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1 Asymptotics

1.1 Background: Asymptotic behaviour of estimators
1.1.1 Handout

Asymptotics

Definition 1 Let Xi, X5,...,X,,... be a sequence of random variables with density
fo, @ € © and 7 : ©® — R a function so that 7(6) is the parameter to be estimated.
The sequence of estimators W,, = W, (Xy,...X,,) is said to be a consistent sequence of
estimators of 7(0) if for every € > 0 and every 0 € O,

lim Py [|[W, —7(0)] <e] =1.

n—oo

In other words this means that a consistent sequence of estimators converges in probability
to the parameter 7(0) it is estimating.

Usually, ® CR or © C R* and 7: © — R is at least continuous.
Notice that it is sufficient to have a consistent estimator W of 6 since then 7(W') will be
a consistent estimator of 7(0) .

Example 1 X;, Xs,... ~ U(0,0) i.i.d. then with W,, := maz{X1,..., X;,} we know that
W, L5, 9 and in fact it is almost trivial to show this by looking at the cdf Fi, for
X(n) = Wy and note that

0, ifxz<6
Fioy (@) = { 1, else

D q a_ g P,
So W,, = # and since this is convergence to a constant, we also have W,, =% 6.

Example 2 From Chebyshev’s theorem we know that if EW,, = 6 and VW,, — 0 then
Py
W, — 0.

Although that tool is an overkill, this is a trivial consequence of Slutsky’s theorem.
As seen in the following theorem, MLEs are consistent under very general conditions.




Remark 1.1. The conditions for
Al Xy, Xo,... are iid., X; ~ fg.
A2 fo# fo if 040
A3 6 — fy is differentiable and {fy|0 € ©} have common support.

A4 © is an open set (all  are interior points).

A5 =+ fy(x) is three-times differentiable with respect to 6 and 6 — [ fp(x) dx can be
differentiated under the integral sign

A6 For 6y € ©, 3¢ > 0 and a function M : Q — R such that |§—;lnfg(m)| < M(x) for
x € Qand Oy —c <6 <60y+ cwith E[M(X;)] < oo.

Remark 1.2. These do not hold e.g. for U(0,0) etc., but do hold for distributions such as

the normal, gamma, Poisson, binomial, etc.

Efficiency: Efficiency of an estimator is closely related to consistency. Where con-
sistency has to do with the question: Does the estimator converge to the parameter it is
estimating?

Efficiency is concerned with the asymptotic variance of an estimator.

(Note: In the following we define VX = V[X] := Var[X]).

Definition 2 For an estimator Tj,, if lim, o k,Var[T,,] = 72 < oo, where {k,} is a

sequence of constants, then 72 is called the limiting variance or limit of the variances.

Note that this generic (textbook) definition of the limiting variance is pretty useless,
since it really leaves 72 undefined up to a constant multiplier. In most cases considered
we will want v/k, (T, — i) to have a non-degenerate limiting distribution which typically
means k, = n occasionally one may need k, = n? or other sequences.

The generic definition is useful, however, when comparing sequences of estimators {7}, }
, {Un} using the same sequence of constants, {k,}. In such cases a comparison of the ratio
of limiting variances is the same for any constant multiple of the sequence and the exact
multiplier of 72 is irrelevant.

Example 3 VX, = ‘;—2 and nVX,, = 0% and we are e.g. interested in \/nX.

Consider next variances of limiting distributions, i.e. suppose
Vi (r(V) = 7(0)) = 7 (0, (7' (0)0)) .

We will refer to o2 [7/(6)]? as the asymptotic variance:



Definition 3 For an estimator T,,, suppose that k, (T,,—7(0)) 2, n(0,0?). The parameter

o2 is called the asymptotic variance or variance of the limit distribution of T,.

(Note: o may be a function of 6).

Questions:

(a) Is the asymptotic variance always the same as the limiting variance?
(b) Are they the same when both exist and are finite?

Example 4 Consider X1, Xs,.. ~ n(u,0?) and define Y,, := X,, for any given n. Then
(Y,)n>1 is a sequence of estimators. We have seen that EY,, = p and VY, = "72
So the limiting variance of Yy, is lim nV X, = o2.
n—oo

We also note that
Vi(Yn = ) 2 0 (0,02) (%)
We are interested in estimating i by using )—% Let g(t) = % S0
1 1
Y,) = — = —.
g( n) Yn X'n,

By carrying out straightforward calculations we arrive at the following conclusion.

