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1 Confidence intervals

1.1 Interval Estimation
1.1.1 Handout

Recall from previous chapters: If X1, ..., X,, ~ n(u,0?) are i.i.d. random variables then

X—p
a/v/n

A method for obtaining a level « confidence interval is by the so called method of
inversion:

X ~n(p,0%/n) and

~n(0,1)

P [_zl—a/2<5{T_\/%<zl—a/2] =P [X—Zl—a/2ﬁ<u<)_(+z1—a/2 %] =l-a

So the random set
C(X):[X_Zl—a/2%v)_(+zl—a/2%:|
has probability 1 — « of covering u.
Once we have actual data, outcomes of the random variables, we can compute a realisa-
tion of the set:
C(X):[E_zl—a/Z%v%'i'zl—a/Z %]
and we call this a 100(1 — )% confidence interval for p.

Note carefully: The random set has probability 1 — « of covering p. Once we have data
x we have a fixed set C'(x) and there is no probability any more. We simply claim p € C(x).

Recall that we tested Ho : i = po vs. Hy : o # po under the usual Gaussian assumptions,

using Z := 249 and rejected if the numerical outcome satisfies
o/vn

2] > 21_a0-

Note that we use the natural definition of quantiles and subscript therefore denote the
lower-tail probability, i.e.
D(zo) =

so that
(b (Zl—a/Q) = ]_ — 01/2

Note 1: Suppose Xi,..., X, ~ fg,0 € © and ¢y, is a test function for Hy : 0 = 6.
Then we can think of the entire collection of such tests {¢g, }g,co o simply {dg}gco-

Principle of generating confidence sets from test functions: Suppose {¢g}4cq is a col-
lection of tests for the situation where X ~ fy,0 € © and define C(X) := {6 : ¢p(x) = 0}.

Proof.

Py(0 € C(X)) = Pp(dp(X) =0) =1 - Fy(¢g(X) =1) 21—«

Consider the simplest cases where C(X) C R.



Definition 1 An interval [L(x),U(x)] is an interval estimate and [L(X),U(X)] is an
interval estimator if X1, ..., X;, are random variables and L,U: R" — R with L < U.
Note: R" = RU {—00, 00} is permitted.

Definition 2 Let X ~ fp,6 € ©. Then
(a) infpee Py(0 € C(X)) =: coverage probability =: 1 — «

(b) 100(1 — )% is the confidence of the set, i.e. C'(X) is a 100(1 — «) confidence set if
o is as above.

1.2 Location, scale and location-scale families
1.2.1 Handout

Consider a location family with f,(z) = f(z — u).
Let X ~ f, and write Q(X, ) = X — pu. Then we obtain

Folt) : = PQ(X, ) < 1
PX —p<t] = PX <t 4]

t+p t+p
[ T hwie= [ - o

—0o0 —00

so the density is %FQ(t) = f(t).

Notice that @, or Q(X, p), is a function of both the sample and the unknown parameters.
This quantity is therefore neither an ordinary random variable not a parameter.

Notice also that this random quantity has a fixed distribution, which no longer depends
on the parameter itself.

Random quantities with a distribution which is free of the parameter are called pivotal
quantities.

In the same way we see that if X ~ f,(z) = f(Z) then

2 @)

and if X ~ f, ,(x) = f(*=£) then

X—p

2

~ f(z)

Many statistics such as T = X, Xy Xa), X = median{X7,..., X} are linear, i.e.

Xy — X, —
T( 1 /1/7.”’ n M):
g g g

or have scaling property: R(%) = 1R(X).



Example 1 Let Xi,..., X, ~ f, o iid, where f,,(z) = f(*=£). Suppose f is a known
density but u,c unknown. We know tha if X; ~ f.o and therefore

X—p 1 Xi—p
1. o _nz o

g, Xm—w

)

)

(o2
X—p
5,

P =

are pivotal quantities.

