri-

butions, including the exponential family

(2) The denominator contains the phenomenon

ln fθ(X)

which is a function of parameters and random variables.

(3) If W (X) is an unbiased estimator for θ then Eθ[W (X)] = θ and the numerator

is then the constant 1.

(4) If W (X) unbiased and achieves thes lower bounds, then W is UMVUE.

(5) Eθ
∂

∂θ
ln fθ(X) = 0 since

Eθ
∂

∂θ
ln fθ(X) =

∫ Å
∂

∂θ
ln fθ(x)

ã

fθ(x)dx

=
∫ ∂

∂θ
fθ(x)

fθ(x)
fθ(x)dx

=
∫

∂

∂θ
fθ(x)dx =

∂

∂θ

∫
fθ(x)dx

︸ ︷︷ ︸

=1

= 0,

where the second to last step is only valid if the condition (*) is fulfilled.
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Proof.

d

dθ
Eθ[W (X)] =

∫
W (x)

∂

∂θ
fθ(x)dx

=

∫
W (x)

∂
∂θ

fθ(x)

fθ(x)
fθ(x)dx

=

∫
W (x)

ï

∂

∂θ
ln fθ(x)

ò

fθ(x)dx

= Eθ







W (X)
︸ ︷︷ ︸

W

∂

∂θ
ln fθ(X)

︸ ︷︷ ︸

Uθ






= Eθ[WUθ]

= Eθ[WUθ]−EθW EθUθ
︸ ︷︷ ︸

0

=Covθ(W,Uθ)

We also have Vθ[Uθ] = E[U2
θ ]− (EUθ)

2

︸ ︷︷ ︸

0

and thus

1 ≥ ρ2
W,Uθ

=
Covθ(W,Uθ)

Vθ[W ] ·Vθ[Uθ]

=
(Eθ[WUθ])

2

Vθ[W ] ·E[U2
θ ]

⇒Vθ[W ]≥ (Eθ[WUθ])
2

E[U2
θ ]

=
( d

dθ Eθ[W ])2

E[U2
θ ]

⇒Vθ[W ]≥
( d

dθ Eθ[W ])2

Eθ

[

( ∂
∂θ

ln fθ(X))
2
]

3.2 A version for i.i.d. random variables

3.2.1 Handout

Note: If X1,...,Xn ∼ fθ are iid then the C-R theorem becomes

Vθ

[
W (X)

]
≥

(
d

dθEθ

[
W (X)

])2

nEθ

[(
d

dθ ln fθ(X1)
)2
]

Since:

f̃θ (x1, ...,xn) =
n

∏
i=1

fθ(xi)

ln f̃θ(x) =
n

∑
i=1

ln fθ(xi)

ln f̃θ(X) =
n

∑
i=1

ln fθ(Xi)

and

Eθ

[( d

dθ
ln f̃θ(X)

)2
]

=
n

∑
i=1

Eθ

[( d

dθ
ln fθ(Xi)

)2
]
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3.3 Fisher information

3.3.1 Handout

Note: The quantity

Eθ

ñ

Å

∂

∂θ
ln fθ(X)

ã2
ô

is called the Fisher information.

It is a way of measuring how much information an observable random variable, X,

carries about an unknown parameter, θ.

3.4 Rewriting the Fisher information

3.4.1 Handout

Note: If fθ is the (multivariate) pdf of X and is such that the order of differentiation and

integration can be interchanged, ie

∂

∂θ
Eθ

ï

∂

∂θ
ln fθ(X)

ò

=
∫

x∈X(Ω)

∂

∂θ

ïÅ

∂

∂θ
ln fθ(x)

ã

fθ(x)

ò

dx

then

Eθ

ñ

Å

∂

∂θ
ln fθ(x)

ã2
ô

=−Eθ

ñ

∂2

∂θ2
ln fθ(X)

ô

This is seen by noting that

Eθ

ï

∂

∂θ
ln fθ(X)

ò

=

∫
x∈X(Ω)

Å

∂

∂θ
ln fθ(x)

ã

fθ(x)dx

=
∫

x∈X(Ω)

Ä

∂
∂θ

fθ(x)
ä

fθ(x)
fθ(x)dx =

∫
x∈X(Ω)

∂

∂θ
fθ(x)dx

=
d

dθ
Eθ [1] = 0

and therefore

0 =

∫
x∈X(Ω)

∂

∂θ

ïÅ

∂

∂θ
ln fθ(x)

ã

fθ(x)

ò

dx

and the rest follows by differentiating the product.