For any given n, F|g(Y,,)| = oo and V¢(Y;,) = oo and thus the limiting variance of g(Y;,)
is oo (or, none of the expectations exist, depending on the formulation chosen)

If ¢'(11) exists and is not zero then we can use the delta method to estimate the variance
as n — oo.

From (*) and the delta method it follows that

D 2
Valg(Va) = g(w) 2 n (0,02 (' (1)°)
Here we have an asymptotic variance which is finite,
a? (¢'(n)” < o0

even though for every n we have
Vg(Y,) = co.

Note: This is a perfect example to simulate in R and it is also a perfect example to
derive actual probability statements and investigate how they behave.

1.2 Behaviour of the MLE
1.2.1 Handout



Definition 4 Let W, = W,,(X1,...X,,) where X and {X;};°, are i.i.d. fp and suppose
V(W —7(0)) 2 1 (0,v(6)).
Then W, is said to be asymptotically efficient if

Vi(We, —7(8)) 2 n.(0,0(6))
with

Remark 1.8. This is the equivalent of the Cramer-Rao lower bound in the case of the limits
considered here.

Notes 4-6
20131108 115618.5pg
MLEs are asymptotically efficient:

"Proof":
Write the log-likelihood as

n
be, (0) 1= " In fo(a;)
i=1
and write the Taylor expansion of I} as

Iy, (0) =1y (60) + (8 — 60)l, (6o) + R.

Since the MLE also maximizes ly,,, it satisfies I} (§) = 0 and we obtain

0 =1l (0) =1 () + (6 — 6)l%(0o) + R

or



1
~l (00) = R Talxa (B0)

0—00:W+R:>\/ﬁ(0—00):m+1%
and we note that
1 0? 0?
_El/),("(eo) = —— 802 lnfg( ) Pg —F |:302 lnfg( ):| :I((g)

\/1—an 00 ( Z@lnfeo > LJL(O,I(H))

and hence

Va0 -6 D n <0, %) .

Remark 1.4. The above theorem shows that it is typically the case that MLE’s are efficient
and consistent.

This phrase is somewhat redundant, as efficiency is defined only when the estimator is
asymptotically normal and, as we will see below, asymptotic normality implies consistency.

Suppose
Wn — K

g

vn

— Z (in distribution),

where Z ~ n(0,1).
Next, apply Slutsky’s Theorem to conclude

o Wn —pu ) o
Wy — :<—><n " >—>l2m <—)Z:O
so W, — p — 0 in distribution.
We know that convergence in distribution to a point is equivalent to convergence in
probability, so W, is consistent estimator of u.
Estimating variances

Recall that if

VY, — i) 2 n(0,0%),
then

D
Vi(g(Yn) — g(1)) = n(0,0%(g'(0))°),
by the Delta method. If § is the MLE for 0, then 7(0) is the MLE for 7(0), and we have:

7_/ 2
Vir(@) = 78) 2on [0, ——T©)
E[ In Lx (0)

862
20181115 098137.jpg :

Since the information number of the sample is given by

I,(0) = E (%lan(9)>2 :E[ o lnLX(H)}

062

it follows that



. g 2 g 0\12
Vin(oy ~ ZOF __7(0)

I(0) — —25InLy(9)])_y

where the first "~" means "asymptotic" but the second "~" refers to the estimated
quantity.
Note that we can write
In(é) = T op2

for the observed information number.
NB: For any finite sample we have

vir@) > T

so this underestimates the actual variance!
20181115 093148.5pg :

Definition 5 If two estimators W,, and V,, satisfy

n(0, O’%V),

n(0,0%)

then the asymptotic relative efficiency (ARE) of V,, with respect to W, is

o2
ARE(V,,, Wy,) = &,
Oy

Remark 1.5. If you need a sample size n to satisfy some "large sample" quantity criteria

2 2
with W,,, then you need a sample size m s.t. %’ = UT’” for the same result with V,,, i.e. you
2
need m = n2s.

Equivalently, a "large sample" confidence interval becomes longer/shorter in proportion

to VARE.

Example 5 (Poisson): Let X, Xs,... ~ P(\), i.i.d. We want to estimate P[X; = 0] =
e =:7(A).
Consider the following two estimators:

. IEN -
T1 = E ZI[Xz:O] > b(e A, 1)
1=1

.1 &
where \ = ~ ZX is the MLE.

=
Note that 77 is unbiased but though 75 is biased, it is consistent and asymptotically
efficient.




We know that

and we know that

Vali, = () B (0,4 (7(N)°) or n (0,27

and

Vil = 7()) By (0,67 (1- 7))

SO

N “ e 2A A
ARE(71,7(X) = 6_)\(1 — €_>\) = A1

i.e. T beats 71 for any A > 0 (as n — 0).

