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1 Asymptoti
s

1.1 Ba
kground: Asymptoti
 behaviour of estimators

1.1.1 Handout

Asymptoti
s

De�nition 1 Let X1,X2, . . . ,Xn, . . . be a sequen
e of random variables with density

fθ, θ ∈ Θ and τ : Θ −→ R a fun
tion so that τ(θ) is the parameter to be estimated.

The sequen
e of estimators Wn = Wn(X1, . . . Xn) is said to be a 
onsistent sequen
e of

estimators of τ(θ) if for every ε > 0 and every θ ∈ Θ,

lim
n→∞

Pθ [|Wn − τ(θ)| < ε] = 1.

In other words this means that a 
onsistent sequen
e of estimators 
onverges in probability

to the parameter τ(θ) it is estimating.

Usually, Θ ⊆ R or Θ ⊆ R
k
and τ : Θ −→ R is at least 
ontinuous.

Noti
e that it is su�
ient to have a 
onsistent estimator W of θ sin
e then τ(W ) will be
a 
onsistent estimator of τ(θ) .

Example 1 X1,X2, ... ∼ U(0, θ) i.i.d. then with Wn := max{X1, ...,Xn} we know that

Wn
Pθ−→ θ and in fa
t it is almost trivial to show this by looking at the 
df F(n) for

X(n) = Wn and note that

F(n)(x) −→
{

0, if x < θ

1, else

So Wn
D−→ θ and sin
e this is 
onvergen
e to a 
onstant, we also have Wn

Pθ−→ θ.

Example 2 From Chebyshev's theorem we know that if EWn = θ and VWn −→ 0 then

Wn
Pθ−→ θ.

Theorem 1.1 If Wn is 
onsistent for θ and {an}, {bn} are sequen
es su
h that an −→
1, bn −→ 0, then anWn + bn is also 
onsistent for θ.

Although that tool is an overkill, this is a trivial 
onsequen
e of Slutsky's theorem.

As seen in the following theorem, MLEs are 
onsistent under very general 
onditions.

Theorem 1.2 Let X1,X2, ... ∼ fθ be i.i.d. for θ ∈ Θ ⊂ R.

De�ne the likelihood fun
tion by

Lx(θ) :=
n∏

i=1

fθ(xi)
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and the maximum likelihood estimator by

θ̂ := argmax
θ∈Θ

Lx(θ).

If the fun
tion τ : Θ −→ R is 
ontinuous and 
onditions A1-A6 hold, then τ(θ̂)
Pθ−→ τ(θ)

for all θ ∈ Θ.

Remark 1.1. The 
onditions for

A1 X1,X2, ... are i.i.d., Xi ∼ fθ.

A2 fθ 6= fθ′ if θ 6= θ′.

A3 θ 7→ fθ is di�erentiable and {fθ|θ ∈ Θ} have 
ommon support.

A4 Θ is an open set (all θ are interior points).

A5 x 7→ fθ(x) is three-times di�erentiable with respe
t to θ and θ 7→
∫
fθ(x) dx 
an be

di�erentiated under the integral sign

A6 For θ0 ∈ Θ, ∃c > 0 and a fun
tion M : Ω 7→ R su
h that | ∂3

∂θ3
ln fθ(x)| ≤ M(x) for

x ∈ Ω and θ0 − c ≤ θ ≤ θ0 + c with E[M(X1)] < ∞.

Remark 1.2. These do not hold e.g. for U(0, θ) et
., but do hold for distributions su
h as

the normal, gamma, Poisson, binomial, et
.

E�
ien
y: E�
ien
y of an estimator is 
losely related to 
onsisten
y. Where 
on-

sisten
y has to do with the question: Does the estimator 
onverge to the parameter it is

estimating?

E�
ien
y is 
on
erned with the asymptoti
 varian
e of an estimator.

(Note: In the following we de�ne V X = V [X] := Var[X]).

De�nition 2 For an estimator Tn, if limn→∞ knVar[Tn] = τ2 < ∞, where {kn} is a

sequen
e of 
onstants, then τ2 is 
alled the limiting varian
e or limit of the varian
es.

