stats6257conf 625.6 - Confidence intervals

Gunnar Stefansson

October 28, 2021

Copyright This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

1 Confidence intervals 3
1.1 Interval Estimation 3
1.1.1 Handout 3
1.2 Location, scale and location-scale families 4
1.2.1 Handout 4
1.3 Seeking shorter confidence intervals 5
1.3.1 Examples 6
1.4 A few more examples and background 7
1.4.1 Handout 7
2 Inverting test statistics 8
2.1 Some examples and preliminaries 8
2.1.1 Handout 8
3 Pivotal quantities 9
3.1 Definitions and examples of the use of pivotal quantities 9
3.1.1 Handout 9

1 Confidence intervals

1.1 Interval Estimation

1.1.1 Handout

Recall from previous chapters: If $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$ are i.i.d. random variables then

$$
\bar{X} \sim n\left(\mu, \sigma^{2} / n\right) \quad \text { and } \quad \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim n(0,1)
$$

A method for obtaining a level α confidence interval is by the so called method of inversion:

$$
P\left[-z_{1-\alpha / 2}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{1-\alpha / 2}\right]=P\left[\bar{X}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]=1-\alpha
$$

So the random set

$$
C(\mathbf{X})=\left[\bar{X}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

has probability $1-\alpha$ of covering μ.
Once we have actual data, outcomes of the random variables, we can compute a realisation of the set:

$$
C(\mathbf{x})=\left[\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

and we call this a $100(1-\alpha) \%$ confidence interval for μ.
Note carefully: The random set has probability $1-\alpha$ of covering μ. Once we have data \mathbf{x} we have a fixed set $C(\mathbf{x})$ and there is no probability any more. We simply claim $\mu \in C(\mathbf{x})$.

Recall that we tested $H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$ under the usual Gaussian assumptions, using $Z:=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$ and rejected if the numerical outcome satisfies

$$
|z|>z_{1-\alpha / 2}
$$

Note that we use the natural definition of quantiles and subscript therefore denote the lower-tail probability, i.e.

$$
\Phi\left(z_{\alpha}\right)=\alpha
$$

so that

$$
\Phi\left(z_{1-\alpha / 2}\right)=1-\alpha / 2 .
$$

Note 1: Suppose $X_{1}, \ldots, X_{n} \sim f_{\theta}, \theta \in \Theta$ and $\phi_{\theta_{0}}$ is a test function for $H_{0}: \theta=\theta_{0}$. Then we can think of the entire collection of such tests $\left\{\phi_{\theta_{0}}\right\}_{\theta_{0} \in \Theta}$ or simply $\left\{\phi_{\theta}\right\}_{\theta \in \Theta}$.

Principle of generating confidence sets from test functions: Suppose $\left\{\phi_{\theta}\right\}_{\theta \in \Theta}$ is a collection of tests for the situation where $\mathbf{X} \sim f_{\theta}, \theta \in \Theta$ and define $C(\mathbf{X}):=\left\{\theta: \phi_{\theta}(\mathbf{x})=0\right\}$.

Theorem 1.1 If the tests $\left\{\phi_{\theta}\right\}_{\theta \in \Theta}$ are all level α tests, then the set $C(\mathbf{X})$ has coverage probability at least $1-\alpha$.

Proof.

$$
P_{\theta}(\theta \in C(\mathbf{X}))=P_{\theta}\left(\phi_{\theta}(\mathbf{X})=0\right)=1-P_{\theta}\left(\phi_{\theta}(\mathbf{X})=1\right) \geq 1-\alpha
$$

Consider the simplest cases where $C(\mathbf{X}) \subseteq \mathbb{R}$.

Definition 1 An interval $[L(\mathbf{x}), U(\mathbf{x})]$ is an interval estimate and $[L(\mathbf{X}), U(\mathbf{X})]$ is an interval estimator if X_{1}, \ldots, X_{n} are random variables and $L, U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $L \leq U$.
Note: $\mathbb{R}^{\prime}=\mathbb{R} \cup\{-\infty, \infty\}$ is permitted.

Definition 2 Let $\mathbf{X} \sim f_{\theta}, \theta \in \Theta$. Then
(a) $\inf _{\theta \in \Theta} P_{\theta}(\theta \in C(\mathbf{X}))=$: coverage probability $=: 1-\alpha$
(b) $100(1-\alpha) \%$ is the confidence of the set, i.e. $C(\mathbf{X})$ is a $100(1-\alpha)$ confidence set if α is as above.

