Certain estimators can be derived from scratch using a definition of optimality.
If $Y_1,\dots,Y_n$ as independent random variables one can consider estimators of the form $$W = \displaystyle\sum^n_{i=1}a_iY_i$$ and choose the coefficients $(a^*_1,\dots,a^*_n)=:\underline{a}^*$ so that \[E\sum a^*_i Y_i = \tau(\theta)\] \[V\sum a^*_i Y_i = \displaystyle\min_{\underline{a}} V\sum a_iY_i\] \begin{xmpl} $Y_1,\dots,Y_n\sim n(\mu,\sigma^2)$ iid $\tau(\theta) = \mu$ $$W = \sum a_i Y_i$$ $$EW = \mu = E\sum a_i \bar{Y}_i = \mu$$ $$\Rightarrow \sum a_i \mu = \mu$$ \begin{equation}\tag{*} \overset{(***)}{\Rightarrow} \sum a_i = 1 \end{equation} $$VW \overset{(**)}{=} \sum a_i \sigma^2$$ We thus want $$\displaystyle\min_{a_1,\dots,a_n} \sum a_i^2$$ $$ m.t.t \sum a_i = 1$$ $$L = \sum a_i^2 + \lambda(\sum a_i - 1)$$ $$0 = \frac{\partial}{\partial a_i} L = 2a_i + \lambda \Rightarrow a_i = \frac{-\lambda}{2}$$ i.e. all the $a_i$ are the same and $(*)$ implies $a_i = \frac{1}{n}$ and hence $\bar{Y}$ is the BLUE for $n(\mu,\sigma^2)$. \end{xmpl} \begin{note} We assumed independence in $(**)$, and identical distributions in $(***)$ but not normality, and hence $\bar{Y}$ is BLUE for $\mu$ if $Y_1,\dots,Y_n$ are i.i.d. with expected value $\mu$ and a common finite variance $\sigma^2$. \end{note}