Note that this generi
 (textbook) de�nition of the limiting varian
e is pretty useless,

sin
e it really leaves τ2 unde�ned up to a 
onstant multiplier. In most 
ases 
onsidered

we will want

√
kn (Tn − µn) to have a non-degenerate limiting distribution whi
h typi
ally

means kn = n o

asionally one may need kn = n2
or other sequen
es.

The generi
 de�nition is useful, however, when 
omparing sequen
es of estimators {Tn}
, {Un} using the same sequen
e of 
onstants, {kn}. In su
h 
ases a 
omparison of the ratio

of limiting varian
es is the same for any 
onstant multiple of the sequen
e and the exa
t

multiplier of τ2 is irrelevant.

Example 3 V X̄n = σ2

n and nV X̄n = σ2
and we are e.g. interested in

√
nX̄ .

Consider next varian
es of limiting distributions, i.e. suppose

√
n (τ(Yn)− τ(θ)) → n

(

0,
(
τ ′(θ)σ

)2
)

.

We will refer to σ2 [τ ′(θ)]2 as the asymptoti
 varian
e:
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De�nition 3 For an estimator Tn, suppose that kn(Tn−τ(θ))
D−→ n(0, σ2). The parameter

σ2
is 
alled the asymptoti
 varian
e or varian
e of the limit distribution of Tn.

(Note: σ2
may be a fun
tion of θ).

Questions:

(a) Is the asymptoti
 varian
e always the same as the limiting varian
e?

(b) Are they the same when both exist and are �nite?

Example 4 Consider X1,X2, .. ∼ n(µ, σ2) and de�ne Yn := X̄n for any given n. Then

(Yn)n≥1 is a sequen
e of estimators. We have seen that EYn = µ and V Yn = σ2

n .

So the limiting varian
e of Yn is lim
n→∞

nV X̄n = σ2
.

We also note that

√
n(Yn − µ)

D−→ n
(
0, σ2

)
(*)

.

We are interested in estimating

1
µ by using

1
X̄n

. Let g(t) = 1
t so

g(Yn) =
1

Yn
=

1

X̄n
.

By 
arrying out straightforward 
al
ulations we arrive at the following 
on
lusion.

For any given n, E|g(Yn)| = ∞ and V g(Yn) = ∞ and thus the limiting varian
e of g(Yn)
is ∞ (or, none of the expe
tations exist, depending on the formulation 
hosen)

If g′(µ) exists and is not zero then we 
an use the delta method to estimate the varian
e

as n → ∞.

From (*) and the delta method it follows that

√
n(g(Yn)− g(µ))

D−→ n
(

0, σ2
(
g′(µ)

)2
)

.

Here we have an asymptoti
 varian
e whi
h is �nite,

σ2
(
g′(µ)

)2
< ∞

even though for every n we have

V g(Yn) = ∞.

Note: This is a perfe
t example to simulate in R and it is also a perfe
t example to

derive a
tual probability statements and investigate how they behave.

1.2 Behaviour of the MLE

1.2.1 Handout
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De�nition 4 Let Wn = Wn(X1, ...Xn) where X and {Xi}∞i=1 are i.i.d. fθ and suppose

√
n(Wn − τ(θ))

D−→ n (0, v(θ)) .

Then Wn is said to be asymptoti
ally e�
ient if

√
n(Wn − τ(θ))

D−→ n (0, v(θ))

with

v(θ) =
(τ ′(θ))2

Eθ

[(
∂
∂θ ln fθ(X)

)2
]

Remark 1.3. This is the equivalent of the Cramer-Rao lower bound in the 
ase of the limits


onsidered here.

Notes 4-6

20131108_115613.jpg

MLEs are asymptoti
ally e�
ient:

Theorem 1.3 Under regularity 
onditions A1−A6, with X1,X2, ... ∼ fθ iid, let

θ̂ := argmax
θ∈Θ

L
xn (θ) (θ),

be the MLE where

L
xn (θ) :=

n∏

i=1

fθ(xi)

and

τ : Θ → R is 
ontinuous,

√
n
(

τ
(

θ̂
)

− τ (θ)
)

D−→ n(0, r(θ))

with r(θ) given as CRLB.