Note that we want to use a probability statement of the form Pyla < Q(X ) < =
1 —a, V0, and “pivot” this to generate an equivalent statement Py[f € ((X)] =1 — a, V6.

Example 2 In a location-scale family, one can e.g. use 2 to make inference on o, even if
X K=
is unknown; use =% for p, if o is known, =<# for y even if o is unknown, etc.

But % does not involve the parameters and has a distribution free of the parameters,
so it provides us information. It is an ancillary statistic and is useless here. Alternatives
to S in this context include the range X(,) — X(;) and MAD = median{|X; — X|, | Xs —

X|,...,|X, — X|} = median absolute deviation.

1.3 Seeking shorter confidence intervals

sometimes want to optimise the length of the CI

(add text...)
We now want to evaluate )
*)/ fy(t)dt =1—«
a
and find conditions which give a short confidence interval.

(*)B
b yr—1_—nt
t e
- dt=1-=
/a Ty T
a/2  gr—1_—nt
/ fierdt _a
o L(r)(1/n) 2

This is what is usually done. It is optimal for the normal distribution, but not for other,
asymmetric distributions.

Could choose cutoffs /2, i.e.




1.3.1 Examples

Example: Consider X7, ..., X;, ~ n(u,0?) and we want to find a confidence interval for o2.
We know that (X,S?) is sufficient for (u1,02) and for o2 its natural to consider the pivotal
quantity

(n—1)8% S(X;—X)?

_ 2
o2 - o2 ~ Xn—1
so we can easily find a and b such that
-1)5?
P(aﬁ%ﬁb)Zl—a
o
e.g. choose a = Xifl o2 and b = X?Lfl 1—aya 1O obtain the usual 100(1 — a)% confidence

interval.

(n—1)52 o2 < (n—1)52

X?Lfl,a/2 B Xifl,lfa/2
which turns out to be not of the shortest length.
Next consider a gamma density:
We want to find a and b such that

X
Pla<—=<b=1-«
g
ie. _ _
X X
P[—<g<Z]=1-
G <h<]=1-a
We would generally prefer a short interval.
We know that B
X b
fﬁa S 7; S H = fX/BUjdt
and % has the density
xr—l —x
ie. I'(r,1)

Soif Y; := % ~T(r,1) then we need the density of ¥ = 1 3" Y; =
The moment generating function for I'(r, 8) is

Eﬂk\

o0 r—1 i%
EletX :/ emudx
=) ToE
[e'e) r—1 ?
x T
= e PBdx
|t
GV _ 1 _ 1
BT Br(L -ty (1—=pt)r
So
My (t) = —
YT Ay
and

1
)n:: i

My (t) = Ele'n 2] = My, ( Tty

t
n
1

Moyl = a—5m

We now want to evaluate f; fy(t)dt = 1 — « and find conditions which give a short
confidence interval.



1.4 A few more examples and background
1.4.1 Handout

20181101 _092159.5pg :
Example 1
Let X1,..., X;, ~ n(u,0?), iid., 02 known. Define:

(a) C(x) = (—00, T+ 21— a—]

\/ﬁ
(b) C(x):=[z — zl,a%,oo)
(c) C(x):=[z - Zlfa/2ﬁ7-f + Zlfa/2%]

are all 100(1 — a)% confidence intervals.

20131101_100326.5pg -
Note that in a location family with f,(x) = f(x — p) we know that if X ~ f,, then if we
write Q(X, pu) = X — p to obtain

Fo(t) == PJQ(X, p) <]

=Pu[X —p<t]

= Pu[X <t+ 4
t+p

:/fu(x)dx
t+p

= /f(w—/z)dw

so the density is %FQ(t) = f(t) and in the same way we see that if X ~ f,(x) = f(z/0)
X — X —

then = ~ f(z) and if X ~ f,q(z) = f <u> then B ).
o o

g

Many statistics, such as: X, Xy X X := median{ X1, ..., X,,} are linear, i.e.

