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1 Asymptotis

1.1 Bakground: Asymptoti behaviour of estimators

1.1.1 Handout

Asymptotis

De�nition 1 Let X1,X2, . . . ,Xn, . . . be a sequene of random variables with density

fθ, θ ∈ Θ and τ : Θ −→ R a funtion so that τ(θ) is the parameter to be estimated.

The sequene of estimators Wn = Wn(X1, . . . Xn) is said to be a onsistent sequene of

estimators of τ(θ) if for every ε > 0 and every θ ∈ Θ,

lim
n→∞

Pθ [|Wn − τ(θ)| < ε] = 1.

In other words this means that a onsistent sequene of estimators onverges in probability

to the parameter τ(θ) it is estimating.

Usually, Θ ⊆ R or Θ ⊆ R
k
and τ : Θ −→ R is at least ontinuous.

Notie that it is su�ient to have a onsistent estimator W of θ sine then τ(W ) will be
a onsistent estimator of τ(θ) .

Example 1 X1,X2, ... ∼ U(0, θ) i.i.d. then with Wn := max{X1, ...,Xn} we know that

Wn
Pθ−→ θ and in fat it is almost trivial to show this by looking at the df F(n) for

X(n) = Wn and note that

F(n)(x) −→
{

0, if x < θ

1, else

So Wn
D−→ θ and sine this is onvergene to a onstant, we also have Wn

Pθ−→ θ.

Example 2 From Chebyshev's theorem we know that if EWn = θ and VWn −→ 0 then

Wn
Pθ−→ θ.

Theorem 1.1 If Wn is onsistent for θ and {an}, {bn} are sequenes suh that an −→
1, bn −→ 0, then anWn + bn is also onsistent for θ.

Although that tool is an overkill, this is a trivial onsequene of Slutsky's theorem.

As seen in the following theorem, MLEs are onsistent under very general onditions.

Theorem 1.2 Let X1,X2, ... ∼ fθ be i.i.d. for θ ∈ Θ ⊂ R.

De�ne the likelihood funtion by

Lx(θ) :=
n∏

i=1

fθ(xi)
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and the maximum likelihood estimator by

θ̂ := argmax
θ∈Θ

Lx(θ).

If the funtion τ : Θ −→ R is ontinuous and onditions A1-A6 hold, then τ(θ̂)
Pθ−→ τ(θ)

for all θ ∈ Θ.

Remark 1.1. The onditions for

A1 X1,X2, ... are i.i.d., Xi ∼ fθ.

A2 fθ 6= fθ′ if θ 6= θ′.

A3 θ 7→ fθ is di�erentiable and {fθ|θ ∈ Θ} have ommon support.

A4 Θ is an open set (all θ are interior points).

A5 x 7→ fθ(x) is three-times di�erentiable with respet to θ and θ 7→
∫
fθ(x) dx an be

di�erentiated under the integral sign

A6 For θ0 ∈ Θ, ∃c > 0 and a funtion M : Ω 7→ R suh that | ∂3

∂θ3
ln fθ(x)| ≤ M(x) for

x ∈ Ω and θ0 − c ≤ θ ≤ θ0 + c with E[M(X1)] < ∞.

Remark 1.2. These do not hold e.g. for U(0, θ) et., but do hold for distributions suh as

the normal, gamma, Poisson, binomial, et.

E�ieny: E�ieny of an estimator is losely related to onsisteny. Where on-

sisteny has to do with the question: Does the estimator onverge to the parameter it is

estimating?

E�ieny is onerned with the asymptoti variane of an estimator.

(Note: In the following we de�ne V X = V [X] := Var[X]).

De�nition 2 For an estimator Tn, if limn→∞ knVar[Tn] = τ2 < ∞, where {kn} is a

sequene of onstants, then τ2 is alled the limiting variane or limit of the varianes.