1.3 are etc
1.3.1 Handout

A note on robustness - the median
Suppose we have a sample, or sequence X, ..., X,, ~ f, where f is a continuous
pdf with corresponding cdf F' and population median y, i.e. F'(u) =1/2 and F' = f.
Suppose n is odd and consider the first n ordered values of the sample median,

i.e.
M, := X, := median {Xi}4

where X1., < ... < X,...
Consider the task of evaluating lim P[y/n(M, — ) < a], i.e. finding the limiting
n—oo

distribution of M,,. First note that /n(M, — p) < a < M, < u+ a/\/n < at least
half of the X's are < 4 a/+/n. So let

Y—{l for X; < pu+a/y/n

n = X(n+1)/2:n

.....

0 else
to obtain Y; ~ b(F(u+a/y/n),1)and > Y; ~ b(p, := F(p+a/+y/n),n) and /n(M, —
p) <a<s Y, > 2 SoY]is a Binomial (or Bernoulli) r.v. with success probability

Pn = F </~L + %) .
Doing some algebra we get

n+1 ZY,—npn nT—H_npn
PVn(M, —p) < al=P[y Yi> =P =
Vi = S d = P)_Yiz -] =P | Aoeeis 2 s

Since Y Y; is Binomial its e.v. and variance are EY; = np,, and VY; = np,,(1—p,).
Looking at the limit of p, we see that lim p, = lim F(u + %) = F(p) = 3.
n—oo n—oo

D Yicnpn (standard normal) by the CLT.

this we infer that
W \V4 npn(lfpn)



We would like to evaluate the right hand side in the last P in (1) so we carry out
the calculations
ntl L _ 1
lim —2— —" "Pn im —n(2 )+ 3
nee npn(l - pn) oo npn(l - pn)
1
n(s — pn . 1
nee pn<1 - pn) :LHOO npn(l - pn)

— (pn - %)
V(1= pa) [/
— lim L L (F s 3) W)
NN e
g7 fim, = (e )
= 2(—alF'(u))
= —2af ().

'

=0

= lim
n—0o0

We conclude

PV, ) < dl =+ PIZ > ~20f ()] = P | 575 <]

and T(Zu) ~n (07 m> We therefore have shown

-0 2.0 7).

Recall that if Var[X;] = 0% and E[X;] = u, then /n(X,, —u) D n(0,0?).

For symmetric distributions F(E[X,]) = 1/2 where we can compare X and X for
such distributions.

Case 1: _ ~ 2
X; ~n(u,c?). The limiting variance for X,, is o2, but for X,, it is —4f(1ﬂ)2 = %5 and
2
- 2
ARE(X,, X,) = 02 =—~0.64
oo
Case 2: o
f(z) = %e’ = . Here Var[X;] = 20% and f(n) = % So
- 202 202
ARE(Xp, Xp) = 775 = —5 =2
R ( 9 ) 1/40.2 0-2

which is double the efficiency in case 1.

1.3.2 Asymptotic results for LRTs

Consider testing Hy : 0 = 0y vs. Hy : 0 # 6, using a likelihood ratio test. Since here,
©¢ = {6}, we obtain the likelihood ratio as
sup L(0)

L(6o)

AMx) = 6% = 0

) sup L(0)  L(0)
[USSh

10



Proof. We begin by expanding log L(#|x) = I(f|x), where L is the likelihood function,
in a Taylor series around 6:

(0 —6)?

1(6]) = 1B]) + 1 (B]x)(6 — 0) + 1" (B]x)—;

+ ..

We can now substitute the expansion for {(fy|x) in
—2log A(x) = —21(6p|x) + 21(A|x),

and use the fact that A
I'(0]x) = 0.

Thus we have: A A
—2log A\(x) &~ —1"(0|x) (0o — ).

Since —I”(f|x) is the observed information I,,() and

A~

jn(‘g) — 1(90)

S

it follows from Slutsky’s theorem and the theorem on the asymptotic efficiency of
MLEs that o
—2log \(X) = x3

Example 6 (Poisson): For testing Hy : A = Ao versus H; : A # \g based on
observing Xi,..., X, i.i.d. Poisson()), we have

e e )\OZ i

—2log A(x) = —2log (m) =2n[(A — A) — Alog(Ao/A)],

where \ = > x;/n is the MLE of A\. Applying the theorem above, we would reject
Hy at level a if —2log A(x) > X7 -
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