1.2 Location, scale and location-scale families

1.2.1 Handout

Consider a location family with $f_{\mu}(x)=f(x-\mu)$.
Let $X \sim f_{\mu}$ and write $Q(X, \mu)=X-\mu$. Then we obtain

$$
\begin{aligned}
F_{Q}(t): & =P_{\mu}[Q(X, \mu) \leq t] \\
& =P_{\mu}[X-\mu \leq t]=P_{\mu}[X \leq t+\mu] \\
& =\int_{-\infty}^{t+\mu} f_{\mu}(x) d x=\int_{-\infty}^{t+\mu} f(x-\mu) d x
\end{aligned}
$$

so the density is $\frac{d}{d t} F_{Q}(t)=f(t)$.
Notice that Q, or $Q(X, \mu)$, is a function of both the sample and the unknown parameters. This quantity is therefore neither an ordinary random variable not a parameter.

Notice also that this random quantity has a fixed distribution, which no longer depends on the parameter itself.

Random quantities with a distribution which is free of the parameter are called pivotal quantities.

In the same way we see that if $X \sim f_{\sigma}(x)=f\left(\frac{x}{\sigma}\right)$ then

$$
\frac{X}{\sigma} \sim f(x)
$$

and if $X \sim f_{\mu, \sigma}(x)=f\left(\frac{x-\mu}{\sigma}\right)$ then

$$
\frac{X-\mu}{\sigma} \sim f(x)
$$

Many statistics such as $T=\bar{X}, X_{(n)}, X_{(1)}, \widetilde{X}:=\operatorname{median}\left\{X_{1}, \ldots, X_{n}\right\}$ are linear, i.e.

$$
T\left(\frac{X_{1}-\mu}{\sigma}, \ldots, \frac{X_{n}-\mu}{\sigma}\right)=\frac{T(\mathbf{X})-\mu}{\sigma}
$$

or have scaling property: $R\left(\frac{\mathbf{X}}{\sigma}\right)=\frac{1}{\sigma} R(\mathbf{X})$.

Example 1 Let $X_{1}, \ldots, X_{n} \sim f_{\mu, \sigma}$ iid, where $f_{\mu, \sigma}(x)=f\left(\frac{x-\mu}{\sigma}\right)$. Suppose f is a known density but μ, σ unknown. We know that $\frac{X_{i}-\mu}{\sigma} \sim f$ if $X_{i} \sim f_{\mu, \sigma}$ and therefore

1. $\frac{\bar{X}-\mu}{\sigma}=\frac{1}{n} \sum \frac{X_{i}-\mu}{\sigma}$,
2. $\frac{X_{(n)}-\mu}{\sigma}$,
3. $\frac{\tilde{X}-\mu}{\sigma}$,
4. $\frac{X_{(1)}-\mu}{\sigma}$,
5. $\frac{1}{\sigma} S=\frac{1}{\sigma} \sqrt{\frac{X_{i}-\bar{X}}{n-1}}$,
6. $\frac{\bar{X}-\tilde{X}}{S}$
are pivotal quantities.

Note that we want to use a probability statement of the form $P_{\theta}[a \leq Q(\mathbf{X}, \theta) \leq b]=$ $1-\alpha, \forall \theta$, and "pivot" this to generate an equivalent statement $P_{\theta}[\theta \in \zeta(\mathbf{X})]=1-\alpha, \forall \theta$.

Example 2 In a location-scale family, one can e.g. use $\frac{S}{\sigma}$ to make inference on σ, even if is unknown; use $\frac{\bar{x}-\mu}{\sigma}$ for μ, if σ is known, $\frac{\bar{x}-\mu}{S}$ for μ even if σ is unknown, etc.

But $\frac{\bar{X}-\tilde{X}}{S}$ does not involve the parameters and has a distribution free of the parameters, so it provides us information. It is an ancillary statistic and is useless here. Alternatives to S in this context include the range $X_{(n)}-X_{(1)}$ and MAD $=\operatorname{median}\left\{\left|X_{1}-\widetilde{X}\right|, \mid X_{2}-\right.$ $\widetilde{X}\left|, \ldots,\left|X_{n}-\widetilde{X}\right|\right\}=$ median absolute deviation.