Note that this generi (textbook) de�nition of the limiting variane is pretty useless,

sine it really leaves τ2 unde�ned up to a onstant multiplier. In most ases onsidered

we will want

√
kn (Tn − µn) to have a non-degenerate limiting distribution whih typially

means kn = n oasionally one may need kn = n2
or other sequenes.

The generi de�nition is useful, however, when omparing sequenes of estimators {Tn}
, {Un} using the same sequene of onstants, {kn}. In suh ases a omparison of the ratio

of limiting varianes is the same for any onstant multiple of the sequene and the exat

multiplier of τ2 is irrelevant.

Example 3 V X̄n = σ2

n and nV X̄n = σ2
and we are e.g. interested in

√
nX̄ .

Consider next varianes of limiting distributions, i.e. suppose

√
n (τ(Yn)− τ(θ)) → n

(

0,
(
τ ′(θ)σ

)2
)

.

We will refer to σ2 [τ ′(θ)]2 as the asymptoti variane:
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De�nition 3 For an estimator Tn, suppose that kn(Tn−τ(θ))
D−→ n(0, σ2). The parameter

σ2
is alled the asymptoti variane or variane of the limit distribution of Tn.

(Note: σ2
may be a funtion of θ).

Questions:

(a) Is the asymptoti variane always the same as the limiting variane?

(b) Are they the same when both exist and are �nite?

Example 4 Consider X1,X2, .. ∼ n(µ, σ2) and de�ne Yn := X̄n for any given n. Then

(Yn)n≥1 is a sequene of estimators. We have seen that EYn = µ and V Yn = σ2

n .

So the limiting variane of Yn is lim
n→∞

nV X̄n = σ2
.

We also note that

√
n(Yn − µ)

D−→ n
(
0, σ2

)
(*)

.

We are interested in estimating

1
µ by using

1
X̄n

. Let g(t) = 1
t so

g(Yn) =
1

Yn
=

1

X̄n
.

By arrying out straightforward alulations we arrive at the following onlusion.

For any given n, E|g(Yn)| = ∞ and V g(Yn) = ∞ and thus the limiting variane of g(Yn)
is ∞ (or, none of the expetations exist, depending on the formulation hosen)

If g′(µ) exists and is not zero then we an use the delta method to estimate the variane

as n → ∞.

From (*) and the delta method it follows that

√
n(g(Yn)− g(µ))

D−→ n
(

0, σ2
(
g′(µ)

)2
)

.

Here we have an asymptoti variane whih is �nite,

σ2
(
g′(µ)

)2
< ∞

even though for every n we have

V g(Yn) = ∞.

Note: This is a perfet example to simulate in R and it is also a perfet example to

derive atual probability statements and investigate how they behave.

1.2 Behaviour of the MLE

1.2.1 Handout
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De�nition 4 Let Wn = Wn(X1, ...Xn) where X and {Xi}∞i=1 are i.i.d. fθ and suppose

√
n(Wn − τ(θ))

D−→ n (0, v(θ)) .

Then Wn is said to be asymptotially e�ient if

√
n(Wn − τ(θ))

D−→ n (0, v(θ))

with

v(θ) =
(τ ′(θ))2

Eθ

[(
∂
∂θ ln fθ(X)

)2
]

Remark 1.3. This is the equivalent of the Cramer-Rao lower bound in the ase of the limits

onsidered here.

Notes 4-6

20131108_115613.jpg

MLEs are asymptotially e�ient:

Theorem 1.3 Under regularity onditions A1−A6, with X1,X2, ... ∼ fθ iid, let

θ̂ := argmax
θ∈Θ

L
xn (θ) (θ),

be the MLE where

L
xn (θ) :=

n∏

i=1

fθ(xi)

and

τ : Θ → R is ontinuous,

√
n
(

τ
(

θ̂
)

− τ (θ)
)

D−→ n(0, r(θ))

with r(θ) given as CRLB.