T<X1—u Xn—u> _ITX)—p

g eney
g o g

ore.g. R(X):=S5.
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2 Inverting test statistics

2.1 Some examples and preliminaries

2.1.1 Handout

Definition 3 Confidence sets-overview C(z) is a 100(1 — «)% is Confidence set if
PeCz)>1-—av¥leO

Definition 4 Inverting tests:
If g9 : R™ — {0,1} is such that Pylpe(X) = 1] = a then C := {6 : ¢g(z) = 0} is a
100(1 — )% C-set for 6

Example 3 (Inverting a normal test): Let Xi,...,X, be iid. n(u,o?) and consider
testing Hy : u = po versus Hy : p # po. For a fixed « level, a reasonable test has rejection
region {X : [T — po| > 24/20/y/n}. Note that Hy is accepted for sample points with
|Z — po| < 24/20+/n or, equivalently

o
v
Since the test has size «, this means that P(Hp is rejected | = po) = « or, stated

in another way P(Hj is accepted | = po) = 1 — a. Combining this with the above
characterization of the acceptance region, we can write

_ g _
x_za/2% < 1o §x+za/2

_ o = g
P(X_zaﬂ%§N0§X+za/2%‘N:NO) =1l-a.

But this probability statement is true for every ug. Hence, the statement

_ o — g
B (X—Za/z—n<N§X+Za/2%

is true. The interval [T — 2z, /Qﬁ, T+ 2q/2 ﬁ], obtained by inverting the acceptance region

HZNO) =1-o

of the level « test, is a 1 — « confidence interval.
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3 Pivotal quantities

3.1 Definitions and examples of the use of pivotal quantities

3.1.1 Handout

Definition 5 Pivotal quantities:
Q@ :R” x ©® — R is a pivotal quantity if

BlQ((X),0) € A]

is constant in 6.
If the set A C R is chosen such that

BlQ((X),0) e A]=1-a

then
{0:Q(z,0) € A}
is a 100(1 — )% C-set for

Example 4 If Xy, -+, X,, ~ Fy where Fy(z) = F(z —0) and ¢p(z = ¢(xz — 0) where ¢ is
level-a test of Hy : 0 = 0 then

C(z) ={0: ¢o(z) = 0}
={0: ¢(z—0) =0}
={0:z-0es'({0})}
={0:0cz—¢ '({0})}

=z— ¢ ({0}

acceptance region for ¢

Example 5 Let Xy,..., X,, ~U(0,0). By scaling by 1/6, we get
X1/60,...,X,/0 ~U(0,1).
We know that the n-th order statistic X, is sufficient for 6. The distribution of T:=

X(n

T) can be found by noting that

t
P[T<t]=/ 1dt = t
0

so for our sample, we have




The distribution of T is independent of 6 and thus Q(X,0) = T is a pivotal quantity. A
confidence interval for 6 can be found by using

Xn b
P(a<%<b)=/ nt"ldt =1—a

Example 6 If X;,..., X, ~ exponential(\) we can construct a 95% confidence inter-
val for the parameter using a pivotal quantity and using the method of inverting the
acceptance region of a test. We start by defining 7' := >~ X; and Q(T, \) := % ~ X3,

Now write X%n for a generic random variable with a X%n distribution, so that X%n has
the same distribution as Q(T, A).

Since X2, for has a fixed and known distribution, we can choose constants a and b to
satisfy

Pla< X3, <b=1-q.

We then obtain

2T
Tgb):P,\(agQ(T,)\)gb):P(a,gX%ngb)zl—a

Py(a <
Inverting the set A(A) = {t : a < & < b)} gives O(t) = {\: 2L < X < 2)} which is a
1 — « confidence interval.

For example if n = 10, then consulting a table of x? cutoffs shows that a 95% confidence

interval is given by {\ : 3ﬂ7 <A< %)}
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