1.3 Seeking shorter confidence intervals

sometimes want to optimise the length of the CI
(add text...)
We now want to evaluate

$$
(*) \int_{a}^{b} f_{Y}(t) d t=1-\alpha
$$

and find conditions which give a short confidence interval.

$$
\begin{gathered}
(*) B \\
\int_{a}^{b} \frac{t^{r-1} e^{-n t}}{\Gamma r(1 / n)^{r}} d t=1-\alpha
\end{gathered}
$$

Could choose cutoffs $\alpha / 2$, i.e.

$$
\int_{0}^{\alpha / 2} \frac{t^{r-1} e^{-n t}}{\Gamma(r)(1 / n)^{r}} d t=\frac{\alpha}{2}
$$

This is what is usually done. It is optimal for the normal distribution, but not for other, asymmetric distributions.

1.3.1 Examples

Example: Consider $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$ and we want to find a confidence interval for σ^{2}. We know that (X, S^{2}) is sufficient for $\left(\mu, \sigma^{2}\right)$ and for σ^{2} its natural to consider the pivotal quantity

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

so we can easily find a and b such that

$$
\mathbf{P}\left(a \leq \frac{(n-1) S^{2}}{\sigma^{2}} \leq b\right) \geq 1-\alpha
$$

e.g. choose $a=\chi_{n-1, \alpha / 2}^{2}$ and $b=\chi_{n-1,1-\alpha / 2}^{2}$ to obtain the usual $100(1-\alpha) \%$ confidence interval.

$$
\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}
$$

which turns out to be not of the shortest length.
Next consider a gamma density:
We want to find a and b such that

$$
P\left[a \leq \frac{\bar{X}}{\beta} \leq b\right]=1-\alpha
$$

i.e.

$$
P\left[\frac{\bar{X}}{b} \leq \beta \leq \frac{\bar{X}}{a}\right]=1-\alpha
$$

We would generally prefer a short interval.
We know that

$$
P\left[a \leq \frac{\bar{X}}{\beta} \leq b\right]=\int_{a}^{b} f_{\bar{X} / \beta}(t) d t
$$

and $\frac{X_{i}}{\beta}$ has the density

$$
\frac{x^{r-1} e^{-x}}{\Gamma(r)} \text { i.e. } \Gamma(r, 1)
$$

So if $Y_{i}:=\frac{X_{i}}{\beta} \sim \Gamma(r, 1)$ then we need the density of $\bar{Y}=\frac{1}{n} \sum Y_{i}=\frac{\bar{X}}{\beta}$
The moment generating function for $\Gamma(r, \beta)$ is

$$
\begin{gathered}
E\left[e^{t X}\right]=\int_{0}^{\infty} e^{t x} \frac{x^{r-1} e^{\frac{-x}{\beta}}}{\Gamma(r) \beta^{r}} d x \\
=\int_{0}^{\infty} \frac{x^{r-1}}{\Gamma(r) \beta^{r}} e^{\frac{x}{t-\frac{1}{\beta}}} d x \\
\frac{1}{\frac{1}{(t-1) / \beta}} \beta^{r} \\
1
\end{gathered}=\frac{1}{\beta^{r}\left(\frac{1}{\beta}-t\right)^{r}}=\frac{1}{(1-\beta t)^{r}} .
$$

So

$$
M_{Y_{i}}(t)=\frac{1}{(1-t)^{r}}
$$

and

$$
\begin{gathered}
M_{\bar{Y}}(t)=E\left[e^{t \frac{1}{n} \sum Y_{i}}\right]=M_{Y_{i}}\left(\frac{t}{n}\right)^{n}=\frac{1}{\left(1-\frac{t}{n}\right)^{r n}} \\
M_{\sum Y_{i}}(t)=\frac{1}{(1-t)^{r n}}
\end{gathered}
$$

We now want to evaluate $\int_{a}^{b} f_{\bar{Y}}(t) d t=1-\alpha$ and find conditions which give a short confidence interval.