"Proof":

Write the log-likelihood as

l
xn(θ) :=

n∑

i=1

ln fθ(xi)

and write the Taylor expansion of l′
xn

as

l′
xn
(θ) = l′

xn
(θ0) + (θ − θ0)l

′′
xn
(θ0) +R.

Sin
e the MLE also maximizes l
xn , it satis�es l

′
xn
(θ̂) = 0 and we obtain

0 = l′
xn
(θ̂) = l′

xn
(θ0) + (θ̂ − θ0)l

′′
x

(θ0) +R

or
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θ̂ − θ0 =
−l′
xn
(θ0)

l′′
xn
(θ0)

+ R̃ ⇒
√
n(θ̂ − θ0) =

1√
n
l′
xn
(θ0)

− 1
n l

′′
xn
(θ0)

+ R̃

and we note that

− 1

n
l′′
Xn

(θ0) = − 1

n

n∑

i=1

∂2

∂θ2
ln fθ(Xi) Pθ−−−→− E

[
∂2

∂θ2
ln fθ(Xi)

]

= I(θ)

1√
n
l′
Xn

(θ0) =
√
n

(

1

n

n∑

1

d

dθ
ln fθ0(Xi)

)

D−−−→n(0, I(θ)).

and hen
e

√
n(θ̂ − θ) D−−−→n

(

0,
1

I(θ)

)

.

Remark 1.4. The above theorem shows that it is typi
ally the 
ase that MLE's are e�
ient

and 
onsistent.

This phrase is somewhat redundant, as e�
ien
y is de�ned only when the estimator is

asymptoti
ally normal and, as we will see below, asymptoti
 normality implies 
onsisten
y.

Suppose

√
n
Wn − µ

σ
→ Z (in distribution),

where Z ∼ n(0, 1).
Next, apply Slutsky's Theorem to 
on
lude

Wn − µ =
( σ√

n

)(√
n
Wn − µ

σ

)

→ limn→∞

( σ√
n

)

Z = 0

so Wn − µ → 0 in distribution.

We know that 
onvergen
e in distribution to a point is equivalent to 
onvergen
e in

probability, so Wn is 
onsistent estimator of µ.

Estimating varian
es

Re
all that if

√
n(Yn − µ)

D−→ n(0, σ2),

then

√
n(g(Yn)− g(µ))

D−→ n(0, σ2(g′(θ))2),

by the Delta method. If θ̂ is the MLE for θ, then τ(θ̂) is the MLE for τ(θ), and we have:

√
n(τ(θ̂)− τ(θ))

D−→ n



0,
(τ ′(θ))2

E
[

− ∂2

∂θ2
lnL

X

(θ)
]



 .

20131115_093137.jpg :

Sin
e the information number of the sample is given by

In(θ) := E

[(
∂

∂θ
lnL

X

(θ)

)2
]

= E

[

− ∂2

∂θ2
lnL

X

(θ)

]

,

it follows that
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V [τ(θ̂)] ≃ [τ ′(θ)]2

In(θ)
≃ [τ ′(θ̂)]2

− ∂2

∂θ2 lnLx(θ)|θ=θ̂

,

where the �rst "≃" means "asymptoti
" but the se
ond "≃" refers to the estimated

quantity.

Note that we 
an write

In(θ̂) = − ∂2

∂θ2
lnL

x

(θ̂)

for the observed information number.

NB: For any �nite sample we have

V [τ(θ̂)] ≥ [τ ′(θ)]2

In(θ)

so this underestimates the a
tual varian
e!

20131115_093148.jpg :

De�nition 5 If two estimators Wn and Vn satisfy

√
n[Wn − τ(θ)]

D−→ n(0, σ2
W ),

√
n[Vn − τ(θ)]

D−→ n(0, σ2
V )

then the asymptoti
 relative e�
ien
y (ARE) of Vn with respe
t to Wn is

ARE(Vn,Wn) =
σ2
W

σ2
V

.