"Proof":

Write the log-likelihood as

l
xn(θ) :=

n∑

i=1

ln fθ(xi)

and write the Taylor expansion of l′
xn

as

l′
xn
(θ) = l′

xn
(θ0) + (θ − θ0)l

′′
xn
(θ0) +R.

Sine the MLE also maximizes l
xn , it satis�es l

′
xn
(θ̂) = 0 and we obtain

0 = l′
xn
(θ̂) = l′

xn
(θ0) + (θ̂ − θ0)l

′′
x

(θ0) +R

or
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θ̂ − θ0 =
−l′
xn
(θ0)

l′′
xn
(θ0)

+ R̃ ⇒
√
n(θ̂ − θ0) =

1√
n
l′
xn
(θ0)

− 1
n l

′′
xn
(θ0)

+ R̃

and we note that

− 1

n
l′′
Xn

(θ0) = − 1

n

n∑

i=1

∂2

∂θ2
ln fθ(Xi) Pθ−−−→− E

[
∂2

∂θ2
ln fθ(Xi)

]

= I(θ)

1√
n
l′
Xn

(θ0) =
√
n

(

1

n

n∑

1

d

dθ
ln fθ0(Xi)

)

D−−−→n(0, I(θ)).

and hene

√
n(θ̂ − θ) D−−−→n

(

0,
1

I(θ)

)

.

Remark 1.4. The above theorem shows that it is typially the ase that MLE's are e�ient

and onsistent.

This phrase is somewhat redundant, as e�ieny is de�ned only when the estimator is

asymptotially normal and, as we will see below, asymptoti normality implies onsisteny.

Suppose

√
n
Wn − µ

σ
→ Z (in distribution),

where Z ∼ n(0, 1).
Next, apply Slutsky's Theorem to onlude

Wn − µ =
( σ√

n

)(√
n
Wn − µ

σ

)

→ limn→∞

( σ√
n

)

Z = 0

so Wn − µ → 0 in distribution.

We know that onvergene in distribution to a point is equivalent to onvergene in

probability, so Wn is onsistent estimator of µ.

Estimating varianes

Reall that if

√
n(Yn − µ)

D−→ n(0, σ2),

then

√
n(g(Yn)− g(µ))

D−→ n(0, σ2(g′(θ))2),

by the Delta method. If θ̂ is the MLE for θ, then τ(θ̂) is the MLE for τ(θ), and we have:

√
n(τ(θ̂)− τ(θ))

D−→ n



0,
(τ ′(θ))2

E
[

− ∂2

∂θ2
lnL

X

(θ)
]



 .

20131115_093137.jpg :

Sine the information number of the sample is given by

In(θ) := E

[(
∂

∂θ
lnL

X

(θ)

)2
]

= E

[

− ∂2

∂θ2
lnL

X

(θ)

]

,

it follows that
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V [τ(θ̂)] ≃ [τ ′(θ)]2

In(θ)
≃ [τ ′(θ̂)]2

− ∂2

∂θ2 lnLx(θ)|θ=θ̂

,

where the �rst "≃" means "asymptoti" but the seond "≃" refers to the estimated

quantity.

Note that we an write

In(θ̂) = − ∂2

∂θ2
lnL

x

(θ̂)

for the observed information number.

NB: For any �nite sample we have

V [τ(θ̂)] ≥ [τ ′(θ)]2

In(θ)

so this underestimates the atual variane!

20131115_093148.jpg :

De�nition 5 If two estimators Wn and Vn satisfy

√
n[Wn − τ(θ)]

D−→ n(0, σ2
W ),

√
n[Vn − τ(θ)]

D−→ n(0, σ2
V )

then the asymptoti relative e�ieny (ARE) of Vn with respet to Wn is

ARE(Vn,Wn) =
σ2
W

σ2
V

.

Remark 1.5. If you need a sample size n to satisfy some "large sample" quantity riteria

with Wn, then you need a sample size m s.t.

σ2
v

m = σ2
w

n for the same result with Vn, i.e. you

need m = n
σ2
v

σ2
w
.