1.4 A few more examples and background

1.4.1 Handout

20131101_092159.jpg :

Example 1

Let $X_{1}, \ldots, X_{n} \sim n\left(\mu, \sigma^{2}\right)$, i.i.d., σ^{2} known. Define:
(a) $C(\mathbf{x}):=\left(-\infty, \bar{x}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right]$
(b) $C(\mathbf{x}):=\left[\bar{x}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$
(c) $C(\mathbf{x}):=\left[\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]$
are all $100(1-\alpha) \%$ confidence intervals.

20131101_100326.jpg :
Note that in a location family with $f_{\mu}(x)=f(x-\mu)$ we know that if $X \sim f_{\mu}$, then if we write $Q(X, \mu)=X-\mu$ to obtain

$$
\begin{gathered}
F_{Q}(t):=P_{\mu}[Q(X, \mu) \leq t] \\
=P_{\mu}[X-\mu \leq t] \\
=P_{\mu}[X \leq t+\mu] \\
=\int_{-\infty}^{t+\mu} f_{\mu}(x) d x \\
=\int_{-\infty}^{t+\mu} f(x-\mu) d x
\end{gathered}
$$

so the density is $\frac{d}{d t} F_{Q}(t)=f(t)$ and in the same way we see that if $X \sim f_{\sigma}(x)=f(x / \sigma)$ then $\frac{X}{\sigma} \sim f(x)$ and if $X \sim f_{\mu, \sigma}(x)=f\left(\frac{x-\mu}{\sigma}\right)$ then $\frac{X-\mu}{\sigma} \sim f(x)$.

Many statistics, such as: $\bar{X}, X_{(n)}, X_{(1)}, \tilde{X}:=\operatorname{median}\left\{X_{1}, \ldots, X_{n}\right\}$ are linear, i.e.

$$
T\left(\frac{X_{1}-\mu}{\sigma}, \ldots, \frac{X_{n}-\mu}{\sigma}\right)=\frac{T(\mathbf{X})-\mu}{\sigma}
$$

or e.g. $R(\mathbf{X}):=S$.
Copyright 2021, Gunnar Stefansson
This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

2 Inverting test statistics

2.1 Some examples and preliminaries

2.1.1 Handout

Definition 3 Confidence sets-overview $\mathcal{C}(\underline{x})$ is a $100(1-\alpha) \%$ is Confidence set if $P_{\theta}[\theta \in \mathcal{C}(\underline{x})] \geq 1-\alpha \forall \theta \in \Theta$

Definition 4 Inverting tests:

If $\phi_{\theta}: \mathbb{R}^{n} \rightarrow\{0,1\}$ is such that $P_{\theta}\left[\phi_{\theta}(\underline{X})=1\right]=\alpha$ then $\mathcal{C}:=\left\{\theta: \phi_{\theta}(\underline{x})=0\right\}$ is a $100(1-\alpha) \%$ C-set for θ

Example 3 (Inverting a normal test): Let X_{1}, \ldots, X_{n} be i.i.d. $n\left(\mu, \sigma^{2}\right)$ and consider testing $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$. For a fixed α level, a reasonable test has rejection region $\left\{\mathrm{x}:\left|\bar{x}-\mu_{0}\right|>z_{\alpha / 2} \sigma / \sqrt{n}\right\}$. Note that H_{0} is accepted for sample points with $\left|\bar{x}-\mu_{0}\right| \leq z_{\alpha / 2} \sigma \sqrt{n}$ or, equivalently

$$
\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu_{0} \leq \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} .
$$

Since the test has size α, this means that $P\left(H_{0}\right.$ is rejected $\left.\mid \mu=\mu_{0}\right)=\alpha$ or, stated in another way $P\left(H_{0}\right.$ is accepted $\left.\mid \mu=\mu_{0}\right)=1-\alpha$. Combining this with the above characterization of the acceptance region, we can write

$$
P\left(\left.\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu_{0} \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \right\rvert\, \mu=\mu_{0}\right)=1-\alpha .
$$

But this probability statement is true for every μ_{0}. Hence, the statement

$$
P_{\mu}\left(\left.\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \right\rvert\, \mu=\mu_{0}\right)=1-\alpha .
$$

is true. The interval $\left[\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right.$], obtained by inverting the acceptance region of the level α test, is a $1-\alpha$ confidence interval.