Remark 1.5. If you need a sample size n to satisfy some "large sample" quantity 
riteria

with Wn, then you need a sample size m s.t.

σ2
v

m = σ2
w

n for the same result with Vn, i.e. you

need m = n
σ2
v

σ2
w
.

Equivalently, a "large sample" 
on�den
e interval be
omes longer/shorter in proportion

to

√
ARE.

Example 5 (Poisson): Let X1,X2, ... ∼ P (λ), i.i.d. We want to estimate P [X1 = 0] =
e−λ =: τ(λ).

Consider the following two estimators:

τ̂1 :=
1

n

n∑

i=1

I[Xi=0] ∼ b(e−λ, 1)

τ̂2 := e−λ̂ = τ(λ̂)

where λ̂ =
1

n

n∑

i=1

Xi is the MLE.

Note that τ̂1 is unbiased but though τ̂2 is biased, it is 
onsistent and asymptoti
ally

e�
ient.

8



We know that

E[τ̂1] = e−λV [τ̂1] =
1

n
e−λ(1− e−λ)

and we know that

√
n(τ̂2 − τ(λ))

D−→ n
(

0, λ
(
τ ′(λ)

)2
)

or n
(

0, λe−2λ
)

and

√
n(τ̂1 − τ(λ))

D−→ n
(

0, e−λ
(

1− e−λ
))

so

ARE(τ̂1, τ(λ̂)) =
λe−2λ

e−λ(1− e−λ)
=

λ

eλ − 1

i.e. τ̂2 beats τ̂1 for any λ > 0 (as n → ∞).

1.3 are et


1.3.1 Handout

A note on robustness - the median

Suppose we have a sample, or sequen
e X1, ..., Xn ∼ f , where f is a 
ontinuous

pdf with 
orresponding 
df F and population median µ, i.e. F (µ) = 1/2 and F ′ = f .
Suppose n is odd and 
onsider the �rst n ordered values of the sample median,

i.e.

Mn := X̃n := median {Xi}i=1,...,n = X(n+1)/2:n

where X1:n ≤ ... ≤ Xn:n.

Consider the task of evaluating lim
n→∞

P [
√
n(Mn − µ) ≤ a], i.e. �nding the limiting

distribution of Mn. First note that
√
n(Mn − µ) ≤ a ⇔ Mn ≤ µ + a/

√
n ⇔ at least

half of the X ′s are ≤ µ+ a/
√
n. So let

Yi =

{

1 for Xi ≤ µ+ a/
√
n

0 else

to obtain Yi ∼ b(F (µ+a/
√
n), 1) and

∑
Yi ∼ b(pn := F (µ+a/

√
n), n) and

√
n(Mn−

µ) ≤ a ⇔
∑

Yi ≥ n+1
2
. So Yi is a Binomial (or Bernoulli) r.v. with su

ess probability

pn = F
(

µ+ a√
n

)

.

Doing some algebra we get

P [
√
n(Mn − µ) ≤ a] = P [

∑

Yi ≥
n + 1

2
] = P

[ ∑
Yi − npn

√

npn(1− pn)
≥

n+1
2

− npn
√

npn(1− pn)

]

.

(1)

Sin
e

∑
Yi is Binomial its e.v. and varian
e are EYi = npn and V Yi = npn(1−pn).

Looking at the limit of pn we see that lim
n→∞

pn = lim
n→∞

F (µ + a√
n
) = F (µ) = 1

2
. From

this we infer that

∑
Yi−npn√

npn(1−pn)
→ Z (standard normal) by the CLT.

9



We would like to evaluate the right hand side in the last P in (1) so we 
arry out

the 
al
ulations

lim
n→∞

n+1
2

− npn
√

npn(1− pn)
= lim

n→∞

n(1
2
− pn) +

1
2

√

npn(1− pn)

= lim
n→∞

√
n(1

2
− pn)

√

pn(1− pn)
+ lim

n→∞

1
√

npn(1− pn)
︸ ︷︷ ︸

=0

= lim
n→∞

−
(
pn − 1

2

)

√

pn(1− pn)/
√
n

= lim
n→∞

1
√

pn(1− pn)
·
−
(

F
(

µ+ a√
n

)

− F (µ)
)

1/
√
n

=
1

1/2
· lim
hn→0

− (F (µ+ ahn)− F (µ))

hn

,

(

hn :=
1√
n

)

= 2(−aF ′(µ))

= −2af(µ).