3.5 The C-R inequality for i.i.d. random variables

3.5.1 Handout

Corollary 3.1 If Xi, . . . ,Xn iid each with pdf fθ. Then under the same assumptions,

Vθ[W ]≥
( d

dθEθ[W ])2

nEθ

[
Ä

∂
∂θ

ln fθ (X1)
ä2
]
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Note: If X1, . . . ,Xn are iid, each with pdf fθ and W is unbiased for θ, then we obtain

VθW ≥
1

−nEθ

î

∂2

∂θ2 fθ(X1)
ó

if the corresponding assumptions hold.

Vθ[W ]≥
( d

dθEθ[W ])2

nEθ

[
Ä

∂
∂θ

ln fθ (X1)
ä2
]

VθW ≥
1

−nEθ

î

∂2

∂θ2 fθ(X1)
ó

3.6 When the assumptions fail

3.6.1 Handout

Note: If Aθ = {x : fθ(x > 0} then one usually requires Aθ = Aθ′ , for all θ, θ′ ∈ Θ. I.e. this

does not work for U(0,θ).

3.7 A corollary using the likelihood function

3.7.1 Handout

Corollary 3.2 Let X1, ...,Xn ∼ fθ be i.i.d. where fθ satisfies the condition of the C-R

theorem and write

Lx (θ) =
n

∏
i=1

fθ (xi) .

An unbiased estimator W (X) of τ(θ) attains the C-R lower bound if and only if there is

a function a such that

a(θ)(W (x)− τ(θ)) =
∂

∂θ
lnLx (θ)

Proof. Easy application of the Cauchy-Schwarts inequality.

Example: Write up from 2015-10-01 14.05.54.jpg and 2015-10-01 14.09.23.jpg

This is an old version...

Example 3.1. Let Xn ∼ n(µ,σ2) be independent and identically distributed and θ ∼
n(µ,σ2)
We can then write down the likelihood function as

Lx(θ) = Lx(µ,σ
2) =

n

∏
i=1

f (xi;µ,σ2) = σ2·(−n/2)(2π)−n/2e
− 1

2σ2 ∑n
i=1(xi−µ)2

So computing the logarithm and differentiating gives

lnLx(θ) =−
n

2
ln(2π)−

n

2
lnσ2 −

1

2σ2 ∑(xi −µ)2

15



d

dσ2
lnLx(θ) =−

n

2σ2
+

1

2σ4 ∑(xi −µ)2

d2

d(σ2)2
lnLx(µ,σ

2) =
n

2σ4
−

1

σ6 ∑
i

(xi −µ)2 .

It follows that the Fisher information is

−E[
d2

dθ2
2

ln fθ(x)] =−
n

2σ4
+

1

σ6
E[

n

∑
i=1

(xi −µ)2] =−
n

2σ4
+

nσ2

σ6
=

n

2σ4

So if W is such that

EW = σ2

then

V [W ]≥
2σ4

n

Then to obtain the lower bound of the Cramer-Rao inequality we need

a(θ)[W(x)− τ(θ)] =
d

dθ2
lx(θ)

which means W (x) would have to be a function of ∑(xi −µ)2
which is not possible since

µ not known.
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4 Sufficiency and unbiased estimators

4.1 Background

4.1.1 Handout

Recall that if f is the joint pdf of X and Y , then

fX |Y (x|y) :=
f (x,y)

fY (y)

where fY (y) =
∫

f (x,y)dx. And if

t(y) := E[X |Y = y] =
∫

x fX |Y (x|y)dx

and we define t(Y ) := E[X |Y ], then

E[E[X |Y ]] =

∫
y
t(y) fY (y)dy

=

∫
y

Å∫
x

fX |Y (x|y)dx

ã

fY (y)dy

=
∫∫

x f (x,y)dxdy = E[X ]

Similarly we can show that

V [X ] =V [E[X |Y ]]+E[V [X |Y ]]

4.2 The Rao-Blackwell theorem

4.2.1 Handout

Theorem 4.1 (Rao-Blackwell) Let W be any unbiased estimator of τ(θ) and T be a

sufficient statistic. Define φ(T ) := E[W |T ].
Then we have

Eθ[φ(T )] = τ(θ)

and

Vθ[θ(τ)]≤Vθ[W ], ∀θ

Proof. From

E[X ] = E[E(X |Y )], and V [X ] =V [E(X |Y)]+E[V (X |Y )]

we have that

τ(θ) = Eθ[W ] = Eθ[E(W |T )] = Eθ[φ(T )]

and so φ(T ) is unbiased for τ(θ). Furthermore, we have that

Vθ[W ] =Vθ[E(W |T )]+Eθ[V (W |T )]

=Vθ[φ(T )]+Eθ[V (W |T )]

≥Vθ[φ(T )],

17



where the last inequalties comes from V (W |T )≥ 0.