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

3 Pivotal quantities

3.1 Definitions and examples of the use of pivotal quantities

3.1.1 Handout

Definition 5 Pivotal quantities:

$Q: \mathbb{R}^{n} \times \Theta \rightarrow \mathbb{R}$ is a pivotal quantity if

$$
P_{\theta}[Q((X), \theta) \in A]
$$

is constant in θ.
If the set $A \subset \mathbb{R}$ is chosen such that

$$
P_{\theta}[Q((X), \theta) \in A]=1-\alpha
$$

then

$$
\{\theta: Q(\underline{x}, \theta) \in A\}
$$

is a $100(1-\alpha) \%$ C-set for θ

Example 4 If $X_{1}, \cdots, X_{n} \sim F_{\theta}$ where $F_{\theta}(x)=F(x-\theta)$ and $\phi_{\theta}(\underline{x}=\phi(\underline{x}-\theta)$ where ϕ is level $-\alpha$ test of $H_{0}: \theta=0$ then

$$
\begin{aligned}
& \mathcal{C}(\underline{x})=\left\{\theta: \phi_{\theta}(\underline{x})=0\right\} \\
& =\{\theta: \phi(\underline{x}-\theta)=0\} \\
= & \left\{\theta: \underline{x}-\theta \in \phi^{-1}(\{0\})\right\} \\
= & \left\{\theta: \theta \in \underline{x}-\phi^{-1}(\{0\})\right\} \\
= & \underline{x}-\underbrace{\phi^{-1}(\{0\})}_{\text {acceptance region for } \phi}
\end{aligned}
$$

Example 5 Let $X_{1}, \ldots, X_{n} \sim U(0, \theta)$. By scaling by $1 / \theta$, we get
$X_{1} / \theta, \ldots, X_{n} / \theta \sim U(0,1)$.
We know that the n-th order statistic $X_{(n)}$ is sufficient for θ. The distribution of $\mathrm{T}:=$ $\frac{X_{(n)}}{\theta}$ can be found by noting that

$$
P[T<t]=\int_{0}^{t} 1 d t=t
$$

so for our sample, we have

$$
P\left[X_{1}<t, \ldots, X_{n}<t\right] \prod_{i=1}^{n} T=t^{n}
$$

Differentiating w.r.t t , we get

$$
T \sim n t^{n-1}
$$

The distribution of T is independent of θ and thus $Q(X, \theta)=T$ is a pivotal quantity. A confidence interval for θ can be found by using

$$
P\left(a<\frac{X_{(n)}}{\theta}<b\right)=\int_{a}^{b} n t^{n-1} d t=1-\alpha
$$

Example 6 If $X_{1}, \ldots, X_{n} \sim \operatorname{exponential}(\lambda)$ we can construct a 95% confidence interval for the parameter using a pivotal quantity and using the method of inverting the acceptance region of a test. We start by defining $T:=\sum X_{i}$ and $Q(T, \lambda):=\frac{2 T}{\lambda} \sim \chi_{2 n}^{2}$.

Now write $X_{2 n}^{2}$ for a generic random variable with a $\chi_{2 n}^{2}$ distribution, so that $X_{2 n}^{2}$ has the same distribution as $Q(T, \lambda)$.

Since $X_{2 n}^{2}$ for has a fixed and known distribution, we can choose constants a and b to satisfy

$$
P\left(a \leq X_{2 n}^{2} \leq b=1-\alpha\right.
$$

We then obtain

$$
P_{\lambda}\left(a \leq \frac{2 T}{\lambda} \leq b\right)=P_{\lambda}(a \leq Q(T, \lambda) \leq b)=P\left(a \leq X_{2 n}^{2} \leq b\right)=1-\alpha
$$

Inverting the set $\left.A(\lambda)=\left\{t: a \leq \frac{2 t}{\lambda} \leq b\right)\right\}$ gives $\left.C(t)=\left\{\lambda: \frac{2 t}{b} \leq \lambda \leq \frac{2 t}{a}\right)\right\}$ which is a $1-\alpha$ confidence interval.

For example if $n=10$, then consulting a table of χ^{2} cutoffs shows that a 95% confidence interval is given by $\left.\left\{\lambda: \frac{2 T}{34.17} \leq \lambda \leq \frac{2 T}{9.59}\right)\right\}$

Copyright 2021, Gunnar Stefansson

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