Equivalently, a "large sample" on�dene interval beomes longer/shorter in proportion

to

√
ARE.

Example 5 (Poisson): Let X1,X2, ... ∼ P (λ), i.i.d. We want to estimate P [X1 = 0] =
e−λ =: τ(λ).

Consider the following two estimators:

τ̂1 :=
1

n

n∑

i=1

I[Xi=0] ∼ b(e−λ, 1)

τ̂2 := e−λ̂ = τ(λ̂)

where λ̂ =
1

n

n∑

i=1

Xi is the MLE.

Note that τ̂1 is unbiased but though τ̂2 is biased, it is onsistent and asymptotially

e�ient.
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We know that

E[τ̂1] = e−λV [τ̂1] =
1

n
e−λ(1− e−λ)

and we know that

√
n(τ̂2 − τ(λ))

D−→ n
(

0, λ
(
τ ′(λ)

)2
)

or n
(

0, λe−2λ
)

and

√
n(τ̂1 − τ(λ))

D−→ n
(

0, e−λ
(

1− e−λ
))

so

ARE(τ̂1, τ(λ̂)) =
λe−2λ

e−λ(1− e−λ)
=

λ

eλ − 1

i.e. τ̂2 beats τ̂1 for any λ > 0 (as n → ∞).

1.3 are et

1.3.1 Handout

A note on robustness - the median

Suppose we have a sample, or sequene X1, ..., Xn ∼ f , where f is a ontinuous

pdf with orresponding df F and population median µ, i.e. F (µ) = 1/2 and F ′ = f .
Suppose n is odd and onsider the �rst n ordered values of the sample median,

i.e.

Mn := X̃n := median {Xi}i=1,...,n = X(n+1)/2:n

where X1:n ≤ ... ≤ Xn:n.

Consider the task of evaluating lim
n→∞

P [
√
n(Mn − µ) ≤ a], i.e. �nding the limiting

distribution of Mn. First note that
√
n(Mn − µ) ≤ a ⇔ Mn ≤ µ + a/

√
n ⇔ at least

half of the X ′s are ≤ µ+ a/
√
n. So let

Yi =

{

1 for Xi ≤ µ+ a/
√
n

0 else

to obtain Yi ∼ b(F (µ+a/
√
n), 1) and

∑
Yi ∼ b(pn := F (µ+a/

√
n), n) and

√
n(Mn−

µ) ≤ a ⇔
∑

Yi ≥ n+1
2
. So Yi is a Binomial (or Bernoulli) r.v. with suess probability

pn = F
(

µ+ a√
n

)

.

Doing some algebra we get

P [
√
n(Mn − µ) ≤ a] = P [

∑

Yi ≥
n + 1

2
] = P

[ ∑
Yi − npn

√

npn(1− pn)
≥

n+1
2

− npn
√

npn(1− pn)

]

.

(1)

Sine

∑
Yi is Binomial its e.v. and variane are EYi = npn and V Yi = npn(1−pn).

Looking at the limit of pn we see that lim
n→∞

pn = lim
n→∞

F (µ + a√
n
) = F (µ) = 1

2
. From

this we infer that

∑
Yi−npn√

npn(1−pn)
→ Z (standard normal) by the CLT.
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We would like to evaluate the right hand side in the last P in (1) so we arry out

the alulations

lim
n→∞

n+1
2

− npn
√

npn(1− pn)
= lim

n→∞

n(1
2
− pn) +

1
2

√

npn(1− pn)

= lim
n→∞

√
n(1

2
− pn)

√

pn(1− pn)
+ lim

n→∞

1
√

npn(1− pn)
︸ ︷︷ ︸

=0

= lim
n→∞

−
(
pn − 1

2

)

√

pn(1− pn)/
√
n

= lim
n→∞

1
√

pn(1− pn)
·
−
(

F
(

µ+ a√
n

)

− F (µ)
)

1/
√
n

=
1

1/2
· lim
hn→0

− (F (µ+ ahn)− F (µ))

hn

,

(

hn :=
1√
n

)

= 2(−aF ′(µ))

= −2af(µ).