We 
on
lude

P [
√
n(Mn − µ) ≤ a] → P [Z ≥ −2af(µ)] = P

[ −Z

2f(µ)
≤ a

]

and

−Z
2f(µ)

∼ n
(

0, 1
[2f(µ)]2

)

. We therefore have shown

√
n(Mn − µ) D−−→ n

(

0,
1

[2f(µ)]2

)

.

Re
all that if V ar[Xi] = σ2
and E[Xi] = µ, then

√
n(X̄n − µ) D−−→ n(0, σ2).

For symmetri
 distributions F (E[Xi]) = 1/2 where we 
an 
ompare X̄ and X̃ for

su
h distributions.

Case 1:

Xi ∼ n(µ, σ2). The limiting varian
e for X̄n is σ2
, but for X̃n it is

1
4f(µ)2

= πσ2

2
and

ARE(X̃n, X̄n) =
σ2

πσ2

2

=
2

π
≈ 0.64

Case 2:

f(x) = 1
2σ
e−

|x−µ|
σ

. Here V ar[Xi] = 2σ2
and f(µ) = 1

2σ
. So

ARE(X̃n, X̄n) =
2σ2

1/4σ2
=

2σ2

σ2
= 2

whi
h is double the e�
ien
y in 
ase 1.

1.3.2 Asymptoti
 results for LRTs

Consider testing H0 : θ = θ0 vs. H1 : θ 6= θ0 using a likelihood ratio test. Sin
e here,

Θ0 = {θ0}, we obtain the likelihood ratio as

λ(x) =

sup
θ∈Θ0

L(θ)

sup
θ∈Θ0

L(θ)
=

L(θ0)

L(θ̂)
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Theorem 1.4 ((Asymptoti
 distribution of the LRT�simple H0)) For

testing H0 : θ = θ0 versus H1 : θ 6= θ0, suppose X1, . . . , Xn are i.i.d. f(x|θ), θ̂ is the
MLE of θ, and f(x|θ) satis�es the regularity 
onditions in Mis
ellanea 10.6.2. in

Casella and Berger (mentioned earlier in this text). Then under H0, as n → ∞,

−2 log λ(X)
D−→ χ2

1,

where χ2
1 is a χ2

random variable with 1 degree freedom.

Proof. We begin by expanding logL(θ|x) = l(θ|x), where L is the likelihood fun
tion,

in a Taylor series around θ̂:

l(θ|x) = l(θ̂|x) + l′(θ̂|x)(θ − θ̂) + l′′(θ̂|x)(θ − θ̂)2

2!
+ . . . .

We 
an now substitute the expansion for l(θ0|x) in

−2 log λ(x) = −2l(θ0|x) + 2l(θ̂|x),

and use the fa
t that

l′(θ̂|x) = 0.

Thus we have:

−2 log λ(x) ≈ −l′′(θ̂|x)(θ0 − θ̂)2.

Sin
e −l′′(θ̂|x) is the observed information În(θ̂) and

1

n
În(θ̂) → I(θ0)

it follows from Slutsky's theorem and the theorem on the asymptoti
 e�
ien
y of

MLEs that

−2 log λ(X)
D−→ χ2

1

Example 6 (Poisson): For testing H0 : λ = λ0 versus H1 : λ 6= λ0 based on

observing X1, . . . , Xn i.i.d. Poisson(λ), we have

−2 log λ(x) = −2 log

(

e−nλ0λ
∑

xi

0

e−nλ̂λ̂
∑

xi

)

= 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)],

where λ̂ =
∑

xi/n is the MLE of λ. Applying the theorem above, we would reje
t

H0 at level α if −2 log λ(x) > χ2
1,α.
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