Hence φ(T ) is uniformly better than W and all that remains is to show that φ(T ) is an

estimator. That is, to show that φ(T ) = E(W |T ) is a function of only the sample and it is

independent of θ. From the definition of sufficiency, and the fact that W is a function of

only the sample, we get that the distribution of W |T is independent of θ.

Therefore, φ(T ) is a uniformly better unbiased estimator of τ(θ).

4.3 Lehmann–Scheffé

4.3.1 Handout

add words and change this to a note...

Note 4.1. V [U ] = V [W ] if and only if P[U = W ] = 1, ∀θ Sometimes Eθ[T ] = a+ bθ and

then we get U := t−a
b

Note 4.2. E[Y ] = θ, S := Eθ[Y |U ], U is not necessarily adequate.

Theorem 4.2 (Lehmann–Scheffé ) Let T be a complete and sufficient statistic for a

parameter θ and φ(T ) be any estimator based only on T. Then φ(T ) is the unique best

unbiased estimator of its expected value τ(θ).

Sönnun. By Rao-Blackwell: If R is any unbiased estimator of the parameter θ then:

φ(T ) = E[R|T ]

is an unbiased estimate of θ such that:

Var[E(R|T)]≤Var[R]

Then let S be any other unbiased estimator and

ψ(T ) = E[S|T ]

then

Eθ[φ(T )−ψ(T )] = 0

and because T is complete it follows that

Pθ(φ(T ) = ψ(T )) = 1

So φ(T ) is the unique best unbiased estimator.

Example 4.1. Let X1 . . .Xn ∼ bin(k,θ) be iid, Y := ∑n
1 Xi ∼ bin(kn,θ)

1. Since Xi are binomial we get:

P[X1 = x1, . . . ,Xn = xn] =

Ç

k

x1

å

. . .

Ç

k

xn

å

θxi(1−θ)k−xi · . . . ·θxn(1−θ)k−xn

=

Ç

k

x1

å

. . .

Ç

k

xn

å

θ∑xi(1−θ)kn−∑xi

so we see that Y is sufficient for θ.

18



2. Now let Eθ [g(Y )] = 0 for all θ and show that Y is complete.

Eθ [g(Y )] =
k

∑
y=0

ng(y)

Ç

kn

y

å

θy(1−θ)kn−y = (1−θ)kn
k

∑
y=0

ng(y)

Ç

kn

y

å

Å

θ

1−θ

ãy

We observer that if θ ∈ {0,1} the expected value of g(Y) is trivially 0. Now if

0 < θ < 1 then Eθ[g(Y )] = 0 if and only if

k

∑
y=0

ng(y)

Ç

kn

y

å

Å

θ

1−θ

ãy

= 0

But since this is a polynomial it is 0 only if every coefficient is 0, that is only

if g(y) = 0 for all y. Therefore we conclude that Y is a complete and sufficient

statistic.

3. Note that: P[X1 = 1] = kθ(1−θ)k−1 =: τ(θ). And therefore

W :=

ß

1 X1 = 1

0 annars

is an unbiased estimator for τ(θ) since

Eθ[W ] =
1

∑
w=0

wPθ(W = w) = Pθ(X1 = 1) = τ(θ)

4. Finally, since Y is a complete and sufficient statistic and W is an unbiased

estimator, we simply define φ(Y ) := E[W |Y ] to get the unique best unbiased

estimator.
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5 Overview of point estimation

5.1 Summary

Main points

Methods: MLE, m.o.m., BLUE, min χ2, . . .
Quality criteria: bias, variance, MSE

Special attention: MINVUE (UMVUE)

Cramer-Rao (lower bd on variance)

Fisher information

Rao-Blackwell (condition on suff. statistic)
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