We onlude

P [
√
n(Mn − µ) ≤ a] → P [Z ≥ −2af(µ)] = P

[ −Z

2f(µ)
≤ a

]

and

−Z
2f(µ)

∼ n
(

0, 1
[2f(µ)]2

)

. We therefore have shown

√
n(Mn − µ) D−−→ n

(

0,
1

[2f(µ)]2

)

.

Reall that if V ar[Xi] = σ2
and E[Xi] = µ, then

√
n(X̄n − µ) D−−→ n(0, σ2).

For symmetri distributions F (E[Xi]) = 1/2 where we an ompare X̄ and X̃ for

suh distributions.

Case 1:

Xi ∼ n(µ, σ2). The limiting variane for X̄n is σ2
, but for X̃n it is

1
4f(µ)2

= πσ2

2
and

ARE(X̃n, X̄n) =
σ2

πσ2

2

=
2

π
≈ 0.64

Case 2:

f(x) = 1
2σ
e−

|x−µ|
σ

. Here V ar[Xi] = 2σ2
and f(µ) = 1

2σ
. So

ARE(X̃n, X̄n) =
2σ2

1/4σ2
=

2σ2

σ2
= 2

whih is double the e�ieny in ase 1.

1.3.2 Asymptoti results for LRTs

Consider testing H0 : θ = θ0 vs. H1 : θ 6= θ0 using a likelihood ratio test. Sine here,

Θ0 = {θ0}, we obtain the likelihood ratio as

λ(x) =

sup
θ∈Θ0

L(θ)

sup
θ∈Θ0

L(θ)
=

L(θ0)

L(θ̂)
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Theorem 1.4 ((Asymptoti distribution of the LRT�simple H0)) For

testing H0 : θ = θ0 versus H1 : θ 6= θ0, suppose X1, . . . , Xn are i.i.d. f(x|θ), θ̂ is the
MLE of θ, and f(x|θ) satis�es the regularity onditions in Misellanea 10.6.2. in

Casella and Berger (mentioned earlier in this text). Then under H0, as n → ∞,

−2 log λ(X)
D−→ χ2

1,

where χ2
1 is a χ2

random variable with 1 degree freedom.

Proof. We begin by expanding logL(θ|x) = l(θ|x), where L is the likelihood funtion,

in a Taylor series around θ̂:

l(θ|x) = l(θ̂|x) + l′(θ̂|x)(θ − θ̂) + l′′(θ̂|x)(θ − θ̂)2

2!
+ . . . .

We an now substitute the expansion for l(θ0|x) in

−2 log λ(x) = −2l(θ0|x) + 2l(θ̂|x),

and use the fat that

l′(θ̂|x) = 0.

Thus we have:

−2 log λ(x) ≈ −l′′(θ̂|x)(θ0 − θ̂)2.

Sine −l′′(θ̂|x) is the observed information În(θ̂) and

1

n
În(θ̂) → I(θ0)

it follows from Slutsky's theorem and the theorem on the asymptoti e�ieny of

MLEs that

−2 log λ(X)
D−→ χ2

1

Example 6 (Poisson): For testing H0 : λ = λ0 versus H1 : λ 6= λ0 based on

observing X1, . . . , Xn i.i.d. Poisson(λ), we have

−2 log λ(x) = −2 log

(

e−nλ0λ
∑

xi

0

e−nλ̂λ̂
∑

xi

)

= 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)],

where λ̂ =
∑

xi/n is the MLE of λ. Applying the theorem above, we would rejet

H0 at level α if −2 log λ(x) > χ2
1,α.

Copyright 2021, Gunnar Stefansson

This work is liensed under the Creative Commons Attribution-ShareAlike Li-

ense. To view a opy of this liense, visit http://reativeommons.org/lienses/by-

sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

11


